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Abstract— Sound source localization is an important feature
designed and implemented on robots and intelligent systems.
Like other artificial audition tasks, it is constrained to multiple
problems, notably sound reflections and noises. This paper
presents a sound source azimuth estimation approach in rever-
berant environments. It exploits binaural signals in a humanoid
robotic context. Interaural Time and Level Differences (ITD
and ILD) are extracted on multiple frequency bands and
combined with a neural network-based learning scheme. A cue
filtering process is used to reduce the reverberations effects.
The system has been evaluated with simulation and real data,
in multiple aspects covering realistic robot operating conditions,
and was proven satisfying and effective as will be shown and
discussed in the paper.

Keywords — Robot audition, binaural cues, azimuth

estimation, sound localization, sound processing.

I. INTRODUCTION

With the growth of sound processing and intelligent

systems technologies, it has become possible to endow

robots and machines with artificial sound source localization

capabilities. Indeed, many applications require the sound

source(s) position(s), like human-robot interaction, surveil-

lance, hearing aids... Sound-based localization has been ad-

dressed in multiple aspects: estimating the azimuth, elevation

or distance and using hardware ranging from microphone

arrays [14], [15] to the biologically-inspired binaural hearing.

Binaural artificial audition uses two microphones placed

inside two ears separated by a head. This allows to take

benefit of signals similar to those exploited by the impressive

human auditive system, imposing light hardware constraints.

Robotic binaural audition systems are still far from repro-

ducing human auditive capabilities, but satisfying results

can be obtained using binaural inputs for specific tasks,

like localization. Most artificial binaural localization systems

mainly focus on estimating the sound source-receiver relative

azimuth angle. This can be inferred by computing differ-

ences between the signals reaching the two ears, mainly in

arrival times and levels. These differences are then exploited

to provide the azimuth, through geometrical cue-azimuth

mapping [9] or learning approaches [8], [16] for example.

Sound-based localization systems are also constrained to

multiple types of problems, notably limited computational

capabilities, interfering noises and room reflections. And

whereas interfering sound sources are restrained in time

and/or frequency, room reflections constantly affect the per-

ception of signals of interest. While they can be useful

for distance estimation [19], they negatively affect azimuth
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estimation cues. Their drawbacks are easily avoided by the

human auditive system, but they are not clearly treated

in artificial audition yet. Most systems perform a frame

selection where only frames judged to be not much affected

are used [3], [4], [6]. In addition, a robot operating in

real environments witnesses multiple changes affecting the

signals it receives, and thus its performances. In this context,

one can mention changing the robot placement inside the

room or changing rooms and the source moving or getting

closer or further from the robot. Very few studies evaluated

their own capabilities to cope with problems possibly caused

by these changes. But before putting a system into real-world

operation, its generalization capabilities are to be evaluated.

This paper addresses sound source azimuth estimation in

the binaural context. In the proposed system, binaural cues

are computed on multiple frequency bands, their fluctuations

induced by the presence of sound reflections are smoothed

and a neural network exploits them to estimate the azimuth.

Simulated and real data are used, providing realistic and

challenging robot operation scenarios. Evaluations are made

in identical and mismatched training and testing conditions,

in order to judge about the generalization performances. The

paper is organized as follows; the next section details the

approach . Section III presents simulated and real databases,

as well as the obtained corresponding results. Finally, a

conclusion ends the paper, with prospects for future works.

II. LOCALIZATION APPROACH

A binaural sound source azimuth estimation system ty-

ically relies on the consecutive steps shown in Fig. 1. The

left and right ears signals pass through models taking mainly

the inner ears effects into consideration. Features can then

be extracted on the resulting signals, and the azimuth can

be obtained through a cue exploitation algorithm. In our

system, ITDs and ILDs are extracted on multiple frequency

bands and provided as inputs to a Neural Network (NN) that

estimates the source azimuth. We also implement a process
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Fig. 1. Left: a typical binaural sound source azimuth estimation system.
Right: a sound source located in the horizontal plane of a binaural sensor,
with azimuth θ.
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that reduces the effects of reverberations without reducing

the number of used time frames. These steps are detailed in

the following subsections. §II-A exhibits the ITD and ILD

extraction and selection strategies. §II-B shows the method

used to reduce the reverberations bad effects. And §II-C

presents the used NN structure.

