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Abstract— This paper presents a new algorithm based on
previous results of the authors, for the estimation of the
yaw angle of an omnidirectional camera

/
robot undergoing a

6-DoF rigid motion. Our real-time algorithm is uncalibrated,
robust to noisy data, and it only relies on the projection of
3-D parallel lines as image features. Numerical and real-world
experiments conducted with an eye-in-hand robot manipulator,
which we used to simulate the 3-D motion of a Micro unmanned
Aerial Vehicle (MAV), show the accuracy and reliability of our
estimation algorithm.

I. INTRODUCTION

In recent years we have witnessed a growing num-

ber of applications involving Unmanned Aerial Vehicles

(UAVs) [1]–[5]: these applications range from infrastruc-
ture inspection, mapping of unknown terrains, espionage,

object transportation, to entertainment (film shooting and

light shows [6], [7]). Several factors have contributed to this
success and to the recent large diffusion of UAVs: decreasing

cost (cf. AR.Drone’s Parrot quadricopter), enhanced sensing

and autonomy, as well as the ability to carry heavier pay-
loads. Three categories of Micro-UAVs (or MAVs, for short)

are currently under study or development in the research
community: fixed-wing aircraft, avian-style flapping wing

aircraft and rotor craft [4]. Two configurations of rotor craft

have recently gained wide acceptance: co-axial rotor craft,
which are equipped with two counter-rotating co-axial rotors

and with a stabilizer bar, and multi-rotor aircraft (e.g., the

popular quadrotors with four propellers).

The localization of MAVs represents a challenging re-
search issue: in fact, while Vicon systems or overhead camera

networks can be employed to precisely localize an aerial

vehicle in limited workspaces, they are unusable outdoors.
When GPS information is not available or is too inaccurate

for the application at hand, the only possibility is then to

rely on onboard sensors for vehicle’s position and attitude
estimation. Because of their small size, limited weight,

affordability and low-power consumption, vision sensors are

particularly suited for this task.

Several works have appeared in the recent robotics li-
terature, dealing with MAV localization using only visual

information. The problem of autonomously landing a MAV
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on a known platform, was addressed in [8]. In [9], an aerial

vehicle is localized using a downward-looking monocular
camera. A visual SLAM algorithm tracks the pose of the

camera while simultaneously building an incremental map

of the surrounding region. Based on this pose estimation, a
LQG/LTR-based controller stabilizes the vehicle at a desired

setpoint and allows the execution of some simple maneuvers,

like take-off, landing and hovering.
In [10], a simple technique is described for estimating

the roll and pitch angle of a UAV, based on the detection

of the horizon line in a pinhole image. In [11], instead,
the attitude (roll and pitch angles) of a UAV is estimated

by leveraging the geometric properties of the on-board cata-
dioptric sensor. Since the horizon line used in [11] becomes

an inadequate feature in a urban environment, the same

authors, in [12], have proposed an omnidirectional vision
system based on straight lines, that is able to compute the

roll and pitch angles. The method consists in finding bundles

of horizontal and vertical parallel lines in order to obtain
an absolute reference for the attitude computation. Finally,

recently in [13] a novel rotation-estimation approach based

on the extraction of vanishing points in omnidirectional
images of urban environments, has been presented. However,

a common strong assumption in [10]–[13] is that the vision

sensor is fully calibrated.
As it is known, panoramic cameras have a wider field

of view than standard pinhole sensors, but to the best of

our knowledge, relatively few works in the literature have
explored their potential in aerial robotics (see, e.g., [13],

[14] and the references therein). This paper builds upon our
previous work [15], and presents a robust (thanks to our

RANSAC-based implementation) and uncalibrated visual

compass (VC) algorithm for estimating the yaw angle of
a camera

/
robot, which only leverages omnidirectional line

images, widely available in man-made environments. While

the method described in [15] is uniquely valid for planar
motions of the camera

/
robot, in this paper we extend its

applicability to sensors undergoing a 6-DoF motion, thus

making it applicable to the MAV attitude estimation problem.
Numerical as well as real-world experiments conducted with

a paracatadioptric camera mounted on the end-effector of

a robot manipulator (that we used to generate accurate
3-D trajectories, thus simulating the motion of a MAV),

illustrate the theory and show the accuracy and robustness
of our VC algorithm as well as its real-time capabilities.

