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Abstract— In recent years vehicles have been equipped with
more and more sensors for environment perception. Among
these sensors are cameras, RADAR, single-layer and multi-layer
LiDAR. One key challenge for the fusion of these sensors is
sensor calibration.

In this paper we present a novel extrinsic calibration algo-
rithm based on sensor odometry. Given the time-synchronized
delta poses of two sensors our technique recursively estimates
the relative pose between these sensors. The method is generic
in that it can be used to estimate complete 6DOF poses, given
the sensors provide a 6DOF odometry, as well as 3DOF poses
(planar offset and yaw angle) for sensors providing a 3DOF
odometry, like a single-beam LiDAR.

We show that the proposed method is robust against motion
degeneracy and present results on both simulated and real
world data using an inertial navigation system (INS) and a
stereo camera system.

I. INTRODUCTION

Autonomous vehicles are usually equipped with a large
spectrum of different sensors [1], [2], [3]. For sensor fusion
the relative position between these sensors has to be known
either directly or through a common coordinate system.

The importance of extrinsic sensor calibration is reflected
by the amount of literature in this topic, e.g. stereo camera
calibration [4] and camera-LiDAR calibration [5]. Recently,
researchers have been searching for online calibration meth-
ods such as LiDAR to LiDAR calibration [6] or camera to
camera calibration [7]. All this work is specifically designed
for a certain pair of sensors, in case of LiDAR even certain
sensor types.

The work most similar to that presented in this paper
comes from Brookshire and Teller [8] who propose an offline
method based on 6DOF delta poses of two sensors and least-
squares optimization. The extrinsic calibration algorithm
presented in this paper also relies on time-synchronized delta
poses, but estimates the extrinsic calibration between both
sensors online. The generic formulation not only allows to
extrinsically calibrate sensors capable of providing 6DOF
delta poses. If the sensors provide only planar movement
and orientation, such as a single-beam LiDAR, our method
at least estimates the 3DOF (planar offset and 1D orientation)
pose between such sensors. Even a combination of a 3DOF
and a 6DOF odometry sensor for 3DOF pose estimation is
possible as shown in the experimental section.

The idea of this paper can be summarized like this: If
two rigid sensors, capable of computing their own odometry,
were mounted on a moving vehicle in the exact same
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Fig. 1: Coordinate systems O1 and O2 of two sensors at
times k− 1 and k. The extrinsic calibration O2HO1

(green)
is estimated based on the measurements O1kHO1k−1

(blue)
and O2kHO2k−1

(red).

location with the exact same orientation, then the odometry
observed by both sensors would be identical. Due to physical
constraints it is more likely that the two sensors are placed
adjacent or even further apart. Thus, each sensor perceives
the vehicle’s movement differently. The main contribution of
this paper is to show how this difference in sensor odometry
allows for the estimation of the extrinsic calibration between
both sensors using an online recursive estimation process.

Imagine for example a vehicle equipped with two cameras.
One camera points to the front, the other to the left. If the
vehicle moves forward the first camera perceives movement
along its view direction. However, the second camera per-
ceives the movement as sideways. By using an Unscented
Kalman Filter, we can estimate the extrinsic calibration, often
also called pose, between both cameras.

This paper is structured as follows: Section II explains how
the Unscented Kalman Filter is used to estimate the pose
between two odometry-capable sensors. Some applications
to simulated and real world data are presented in section III.
Finally, section IV concludes the paper and points out future
work.

II. ONLINE EXTRINSIC CALIBRATION

For the estimation of the extrinsic calibration we make use
of the Unscented Kalman Filter as it is described in [9]. The
equations are summarized as follows:

For a given state vector x, an input vector u and a
parameter vector p at time k we define the process model
as

xk = f (xk−1,uk−1) (1)

and the measurement model as

yk = g (xk,pk) . (2)
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The prediction step of the Unscented Kalman Filter is
described through
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where i is an index over the 2n + 1 sigma points x
(i)
k−1,

¯x∗k
(i), and y∗

(i)
k , that are used to estimate the state vector

x∗ and the measurement y∗. The state vector dimension is n.
P denotes the filter’s internal covariance matrix, the matrix
operator (·)i extracts the i-th column of a matrix and 0 for
i = 0. The variables W (i)

c and W
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point weights and Q denotes the process noise covariance
matrix. Predicted values are denoted with an asterisk ·∗, and
estimated values with a hat ·̂.