A. Cue extraction

Most state-of-the-art binaural azimuth estimation ap-

proaches use interaural differences. Whereas these ap-

proaches seek to accomplish the same task with the same

cues, they present substantial differences. From these differ-

ences, one can mention time frame duration, sampling fre-

quency, used frequency range and mainly, cue computation

techniques. Indeed, original temporal signals, their Fourier

transforms or filterbank outputs corresponding to them can

be used for this computation. Reviewing these strategies

was the object of a previous paper where we presented a

systematic study comparing them in terms of the resulting

cues appropriateness for azimuth discrimination [18]. It

showed that the most effective cues result from a cochlear

filtering of the signals, performed with a gammatone filter-

bank and not followed by any inner hair cells transduction

reproduction. Thus, this study uses a gammatone filterbank

of Nfilters = 30 filters with frequencies reaching up to

half of the sampling frequency denoted by Fs. ITDs and

ILDs are extracted on approximately 23ms frames taken with

no overlap. The next two paragraphs show their respective

computation techniques, and the method used to select the

used cues among all the computed ones is detailed in §II-A.3.

1) ITD: the differences in the trajectories crossed by the

sound to reach the two ears, and thus in times of arrival

to the ears provide information about the source azimuth.

This information is exploited across frequency, at the outputs

of left and right gammatone filters. In the following, a

gammatone filter is indexed by i, i = 1 . . . Nfilters, the

left and right ith channel signals being denoted respectively

l(i)[n] and r(i)[n], with n the time index. This way, the ITD

on channel i is initially equal to Tsm
(i)
1 where Ts =

1
Fs

,

m
(i)
1 = argmax

m
C

(i)
lr [m], (1)

and

C
(i)
lr [m] =

N−m−1
∑

n=0

l(i)[n+m]r(i)[n], (2)

where N is the total number of samples in a single frame.

This operation provides ITDs as discrete multiples of Ts.

An exponential interpolation of the cross-correlation function

around m
(i)
1 is used [8], [20]. It provides the fractional part

m
(i)
2 that helps to estimate the real position of the cross-

correlation maximum, not restrained to a step of Ts, with

m
(i)
2 =

logC
(i)
lr

[m
(i)
1 + 1] − logC

(i)
lr

[m
(i)
1 − 1]

4logC
(i)
lr

[m
(i)
1 ] − 2logC

(i)
lr

[m
(i)
1 + 1] − 2logC

(i)
lr

[m
(i)
1 − 1]

. (3)

Thus, finally, the ith channel ITD for each time frame,

denoted ITD(i) is, given by

ITD(i) = Ts(m
(i)
1 +m

(i)
2 ). (4)

2) ILD: the sound absorption and diffraction effects of

the head imply frequency and azimuth-dependent energy

differences between both ears signals. For each time frame,

the level difference is computed on each frequency band i as:

ILD(i)=20 log10

(

∑N−1
n=0 l(i)[n]2

∑N−1
n=0 r(i)[n]2

)

. (5)

3) Cue selection: as shown, frequency-dependent ITDs

and ILDs are computed on multiple frequency bands. Ac-

cording to Lord Rayleigh’s Duplex theory [11], humans use

ITDs in the low frequencies and ILDs in the high frequencies

to localize sound sources. In our case, for each frame j, the

first 15 ITDs and the last 15 ILDs (corresponding to channels

with center frequencies of up to and as of 2kHz respectively)

are concatenated into a single vector Vj provided as input to

the azimuth-estimating NN that will be presented in §II-C.

Vj = [ITD(1), . . . , ITD(15), ILD(16), . . . , ILD(30)]. (6)

B. Reflections effects reduction

In a closed space, sound reflections reach the receiver

from all sides as delayed, attenuated and spectrally modified

versions of the emitted signals. A closed space with reflective

surfaces can be acoustically characterized by its reverberation

time RT60. RT60 is frequency-dependent, and specifies the

time taken by the present sound to decrease by 60dB after the

source stops emitting. Higher RT60 means harder acoustic

conditions for speech intelligibility and speech or speaker

recognition and localization for example. The human auditive

system has the fascinating ability to neglect the reflections

using only the main signal of interest. This is described by

a model called the precedence effect [3]. It states that the

auditory system can localize/perceive only the main source

signal, unless the reflection is powerful or delayed enough

not to be neglected. Most of the artificial audition systems

try to eliminate frames affected by reflections using energy

or coherence criteria [4], [6], [3]. Indeed, they state that

signal parts that are not energetic enough, or that do not

present enough coherence between the two ears signals are

not reliable. This leads to reduce the amounts of used data.

We propose a simple approach that keeps all the frames

while reducing the reflections bad effects. Reflections cause

interaural cues to fluctuate around the values corresponding

to the sound source position, increasing their variance [18].