It is worth underlying here that although MEMS gyroscopes

may represent a valid alternative to panoramic cameras for
yaw-angle estimation, in terms of weight, size and price, they

are known to be sensitive to temperature
/
calibration and to

suffer from bias errors.
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The rest of this paper is organized as follows. Sect. II
briefly reviews the basics on paracatadioptric projection of

3-D lines. Sect. III and Sect. IV describe our VC estimation

algorithm and its main properties. The results of simulation
and real-world experiments are discussed in Sect. V. Finally,

in Sect. VI, conclusions are drawn and possible avenues of
future research are highlighted.

II. BASICS ON PARACATADIOPTRIC PROJECTION

OF 3-D LINES

Fig. 1 illustrates the imaging model of a paracatadioptric

camera with mirror focus at O: a generic 3-D scene point

X ∈ IR3 (expressed in the mirror frame {M}), is projected
onto the parabolic mirror surface at x ∈ IR3 through O.

Then, an orthographic projection maps x at u (pixels), onto

the image plane I. The transformation from X to u is analyt-
ically described by a nonlinear function η : IR3 → IR2 that

depends on both the camera intrinsic calibration parameters

and the mirror geometry [16].

Let us now consider the case in which a generic 3-D line
L is observed by the paracatadioptric camera. We will refer

to the interpretation plane as the plane with normal vector

n = [nx, ny, nz]
T (in {M}) that passes through L and O.

Proposition 1 (Paracatadioptric line image [17]):

Consider the setup in Fig. 1, where a line L is observed

by a paracatadioptric camera at O. If nz 6= 0, then L
projects onto the image plane I at a circle C with center

c , [cx, cy]
T (pixels) and radius r (pixels) given by,

c = u0 − 2 af
[nx

nz
,
ny

nz

]T
, r =

2 a f

nz
,

where a is the focal parameter of the parabolic mirror (i.e. the

distance between the focus and the vertex of the paraboloid),
u0 , [u0, v0]

T the optical center (in pixels), and f (pixels)

the focal length of the camera. �

In Prop. 1, we have assumed that the line L is in a

generic 3-D configuration. In the special case of a line
orthogonal to the image plane I (see Fig. 2), the projected

circle C reduces to an image line ℓ through u0, as stated

O

c
C

n

L

r

x

X

u

{M}
parabolic mirror

I

z

Fig. 1. Projection of a 3-D line L: the interpretation plane passes through
the focus O of the parabolic mirror and the line L, and intersects the mirror
at a curve that is orthographically projected at a circle C onto the image
plane I (with center c and radius r).

O

ℓ

n

L

b

u0
I

z

ϕ

{M}

Fig. 2. Projection of a 3-D vertical line L: the interpretation plane intersects
the mirror at a curve that is orthographically projected onto the image plane
at a line ℓ passing through the optical center u0 and with a slope ϕ with
respect to the image horizontal axis.

in [18]. We henceforth refer to this category of lines L, as
vertical lines.

III. INVARIANT PARALLEL LINES

The following definition is crucial for the subsequent
developments.

Definition 1 (Invariant property): A set of non-vertical

parallel lines is invariant to a particular camera rotation
and/or translation, if the line joining the centers of the circles

obtained as the projection of such lines on the camera image

plane, does not change its slope.
Remark 1: It has been shown in [15], that non-vertical

parallel lines are invariant to camera translations. In what
follows, we will simply refer to such lines as parallel lines. ⋄

In order to estimate the camera z-rotation angle when the

sensor undergoes a full 6-DoF motion, we need to find sets
of parallel lines which are invariant to rotations about the

x- and y- axes. The next proposition identifies set of lines

which can be used to estimate the z-rotation angle between
two views, without the knowledge of the camera calibration

parameters. We will use Rx,α ∈ IR3×3 to denote the basic

rotation matrix about the x-axis of an angle α.
Proposition 2 (Invariant parallel lines): Consider a set

of parallel lines and suppose that a rigid transformation
(R, t) ∈ SE(3) with R = Rz,θ Ry,β Rx,α and t ,

[tx, ty, tz]
T is applied to them:

• If the parallel lines have direction dx = [1, 0, 0]T ,
then the set is invariant to Ry,β Rx,α.

• If the parallel lines have direction dy = [0, 1, 0]T ,

then the set is invariant to Rx,α.

Proof: From Remark 1, we know that parallel lines are

invariant to camera translations: hence, in the rest of the
proof we will only focus on the rotational motion.