The measurement update, also called innovation, of the
Unscented Kalman Filter is given through the equations
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with the measurement noise covariance matrix R.
Imagine two rigid sensors mounted at coordinate systems

O1 and O2 as illustrated in figure 1. We define the homoge-
neous transformation matrix that transforms from O1 to O2

as O2HO1 , which is the extrinsic calibration that we seek to
find.

We treat the vehicle movement as a discrete-time process
from time k − 1 to k, such that the odometry measured
by each sensor can be expressed through the homogeneous
transformation matrices O1kHO1k−1

and O2kHO2k−1
re-

spectively.
Both sensors are supposed to be rigid. Thus the extrinsic

calibration remains constant over time. We provide three so-
lutions to the problem of finding O2HO1 using the Unscented
Kalman Filter.

A. Estimating O2HO1

In 3D space homogeneous transformation matrices depend
on 6 pose parameters: The position (x, y, z)

T and the ori-
entation represented as Euler Angles (Φ,Θ,Ψ)

T , roll, pitch
and yaw. For a given homogeneous transformation matrix
bHa we define bPa to be the vector of the corresponding 6
pose parameters, as well as the functions

H( bPa) = bHa (15)

P( bHa) = bPa . (16)

For this first solution let x be the state vector containing
exactly the 6 pose parameters of O2PO1

x = (x, y, z,Φ,Θ,Ψ)
T
. (17)

Since we are estimating a rigid transformation between
both sensors, the state vector’s components are supposed
to be almost constant over time, only changing with the
estimation approaching the desired extrinsic calibration. The
process model function of equation 1 reflects this through
the following definition

f (xk−1,uk−1) = xk−1. (18)

For the measurement model we assume that the noise of
sensor 1 can be neglected (we lift this assumption later)
and set the parameter vector pk = P

(
O1kHO1k−1

)
to the

first sensor’s measured odometry. The measurement model
function of equation 2 becomes

g (x∗k,pk) = P
(
H (x∗k)

−1 ·H (pk) ·H (x∗k)
)
. (19)

Less formally speaking, we predict what we would have
to measure as the second sensor’s odometry

O2k
H*

O2k−1

assuming the current extrinsic calibration (the state vector
estimate from equation 18) was correct and the first sensor’s
odometry was free of noise.

Even though O1kHO1k−1
is considered noise free (which

in reality most likely is not true), we can at least define
the measurement noise for O2kHO2k−1

through the mea-
surement noise covariance matrix R. The experiments in
section III show how this affects the overall filter quality.

B. Estimating O2HO1 and O2kHO2k−1

In order to enhance the previous approach we incorporate
one sensor’s odometry into the state vector

x = (xodom,xextr)
T (20)

xodom = (xodom, yodom, zodom,Φodom,Θodom,Ψodom)
T

(21)

xextr = (xextr, yextr, zextr,Φextr,Θextr,Ψextr)
T
. (22)

While the process model for xextr remains the same as in
section II-A

x∗extrk = x̂extrk−1
, (23)
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we compute the part of the state vector xodom based on the
input vector uk = P

(
O1kHO1k−1

)
, which we set to the

measured odometry of sensor 1

x∗odomk = P
(
H
(
x̂extrk−1

)−1 ·H (uk) ·H
(
x̂extrk−1

))
.

(24)

This simplifies the measurement model, since our mea-
surement is now part of the state vector

g (x∗k,pk) = x∗odomk. (25)

Through this change we have not yet integrated both
sensor’s noise into the filter. However the noise of sensor 1
now manifests itself in the uncertainty of x∗odomk as defined
in the upper left 6 × 6 matrix of Q. This part reflects the
uncertainty of the second sensor’s odometry x∗odomk induced
by the noise of the first sensor’s odometry. Compared the
the previous version of the filter this allows at least for some
consideration of the first sensor’s noise even though its noise
cannot be grasped directly.