Smoothing the cue values reduces the fluctuations, and

equivalent smoothing between the training and testing phases

of the system leads to satisfying localization results. For each

frame indexed by j, a new vector SVj is computed as the

weighted sum of the vectors belonging to a surrounding rang-

ing between the frames j −Nsmooth and j +Nsmooth, with

Nsmooth = 10. The highest weight is attributed to the current

vector Vj and weights decrease linearly as corresponding

vectors get further from it:

SVj =
1

(Nsmooth + 1)2

l=j+Nsmooth∑

l=j−Nsmooth

(− | l−j | +Nsmooth+1)Vl.

(7)
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Fig. 2. Used neural network architecture.

Note that the value of Nsmooth should be set in relation

with RT60 as the reverberation effects spread on larger or

smaller numbers of frames with higher or lower RT60. But

the robot operates in some cases in environments with no

a priori information about the acoustic conditions, thus not

being able to estimate an adequate value for Nsmooth. 10

is used after a series of evaluations as a value of Nsmooth

that is capable of providing satisfying results with multiple

reverberation times.

C. Cue exploitation

Smoothed interaural cue vectors are provided as inputs to a

NN trained to output the corresponding source azimuth. The

NN architecture is shown in Fig. 2. It has one hidden layer of

14 cells and the connections between the input and hidden

layers are not regular (every hidden cell is not connected

to all the input cells). Indeed, since the input data contains

time and level differences, it is physically more plausible to

dedicate specific hidden cells to each of the ITDs and ILDs.

Moreover, this partial connectivity architecture is computa-

tionally more efficient than the regular one, providing better

results with less training time [10]. In the training phase,

data is divided into two parts: three quarters for weights

optimization and one quarter for cross-validation. The NN

receives a matrix regrouping the codevectors of the first

part at the input level, and the corresponding azimuths at

the output level. It updates its weights iteratively with the

back-propagation algorithm for Niter iterations. During this

process, cross-validation is applied regularly in order to keep

the best validation NN weights. In the testing phase, the NN

is provided with input vectors that it exploits to estimate the

corresponding azimuths through its optimized weights.

Learning-based approaches to sound localization usually

rely on large datasets of recordings. But if the proposed

algorithm was only able to estimate the source position after

hours of audio recordings and learning, it would not be

applicable for robotics applications in dynamic and changing

environments. We chose to put the system in very constrain-

ing conditions where the numbers of training iterations and

examples are limited. Approximately 5000 iterations and

4000 examples are used for the NN training at each of the

presented evaluations. This corresponds to approximately 90

seconds gathered from all the source positions after voice

activity detection based on a frame energy thresholding.

III. SIMULATIONS AND EXPERIMENTS

This section will present the evaluation data and results,

on the basis of simulations and real recordings. They provide

white noise and speech signals reaching the insides of two

ears of a humanoid robot in a reverberant environment.

Multiple source-receiver relative azimuths and distances,

receiver positions and room conditions are considered as

will be detailed in the following. This provides a basis for

challenging tests. Simulation data and results are first shown

in III-A, and the same is done for the real data in III-B.

A. Simulations

This subsection first presents the database used to evaluate

the system in a virtual but realistic environment simulating

a shoebox room with a sound source and receiver inside.

Second, tests are performed and results are discussed.

1) Database: binaural signals are obtained using Room-

sim [2], proven to be an efficient shoebox room acoustics

simulator [8], [5]. It runs on Matlab and uses Head-Related

Impulse Responses (HRIRs) to compute Binaural Room

Impulse Responses (BRIRs) through the Images method [1].

Acoustic parameters (surface types and absorption patterns,

humidity, air absorption, temperature, distance attenuation...)

are taken into account. This allows to simulate a realistic

shoebox room containing the receiver and the source. The

simulated room in our case has respectively a length, a width

and a height of 5m, 4m and 2.75m. The surfaces are acoustic

plaster walls, wooden floor and painted concrete roof and

humidity is of 50%. In these conditions, the reverberation

time at 1kHz is of 200ms. Additionally, the walls absorption

coefficients were scaled appropriately to obtain other datasets

with reverberation times of 450ms and 700ms at 1kHz. An

anechoic room of the same size is also simulated. Four

receiver positions are used at different places of the room,

and for each receiver position, the source occupies azimuths

between −45◦ and 45◦ and distances between 1m and 2.8m

with steps of 5◦ and 45cm respectively (See Fig. 3). Both ears

and source are maintained at the same distance of 1.5m to

the ground, keeping a null source-receiver relative elevation.