Let us suppose to have a set of parallel lines with direction
dx = [1, 0, 0]T and a generic point P = [x, y, z]T . The

interpretation plane passing through P with direction dx has

normal vector n = dx × P = [0, −z, y]T . By applying
Rx,α to n, we obtain,


1 0 0
0 cosα − sinα
0 sinα cosα






0
−z
y


 =




0
−z cosα− y sinα
−z sinα+ y cosα


 . (1)
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From Prop. 1, it follows that such line projects onto a circle
with center’s coordinates,

c = u0 − 2 af

[
0,

−z cosα− y sinα

−z sinα+ y cosα

]T
.

As a consequence, given a set of parallel lines with direction

dx, all lines project onto circles having cx = u0. In this case

the line joining these centers is always a vertical line in the
camera image plane, having slope ϕ = ∞.

By applying Ry,β Rx,α to n, from (1) we obtain,



cosβ 0 sinβ

0 1 0

− sinβ 0 cosβ






0

−z cosα− y sinα

−z sinα+ y cosα


 =



(−z sinα+ y cosα) sinβ

−z cosα− y sinα

(−z sinα+ y cosα) cos β


 .

(2)

Such line projects onto a circle with center’s coordinates,

c = u0 − 2 af

[
tanβ,

−z cosα− y sinα

(−z sinα+ y cosα) cosβ

]T
. (3)

Since cx depends on the camera internal parameters and

on the rotation angle β, it is constant for all lines having
direction dx. Then, parallel lines with direction dx project

onto circles all having cx = u0 − 2 af tanβ. Also in this

case, the line joining these centers is always a vertical line.
In conclusion, sets of parallel lines having direction dx =
[1, 0, 0]T are invariant to Ry,β Rx,α because the line joining

the circles’ centers does not change its slope when rotations
about the x-, y-axes are applied.

Let us now repeat the previous considerations with dy =
[0, 1, 0]T . The interpretation plane passing through P with

direction dy has normal vector n = dy × P = [z, 0, −x]T .

By applying Rx,α to n, we obtain,


1 0 0
0 cosα − sinα
0 sinα cosα






z
0
−x


 =




z
x sinα
−x cosα


 . (4)

Such line projects onto a circle with center’s coordinates,

c = u0 − 2 af
[ z

−x cosα
, − tanα

]T
.

As a consequence, parallel lines with direction dy project

onto circles all having cy = v0+2 af tanα, which is constant
for all lines. In this case the line joining these centers is

always an horizontal line, being the slope ϕ = 0.
By applying Ry,β Rx,α to n, from (4) we end up with,




cosβ 0 sinβ

0 1 0

− sinβ 0 cosβ






z

x sinα

−x cosα


 =




z cosβ − x sinβ cosα

x sinα

−z sinβ + x cos β cosα


 .

Such line projects onto a circle with center’s coordinates,

c = u0 − 2 af




z cosβ − x sinβ cosα

−z sinβ + x cosβ cosα

x sinα

−z sinβ + x cosβ cosα


.

Since the centers’ coordinates depend on the line displace-
ment, these lines are not invariant to Ry,β Rx,α. �

Prop. 2 states that we can use parallel lines with direction
dx in the initial camera frame, to recover the yaw angle θ
when the camera undergoes a full 6-DoF motion.

From Prop. 1, we know that parallel lines project onto
the image plane at circles. In the next proposition, we show

how a rotation about the z−axis influences the slope ϕ of

the line joining the circles’ centers obtained as projection of
parallel lines with directions dx and dy , respectively.

Proposition 3:

• If the rigid trasformation (R, t) ∈ SE(3) with R =
Rz,θ Ry,β Rx,α and t , [tx, ty, tz]

T , is applied to a

set of parallel lines having direction dx, then the slope
of the line joining the circles’ centers is ϕ = − cot θ.

• If the rigid trasformation (R, t) ∈ SE(3) with R =
Rz,θ Rx,α and t , [tx, ty, tz ]

T , is applied to a set of
parallel lines having direction dy, then the slope of the

line joining the circles’ centers is ϕ = tan θ.