C. Integrating the Measurement Noise of Both Sensors

In order to integrate the first sensor’s noise correctly into
the filter of the previous section, we have to find a way to
transform the sensor’s noise through the process modell into
the process noise covariance matrix Q in equation 6.

However, simply setting the process covariance for x∗odom
to the noise of the first sensor ignores the fact, that both
sensors might be placed at different locations and with
different orientation. Assume again a pair of sensors pointing
to a vehicle’s front and left side. A high noise in the first
sensors forward direction has to be considered as lateral noise
for the second sensor, and not in its forward direction.

Fortunately, the Unscented Kalman Filter already provides
a solution to this problem: Equations 3 to 6 describe the so
called Unscented Transform. In equation 3 the 2n+ 1 sigma
points are drawn symmetrically to approximate the normal
distribution N (x̂k−1,Pk−1). Keeping the input vector uk−1

fixed, these sigma points are propagated through the process
model in equation 4 and combined in equation 5. Then
equation 6 integrates the propagated sigma points, the state
vector estimate and the process noise covariance matrix into
the estimate for the internal filter covariance matrix P∗.

It turns out, that with slight modifications the Unscented
Transform allows to propagate the input vector’s noise in
the same way. In a few words, instead of calculating sigma
points for the state vector and propagating these sigma points
with fixed uk−1 through the process model, we keep the state
vector fixed and calculate the 2m+1 sigma points for uk−1,
where m is the dimension of the input vector, using the input
vector’s covariance S.
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Obviously, the dimension of the propagated sigma points
xu
∗(i)
k is n, the dimension of the state vector, and not m.

Thus, the covariance matrix Qu
∗
k, which essentially is the

estimated process noise induced by the paramteter vector
uk with covariance matrix Sk given the current state vector
estimate x∗k, also has dimension n× n.

On a closer look at our process model in equations 23
and 24 we see that the prediction of the extrinsic calibration
does not depend on u. Thus, propagating the sigma points
u

(i)
k through the process model will yield neither variance nor

covariance with that part of the state. Therefore the estimated
covariance matrix Qu

∗
k has the following structure

Qu
∗
k =

(
U∗k 0
0 0

)
(30)

and U∗k is the m×m covariance matrix that reflects how the
input noise covariance Sk affects the state vector estimate,
more precisely x∗k.

We cannot simply replace Qk in equation 6 with Qu
∗
k,

because this would assume zero noise for the state vector
part xextr. Instead we suggest to add Qu

∗
k to the result of

equation 6.

III. EXPERIMENTS

We have conducted several experiments with both simu-
lated and real world data to compare and verify the above
algorithms.

A. Simulations

For easier comparison the ground truth extrinsic calibra-
tion xextr, used for generating the simulation data, remains
the same

xextr = (1, 1, 1, 0.1, 0.1, 0.1)
T (31)

throughout all experiments. This places the second sensor
one meter away in each direction and rotates the sensor 5.73◦

around each axis. Two distinct datasets form the basis of
the evaluation, all generated with the same virtual vehicle
having a wheel base of 3.5 m. In the first dataset the vehicle
is driving a slalom course. The second dataset shows a
combination of straight driving followed by slalom driving.
We refer to the filter described in section II-A as Filter 1,
the one described in section II-B is called Filter 2 and the
version of section II-C we name Filter 3.

1) Slalom Dataset: In this dataset the simulated vehicle
drives a slalom course with a sinusoidal steering angle (am-
plitude λmax = 10◦, frequency fλ = 0.1 Hz) and resulting
roll angle (amplitude Φmax = 3◦, frequency fΨ = 0.1 Hz).
The vehicle’s velocity is constant at v = 5 m

s . Simulated
measurements are taken every 0.1 s. The resulting track
consisting of 30 000 pairs of poses is illustrated in figure 2a.
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Fig. 2: Simulated vehicle path of the slalom (a) and mixed (b)
datasets (first 1000 poses). The vehicle’s roll angle is color
coded. High roll angles are represented in magenta, low
(negative) roll angles in cyan.