2) Evaluations and Results: using the pre-described sim-

ulated database, the system has been evaluated in multiple

aspects. First, its ability to learn and estimate the azimuth

in known receiver position and acoustic conditions. Then,

its abilities to estimate the azimuth with unknown source

distances, receiver positions and acoustic conditions are

consecutively evaluated. The term “known” is used here to

refer to data provided to the NN during the training. Details

and results are shown in the following paragraphs.

a) Identical training and testing conditions: in this

paragraph, the system is evaluated by training and testing

done with data from the same receiver position, reverber-

ation time and source distance of 1m. The upper part of

Fig. 4 shows the estimation errors obtained with all available

reverberation times at Position1 (near the room center).

Noise and speech signals are used separately. A study with

no cue smoothing is also performed, to show the benefits

2929



!"#

!
"
#

$"#
%
"
#

&'($"#
!'$"#

&
'(
$
"
#

&
'(
$
"
#

)
"
#

*'$"#

*#

!# )#

%#

+&,&-#

Fig. 3. Simulated echoic room, all available receiver and source positions.
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Fig. 4. Up: azimuth estimation errors for speech and white noise,
with and without smoothing, in Position1 and distance of 1m and all
available reverberation times. Down: estimation error in function of the test
azimuth, white noise signals with smoothing, RT60=0ms. Each black curve
corresponds to a test covering all the azimuths. The white curve represents
the mean and standard deviation of the black plots.

of the smoothing operation. The plotted errors show the

high accuracy of the method. Indeed, mean errors are of

approximately 2
◦ in the anechoic room and remain near

5
◦ for the highest reverberation time. White noise signals

provide slightly better results than speech, which is expected

from their spectral nature and the extracted cues. And a

comparison of the white noise results with and without

smoothing shows the advantage of this method especially

as the reverberation time grows. Results on other receiver

positions exhibit fairly similar results.

The lower part of Fig 4 shows the estimation errors of a

test using white noise signals, with the receiver at Position1

in the anechoic room. Each curve corresponds to the same

test time-frame simulated as emitting from all the azimuths.

These results show the variance of performances obtained

with 250 test frames, together with the mean error curve. In
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Fig. 5. Azimuth estimation errors with training on a single source distance
or all the distances and testing on all the available distances separately.
Speech signals, RT60=200ms.

the illustrated case, some azimuths are better estimated than

others, especially in the frontal positions. Consequently, this

loss of performance on the two sides of the head increases

the overall variance of the errors, which is evaluated for the

250 tests on the 19 azimuth angles in all the following.

These results are obtained in controlled situations where

only the source azimuth changes, but more realistic tests

should take into consideration modifications in the operation

conditions. Indeed, the robot is expected to operate inside an

environment where, for example, it can move in and between

rooms. In the following, speech signals are used, although

not providing the best possible performances of the system,

but being a realistic case of robot operation.

b) Generalization capabilities, source distance: the

source distance has been reported to affect the values of the

interaural cues. Some approaches used these cues to estimate

the source distance [12], [13]. In the last evaluation, training

and testing have been made with data extracted from all the

available source azimuths and a fixed distance of 1m. The

current evaluation performs the training with data from all

the azimuths but on specific distances and the tests on data

from all the distances separately. Speech signals are used,

the receiver is in Position1 and the reverberation time is of

200ms. Fig. 5 exhibits the corresponding results, they show a

performance variability in function of the distance. Errors are

the smallest when tests are made on the training distance and

they increase when the distance changes. This generalization

constraint is avoided with a multi-distance training, providing

errors smaller than the mono-distance generalization errors.

c) Generalization capabilities, receiver position: an-

other test of the change in the system’s operating conditions

can be in the mismatch of robot positions between training

and testing, while staying inside the same room. Thus,

an evaluation is made is such a way that the training is

performed with data extracted from a given receiver position

and testing is performed with data from each of the available

positions at a time. Two trainings have been first made on

Position1 and Position2. These two positions represent two

different aspects of the robot placement inside the room: near

the center and near a corner with close reflective walls. Then,

a training is performed on all the positions. Fig. 6 plots the

estimation errors obtained in this study. Speech signals are
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Fig. 6. Azimuth estimation errors with training on a single position or all
the positions and testing on all the available positions separately. Speech
signals, RT60=200ms.

used, with a reverberation time of 200ms. Note that in this

test, training and testing data for each of the taken positions

are extracted from both all available azimuths and distances.

Extracting data from all the source azimuths but only one

distance leads to smaller error variances. It can be seen that

the smallest errors are obtained when testing is made on

the training position itself. Errors slightly increase with the

position change but keep acceptable levels. Notably, testing

in Position2 leads to the highest errors when the training is

made in Position1. Moreover, the training in Position2 leads

to higher generalization errors than the training in Position1.