Proof: Let us first consider parallel lines with direction

dx = [1, 0, 0]T . By applying Rz,θ to (2) we obtain that
such lines project onto circles having center coordinates,

c = u0 − 2 af




(−zsα+ ycα) cθsβ + (zcα+ ysα) sθ

(−zsα+ ycα) cβ

(−zsα+ ycα) sθsβ − (zcα+ ysα) cθ

(−zsα+ ycα) cβ


,

where c(·), s(·) stand for cos(·) and sin(·), respectively. Let

us consider two parallel lines Li and Lj , having the same
direction dx. From [18], Li and Lj project onto circles

whose centers are collinear. Let the centers of the image

circles be c
i , [cix, c

i
y]

T , cj , [cjx, c
j
y]

T , and let us compute
the slope ϕ of the line joining these centers as,

ϕ =
ciy − cjy

cix − cjx
. (5)

Since,

ciy − cjy = 2 af
(−yizj + ziyj) cθ

(−zisα+ yicα)(−zjsα+ yjcα) cβ
,

cix − cjx = 2 af
−(−yizj + ziyj) sθ

(−zisα+ yicα)(−zjsα+ yjcα) cβ
,

then ϕ = − cot θ. As a consequence, θ is the angle between
such a line and the y-axis of the camera image plane.

Let us now consider the direction dy = [0, 1, 0]T . By

applying Rz,θ to (4), we obtain that,

c = u0 − 2 af

[
zcθ − xsθ sα

−x cα
,

zsθ + xcθ sα

−x cα

]T
. (6)

By plugging (6) in (5), we get ϕ = tan θ. �

As we will see in the next section, Prop. 2 and Prop. 3
are at the core of our visual compass algorithm.

IV. VISUAL COMPASS ALGORITHM

In this section we present a VC algorithm which allows us

to estimate the camera yaw angle θ, when it undergoes a full

6-DoF motion. The algorithm relies on Prop. 2, Prop. 3 and
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(c)
Fig. 3. Estimation of the rotation about the z-axis: (a) Two paracatadioptric
cameras are displaced of (R, t) and observe two generic 3-D parallel lines
Li and Lj ; (b)-(c) The two lines project onto each image plane I and I′,
at two circle pairs (Ci, Cj) and (C′

i
, C′

j
), respectively. From the centers of

the circles we obtain the unit-norm vectors e
′

ji and eji which are rotated

of an angle θ ∈ (−π/2, π/2].

on the extension of the disparity-circles constraint in [15],
reported in next theorem.

Theorem 1 (Extended disparity-circles constraint):
Consider the two-views setup shown in Fig. 3(a) in which

the current view at O is rotated about the x, y, z-axes of
an angle α, β, θ, respectively, with α, β, θ ∈ (−π/2, π/2],
and translated of t ∈ IR3 (with respect to the reference

view at O′). Let the rotation between the two cameras be
R = Rx,αRy,β Rz,θ, and let us assume that two 3-D

parallel lines Li and Lj having direction dx = [1, 0, 0]T in

O project onto the image planes I and I ′, at two circle pairs
(Ci, Cj) and (C′

i, C
′

j), respectively, with centers (ci, cj) and

(c′i, c
′

j) (see Figs. 3(b)-(c)). Then, the following constraint
holds true:

eji = R
2D
z,θ e

′

ji, (7)

where

eji ,
cj − ci

‖cj − ci‖
, e

′

ji ,
c
′

j − c
′

i

‖c′j − c′i‖
, R

2D
z,θ ,

[
cos θ − sin θ

sin θ cos θ

]
.

Proof: Since Li, Lj are invariant to translation (recall Re-

mark 1), we can focus our attention on the unknown rotation

R between the two views. Being dx = [1, 0, 0]T in O, from
Prop. 3 it follows that the slope of vector eji is ϕ = ∞.

Vector dx can be expressed in O′ as, d
′

x = R
−1

dx =
(Rx,αRy,β Rz,θ)

T
dx = Rz,−θ Ry,−β Rx,−α dx. From

Algorithm 1 Implementation of the VC algorithm

Phase 1 [Feature Detection]:

1: Automatically detect sets of parallel lines as described
in [15]. Such lines project at circles onto the camera

image plane.

Phase 2 [Initialization]:

1: Select one set of parallel lines and ensure that the line
joining the circles’ centers eji in the image plane at

the initial time instant, has slope ϕ = ∞ and passes

through u0 (cf. Remark 2).

Phase 3 [Estimation]:

1: while the camera
/

robot moves do

2: Use the ViSP software [19] to track circles from the
previous to the current frame.