For each simulated measurement we add 0-mean gaussian
noise to the positional coordinates with a variance of σ2

pos =
1× 10−5 and to the angular coordinates with a variance
of σ2

ang = 3× 10−6 according to our real world inertial
navigation system (INS). The noisy sequence of all pose
pairs is fed into all three filters. The initial state vectors
of all filters are initialized with xinit = 0, the covariance
matrices are initialized as diagonal matrices with diagonals
as described in table III. Figure 3 shows the evolution of each
filter’s extrinsic calibration component of its state vector.

By comparing the plots for the slalom dataset in figure 3
we see that all three filters are able to eventually find the
correct extrinsic calibration. Filter 1 is the slowest of all three
regarding convergence, followed by Filter 2 and Filter 3.
The z component of the extrinsic calibration seems to be the
hardest to find, because for each of the three plots the z com-
ponent converges last. This is expected considering the low
roll angle amplitude Φmax = 3◦ and is reflected in a higher
value at the corresponding components of the filter’s internal
covariance matrix P. Another effect worth mentioning is
that the correct values for the angular components are found
at least 4 to 6 times faster than the positional components.
The angular components are easier to find, since even small
angular errors magnify during the vehicle’s movement. This
is beneficial since for data fusion an accurate orientation of
sensors usually takes precedence over an accurate position.
Apart from that the three filters differ in how accurate
they estimate the individual components of the extrinsic
calibration. The standard deviations and the mean squared
error (MSE) of the extrinsic calibration over the last 1000
data points for each filter are shown in table I.

σx σy σz σΦ σΘ σΦ

F. 1 0.0002 0.0010 0.0072 0.0147 0.0737 0.0111
F. 2 0.0029 0.0034 0.0176 0.0607 0.2519 0.0677
F. 3 0.0006 0.0005 0.0013 0.0223 0.0155 0.0197

MSEx MSEy MSEz MSEΦ MSEΘ MSEΦ

F. 1 0.0000 0.0007 0.0010 0.0000 0.0002 0.0005
F. 2 0.0003 0.0005 0.0027 0.0001 0.0011 0.0003
F. 3 0.0000 0.0001 0.0001 0.0001 0.0000 0.0000

TABLE I: Standard deviations and MSE of the extrinsic
calibration estimation in the slalom dataset. Units are [m]
for positional components and [◦] for angular components.

The standard deviations of Filter 2 are considerably higher
than those of the other two. Filter 3 has comparable or lower
standard deviations in the magnitude of mm for positional

components and 100th-◦ for angular components. Except for
the z component the MSEs are close to zero.

2) Mixed Dataset: The mixed dataset is composed of 30
iterations of a 30% straight course followed by 70% slalom
course with the same parameters as for the slalom dataset.
Thus, the dataset also consists of 30 000 pairs of poses with
the same amount of noise added as before. The resulting
track is visualized in figure 2b.

All three filters converge in a similar manner as for
the slalom dataset, thus figure 4 only shows the first two
iterations through the mixed dataset, i.e. 2000 pairs of poses.