This is due to the fact that Position2 can be considered as

the most acoustically constrained position, being the closest

to the room reflective walls, which increases the estimation

errors. Finally, the multi-position training provides more

stable results, with higher errors at Position2, showing once

more that the neural network is harder to train on this

position than it is on the others.

d) Generalization capabilities, acoustic conditions: the

last two paragraphs evaluated generalization in terms of

source distance and receiver position with fixed room rever-

beration time. Another generalization evaluation lies in the

room conditions. Thus, training is made on a reverberation

time, or on all reverberation times at once, followed by

testing on all the reverberation times separately. The receiver

is placed in Position1 for both training and testing and speech

signals are used. The results are shown in Fig. 7. It is seen

that the errors increase when there’s a mismatch between

the training and testing RT60’s. The anechoic training is the

hardest to generalize and the multi-RT60 training provides

better results with lower RT60’s. And as in the previous

generalization evaluation, training and testing are made using

examples from all azimuths and distances. Performing the

training and the testing on the same distance provides smaller

error variances.

The results obtained in the last two paragraphs show that

the acoustical constraints are more dependent on the room

itself than they are on the receiver position. Indeed, it is

harder to generalize while changing RT60 than it is while

changing the receiver position, maintaining the same RT60.

Such a conclusion is also stated in other studies, like in [7].
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Fig. 7. Azimuth estimation errors with training on a single RT60 or all the
RT60’s and testing on all the available RT60’s separately. Speech signals,
receiver Position1.

B. Experiments

Simulation evaluations have been exhibited. It is also

important to evaluate the system in real environments. This

subsection first presents the established recorded database,

and later the obtained corresponding localization results.

1) Database: recordings have been made inside a meet-

ings room of 10 × 7.5 × 2.8m. The walls and the roof

are of painted concrete and the floor is resilient. One of

the walls has glass windows covered by curtains, thus with

different absorption patterns than those of the other walls

which increases the environment’s acoustic non-symmetry.

The receiver has been placed in three positions as shown

in Fig. 8. For each receiver position, the source occupies

azimuths between −45
◦ and 45

◦ with a 5
◦ step and distances

between 1 and 3m with a 50cm step. The elevation is kept

null as both the receiver and the source are placed at the

same height of 1.5m. The recorded signal at all the positions

is a 3.5min sequence of sentences pronounced by 10 french

male speakers. The recordings are made using the Neumann

KU100 dummy head, with its human-like outer ears and

microphones placed inside them. Signals are transferred to

a computer via a NI portable sound card with a sampling

frequency of 25600Hz. To verify the correct placement

of the source relatively to the receiver, a Codamotion 3-
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Fig. 8. Recordings meetings room, taken receiver and source positions.
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Fig. 9. Azimuth estimation errors in the real database case.

D motion capture system is used, providing positions of

multiple infrared markers carried by the receiver and the

source in a common landscape. Thus, at each recording,

the actual source-receiver position is set in order to match

the theoretical conceived position. This allowed to place the

sensor at real positions that are very close to the theoretical

ones with an azimuth mean error of 0.18
◦ and a distance

mean error of 1.46cm.

2) Evaluations and results: with these real recordings,

the NN is set in the same way as in the simulation case.

The results with training and testing made on the same

receiver position with all azimuths and distances, for the

three positions separately, are plotted in Fig. 9. Relatively

hard conditions are imposed on the system in this case.

Indeed, recording noises and the acoustic non-symmetry of

the environment are additional constraints that the system

training encounters. Smaller errors at Position1 can be justi-

fied by the fact that it is close to the most sound absorbing

and thus least reflecting wall with curtains. This reduces

the reflections constraint in this position, contrarily to the

corner Position2 in the simulation case that was the most

constrained and showed the higher errors.Note that, in both

this case and the simulation case, estimation errors can

be further reduced by pushing the NN training to higher

numbers of iterations or examples. But as previously said,

the goal is to evaluate the system with a fast and light training

requiring relatively small times for training data acquisition

and exploitation.

IV. CONCLUSION

This paper presented a robust system using binaural inputs

in a humanoid robotic context to estimate the azimuth of a

sound source in reverberant environments. The method com-

putes interaural cues on the outputs of gammatone filterbanks

and provides them to a neural network that estimates the

corresponding azimuth. The system is conceived to be fast

and able to adapt to relatively small datasets. It is evaluated

in constraining conditions and proved robust. Current works

are focused on distance estimation. Both systems will be

combined in the future, with a multi-source localization

approach based on a visio-auditive learning as we proposed

in [17] to provide a final robust robotic binaural sound source

localization system.
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