3: Use the tracked and the initial (Phase 2) circles’

centers in Th. 1, and determine θ using a RANSAC-
based approach (see [15]).

4: if some of the 3-D lines are no more visible then

5: Go to Phase 1.
6: Add only the 3-D lines that are parallel to the initial

set selected in Phase 2.
7: end if

8: end while

Prop. 2 it follows that sets of parallel lines with direction
dx are invariant to rotations about the x-, y-axes. As a

consequence, owing to Prop. 3 it follows that the slope ϕ′

of vector e
′

ji depends only on the matrix Rz,θ, i.e. ϕ′ =
− cot(−θ) = cot θ. Finally, since ϕ = ∞ and ϕ′ = cot θ,

we obtain (7). �

Algorithm 1, summarizes the different phases of our VC
algorithm for the estimation of the z-rotation angle during the

camera motion. At each time frame the algorithm estimates

θ between the current and the initial view.

Remark 2: The proposed algorithm needs a bundle of
parallel lines with direction dx = [1, 0, 0]T in the camera

frame at the initial time. Such a requirement can be satisfied
by ensuring that the line joining the circles’ centers in the

initial image has slope ϕ = ∞ and passes through u0 (recall

Eq. (3) and see Fig. 7). Although this step might seem critical
in practice, in the next section we provide experimental

evidence that the proposed algorithm is robust against image

noise and initial camera alignment errors. ⋄

V. EXPERIMENTAL VALIDATION

In order to test the effectiveness of the proposed VC

algorithm, we conducted extensive numerical simulations

(see Sect. V-A) and experimental tests (see Sect. V-B).

A. Simulations

The simulation results reported in this section have been

obtained using the Epipolar Geometry Toolbox (EGT) for
MATLAB. For the sake of generality, we implemented the

unified panoramic-camera imaging model by Geyer and

Daniilidis [16] which describes any central panoramic ca-
mera projection as a projection between a sphere and a

plane. In order to assess the accuracy and robustness of our

algorithm to noisy data, we added Gaussian image noise with
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increasing standard deviation σ ∈ {0, 0.5, . . . , 2} pixels.
The two views are rotated of R = Rx,π/4Ry,π/6Rz,π/3

and translated of t = [1, 2, 1]T meters. A set of 4 parallel
lines was considered in our test, and we did not assume to

know the correspondences (cf. [15, Cor. 1]).

Fig. 4 shows the mean and the standard deviation of the

rotation-estimation error |θ̂−θ| (deg.) obtained from the VC

algorithm. These values have been computed by averaging

the rotation errors over 100 realizations. From Fig. 4, we
observe that the proposed algorithm is robust against image

noise and exhibits a maximum estimation error of about

1.4 deg. for σ = 2 pixels. We also tested the robustness
of the proposed algorithm against an initial misalignment of

the camera with respect to the set of parallel lines (recall

Remark 2). To this end, we introduced independent random
rotations with zero mean and standard deviation σu, about

the camera’s x-, y- and z-axes (the standard deviation of the

image noise is σ = 1.5 pixels). Fig. 5 shows the mean and

the standard deviation of the rotation-estimation error |θ̂−θ|
over 100 realizations: despite the initial misalignment, the

mean of the error is always smaller than 4 deg.

0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

|θ̂
−
θ|

[d
eg

.]

σ [pixels]

Fig. 4. Simulation results with image noise: mean and standard deviation

of the rotation-estimation error |θ̂−θ|. The reported values are obtained by
averaging the rotation errors over 100 realizations.

1 2 3 4 5

0

1

2

3

4

5

6

7

|θ̂
−
θ|

[d
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.]

σu [deg.]

Fig. 5. Simulation results with image noise and initial camera misalign-

ment: mean and standard deviation of the rotation-estimation error |θ̂ − θ|
when normally-distributed random rotations (with zero mean and standard
deviation σu) about the x-, y-, z-axes are introduced, and an image noise
with standard deviation of 1.5 pixels is used. The reported values are
obtained by averaging the rotation errors over 100 realizations.

Paracatadioptric
camera

x y

z

(a) (b)

Fig. 6. (a) The paracatadioptric camera is mounted on the end-effector of
a KUKA manipulator; (b) Camera view with detected circles (green).