The highlighted regions in figure 4 correspond to the
straight driving parts of the dataset (data points 0 to 300
and 1000 to 1300). Brookshire and Teller [8] describe the
so called motion degeneracy as trajectories out of which the
extrinsic calibration cannot be inferred, i.e. is not observable.
Straight driving is an example for such a trajectory. This can
be seen e.g. in figure 4a: The datasets starts with straight
driving. Since the positional components of the extrinsic
calibration are not observable the filter does not improve the
estimation on these parameters. In fact the corresponding
values of the internal process covariance matrix P increase,
indicating the increasing uncertainty in these estimates. How-
ever, the angular components are observable, so the filter
tries to find suitable values that satisfy the estimates of the
positional components. As soon as the slalom movement
starts (data point 301) all components become observable and
the estimates of all extrinsic calibration parameters start to
converge to the ground truth. At data point 1000 the estimates
have not yet reached their true value, but the vehicle again
goes into straight driving. While the positional components
remain basically unchanged due to their unobservability, the
filter still improves on the angular components. This process
goes on until the filter finally converges. Similar behaviour
can be seen for the two other filters in figures 4b and 4c.
They only differ due to the state vector now also containing
the odometry xodom measured by one sensor. The standard
deviations and the MSE of the extrinsic calibration over the
last 1000 data points for each filter are shown in table II.

σx σy σz σΦ σΘ σΦ

F. 1 0.0007 0.0012 0.0084 0.0098 0.0735 0.0065
F. 2 0.0042 0.0040 0.0225 0.0367 0.2363 0.0479
F. 3 0.0003 0.0006 0.0008 0.0137 0.0171 0.0131

MSEx MSEy MSEz MSEΦ MSEΘ MSEΦ

F. 1 0.0002 0.0016 0.0407 0.0000 0.0002 0.0004
F. 2 0.0004 0.0008 0.0448 0.0000 0.0010 0.0002
F. 3 0.0000 0.0000 0.0006 0.0000 0.0000 0.0000

TABLE II: Standard deviations and MSE of the extrinsic
calibration estimation in the mixed dataset. Units are [m] for
positional components and [◦] for angular components.

Compared to the slalom dataset we see that the introduc-
tion of motion degeneracy increases the uncertainty of the
z-component. This coincides with our previous observation
that in this setting z is difficult to estimate. Apart from that
we see, that the mixed dataset yields estimates with similar
uncertainties. Thus, using an Unscented Kalman Filter to
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(a) Calibration results of Filter 1.
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(b) Calibration results of Filter 2.
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(c) Calibration results of Filter 3.

Fig. 3: Evaluation of the slalom dataset.
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(a) Calibration results of Filter 1.
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(b) Calibration results of Filter 2.
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(c) Calibration results of Filter 3.

Fig. 4: Evaluation of the mixed dataset.

Filter 1

xinit 0 0 0 0 0 0 –
Pdiag 1 1 1 1 1 1 –

1× 105 ·Qdiag 1 1 100 0.3 120 0.3 –
1× 101 ·Rdiag 3 3 3 1 1 1 –

Filter 2

xinit 0 0 0 0 0 0 0 0 0 0 0 0
Pdiag 1 1 1 1 1 1 1 1 1 1 1 1

1× 104 ·Qdiag 100 100 100 3 3 3 1 0.1 5 0.03 105 0.3
1× 102 ·Rdiag 1 1 1 0.3 0.3 0.3 –

Filter 3

xinit 0 0 0 0 0 0 0 0 0 0 0 0
Pdiag 1 1 1 1 1 1 1 1 1 1 1 1

1× 107 ·Qdiag 0.01 0.01 0.01 0.003 0.003 0.003 10000 100 100 30 30 30
1× 109 ·Rdiag 1 1 1 0.3 0.3 0.3 –

Filter 3 (real data)

xinit 0 0 0 0 0 0 0.78 -0.12 0.42 -3.142 0 0
1× 102 ·Pdiag 100 16 16 0.09 0.0625 0.0625 25 25 25 12.25 75.69 12.25
1× 106 ·Qdiag 0.1 0.1 0.1 0.3 3 0.3 0.1 0.1 0.1 3 3 3
1× 104 ·Rdiag 10000 0.01 0.01 0.09 0.0625 0.25 –

TABLE III: Initial values and variances for the three filters for all experiments.

estimate the extrinsic calibration shows to be robust against
motion degeneracy.