B. Experiments

In the experiments described in this section, we used a Re-
mote Reality NetVision360 paracatadioptric mirror screwed

on a Lumenera LU071C pinhole camera. The camera was

mounted on the end-effector of a 6-DoF KUKA KR 3
manipulator (see Fig. 6)1. We decided to use this robot

because of its highly-accurate measurements of the camera

pose (in the order of millimeters/tenths of degree), that
we adopted as our ground truth. As aforementioned, the

manipulator was used to simulate the 3-D motion of a

MAV. Space constraints prevent us to provide here a detailed
description of the computer-vision algorithms that we used

for the automatic detection of the image circles and their

tracking as the camera moves. For more information, the
reader is referred to [15].

Figs. 7(a)-(c) show the motion of the camera with respect

to the initial pose, that we considered in our two experi-
mental tests. In particular, Fig. 7(a) and Fig. 7(b) report the

time evolution of the camera position and orientation, and

Fig. 7(c) its 3-D trajectory. A maximum number of 6 3-D
lines for the VC algorithm, was considered in our two tests.

The algorithm run at an average frame rate of about 10fps.

In the first test (see video 1), the VC algorithm was
accurately initialized (i.e., there was not an appreciable

misalignment between the orientation of the camera and the

selected set of parallel lines at the initial time). As shown
in Fig. 7(d), the maximum estimation error of the angle θ is

about 1.3 deg. in this case.

In the second test (see video 2), we violated on purpose
the initial camera alignment by adding a spurious rotation of

4 deg. about the x-, y-, z-axes (as shown in Fig. 7(f), this

misalignment can be easily noticed in the image). In spite

of this uncertainty, the maximum estimation error |θ̂ − θ| is

lower than 4.6 deg. (see Fig. 7(e)).

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have presented a new algorithm for
estimating the yaw angle of an omnidirectional camera

/
robot

moving in a 3-D environment. The proposed VC algorithm

has a number of attractive features: it is uncalibrated, robust

to noisy data, capable of real-time operation and it only

relies on the projection of 3-D parallel lines on the image

1The videos of the real-time experiments are available at:
http://sirslab.dii.unisi.it/research/vision/6dof-visual-compass/

1606



0

50

100

0

500

1000

−100

−50

0

50

0 10 20 30 40 50 60 70 80 90 100

0 10 20 30 40 50 60 70 80 90 100

0 10 20 30 40 50 60 70 80 90 100

tx

ty

tz

[m
m

]
[m

m
]

[m
m

]

# sample

(a)

−50

0

50

0

20

40

60

−60

−40

−20

0

0 10 20 30 40 50 60 70 80 90 100

0 10 20 30 40 50 60 70 80 90 100

0 10 20 30 40 50 60 70 80 90 100

α

β

θ

[d
eg

.]
[d

eg
.]

[d
eg

.]

# sample

(b)

�100
0

100
200

0
200

400
600

800

�100

0

100

Yc

Y [mm]

Z c

Yc

X c

Yc

X c

Z c

X [mm]

Z
 [

m
m

]

start

Z c

X c

(c)

0 10 20 30 40 50 60 70 80 90 100

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

|θ̂
−
θ|

[d
eg

.]

# sample

(d)

0 10 20 30 40 50 60 70 80 90 100

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

|θ̂
−
θ|

[d
eg

.]

# sample

(e)

0 100 200 300 400 500 600 700 800
0

100

200

300

400

500

600

+

[pixels]

[p
ix

el
s]

(f)
Fig. 7. Experiments with the KUKA robot: Time history of (a) the translational and (b) the rotational displacement of the camera; (c) 3-D trajectory of the

camera (the initial position is depicted in dark blue); (d) Time evolution of the estimation error |θ̂− θ| with accurate initial alignment; (e) Time evolution

of the estimation error |θ̂− θ| when a spurious rotation of 4 deg. about the x-, y-, z-axes was introduced in the initial camera pose: (f) the misalignment
can be easily noticed in the image (the blue line joining the circles’ centers and the red line should coincide).

plane, which are widely available in urban environments.

Simulations as well as real-world experiments have demon-

strated the effectiveness of our algorithm, and its potential
for attitude estimation in aerial robotics.

Although our results are promising, an effort still needs to
be done in order to implement our VC algorithm onboard

a real MAV. In particular, it will be necessary to tailor

our algorithm to the stringent memory and computational
requirements of commercial MAVs, and to make it robust

against propellers-induced vibrations. Finally, work is in

progress to relax the starting alignment condition, in order
to enlarge the set of possible initial camera orientations with

respect to the environment.
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