3) Combining a 3DOF and a 6DOF odometry sensor: To
demonstrate the flexibility of our algorithm we also simulate
the calibration of a planar sensor, such as a single-beam
LiDAR only perceiving odometry in terms of x, y and Ψ,
and a full 6DOF sensor, like an inertial measurement unit.
Adjusting Filter 3 to such a sensor turns out to be rather
simple. Since the LiDAR perceives its movement only in x,
y and Ψ, we change equation 21 to

xodom = (xodom, yodom,Ψodom)
T
. (32)

Finally, in equation 24 where the LiDAR odometry is pre-
dicted, we can simply ignore the predictions of zodom, Φodom
and Θodom.

The calibration results in figure 5 show that the filter is
capable of estimating the correct values for xextr, yextr and
Ψextr in both datasets. Interestingly, the filter also provides

estimates for the other parameters. This is caused by effects
like the vehicle’s roll inducing a slight lateral movement of
the simulated LiDAR. Since these effects are hardly noticable
and in some cases even ambigious, the filter is not able to
turn them into correct estimates.

4) Simulating different sensor arrangements: Addition-
ally to the presented simulations we have generated multiple
slalom datasets with other extrinsic calibrations xextr. While
each filter finds the correct calibrations, Filter 3 requires less
to none adjustments to Qdiag and Rdiag compared to both
other filters.

B. Real Dataset

In the real dataset our vehicle MuCAR-4 is driving a
slalom course as illustrated in figure 6 consisting of 1795
pose pairs. The course has a total length of approximately
1500m. The sensors are an OxTS RT3003 INS placed below
the arm rest near the vehicle’s center of gravity and a
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Fig. 5: Evaluation of Filter 3 for a 3DOF and a 6DOF
odometry sensor pair.

x in [m]

y
in

[m
]

0 200 400 600 800 1000 1200 1400 1600
-200

-100

0

100

200

Fig. 6: Vehicle path of the real dataset. The vehicle’s roll
angle is color coded. High roll angles are represented in
magenta, low (negative) roll angles in cyan.

Bumblebee XB3 stereo camera mounted upside down below
the rear view mirror. While the INS already provides delta
poses, the motion of the camera is obtained using the visual
odometry library VISO2 [10].

We initialize the filter with the values of table III taking
the roughly known extrinsic calibration into account: E.g.
we know that the camera is rotated upside down, so the roll
angle is initialized with −π.

The calibration results are shown in figure 7. We see
that the filter almost already converges after the first 1000
data points. We obtain standard deviations for the extrinsic
calibration as shown in table IV.

σx σy σz σΦ σΘ σΦ

Filter 3 0.0040 0.0094 0.0161 0.2865 0.2636 0.3552

TABLE IV: Standard deviations of the extrinsic calibration
estimation in the real dataset. Units are [m] for positional
components and [◦] for angular components.

Compared to the simulations the uncertainties for the
estimation on real data are higher, but should still be good
enough for most applications. However, care has to be taken
when defining xinit and the covariance matrixes, since –
depending on your sensor configuration – the filter turns
out to be very sensible to these values and might converge
into a local minimum, which – at least in our tests – are
easily distinguishable from the expected results. As in the
simulation results the angular components converge faster
than the positional ones.

IV. CONCLUSION

We have addressed the online extrinsic calibration problem
between two sensors using a recursive estimation process.
The only requirement for the proposed method is that both
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Fig. 7: Calibration results of Filter 3 on the real dataset.

sensors are able to measure their odometry, e.g. calculate
synchronized delta poses. Starting with a straight forward
solution using the Unscented Kalman Filter, we improved
this solution in two steps, evaluating our models on two
simulated datasets. Thereby we have also derived a solution
for the integration of parameter noise into the estimation
process using the Unscented Transform.

The resulting filter has been applied to real world data
obtained from an INS and a stereo camera system. Not
only was the filter able to estimate the extrinsic calibration
between the INS and the camera system, is has also shown
to be robust against motion degeneracy.

Our future work will focus on the question of what
kind of motion is required to obtain an accurate calibration
and thereby avoiding filter convergence into local minima.
This includes an observability analysis of the state vector,
incorporating alternative representations for the Euler angles
such as quaternions.
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