
Control of Bilateral Teleoperators in the Operational Space
without Velocity Measurements

Carlos I. Aldana, Emmanuel Nuño and Luis Basañez

Abstract— This paper proposes a proportional plus damping
injection (P + d) controller for bilateral teleoperators in the op-
erational space. Unit quaternions are used to describe the end-
effectors’ orientation since they exhibit the well known prop-
erty of being a singularity-free representation. The proposed
controller does not need the measurement of the velocities,
instead a passivity–based filter is used. Under the reasonable
assumptions that the human operator and the environment
define passive maps from force to velocity, it is proved that
velocities and pose (position and orientation) errors between
the local and the remote manipulators are bounded. Moreover,
in the case that the human and the environment forces are zero,
the velocities and pose errors converge asymptotically to zero.
Finally, experimental validation using two robots of 6-Degrees-
of-Freedom (DoF) shows the effectiveness of the proposed
control scheme.

I. INTRODUCTION

Bilateral teleoperation enables human operators to execute
tasks in remote environments, e.g., nuclear plants, outer
space missions, surgery, etc. It allows operators to feel,
through the local manipulator, the interaction of the remote
manipulator with the environment. Many control schemes
have been proposed for bilateral teleoperators in the last
years, an insightful historical survey about this line can
be consulted in [1] and a control tutorial in [2]. Most of
the previous schemes require the knowledge of velocity
measurements in their control laws ([3], [4], [5], [6], [7]).
Few remarkable exceptions are [8] where a model dependent
sliding scheme is used to control a linearized version of the
local and remote manipulators, and [9] where the bounded-
ness of the position error is proved using a high gain velocity
observer. All these previous works have been developed in
the joint space.

The interest of the operational space control, in bilateral
teleoperators, becomes evident when the robot manipulators
are not kinematically similar (heterogeneous) or when a
common task is teleoperated through a cooperative system
[10], [11], [12], [13]. Most of these controllers commonly
employ the Euler angles to represent the orientation, how-
ever they have the well–known problem of the singularity
points. The unit quaternions are a singularity-free orientation
representation and they have been widely used in different
robotics applications ([14], [15], [16], [17], [18]). An in-
teresting survey of unit quaternions for robot control and a
demonstration of their advantages over the Euler angles is
reported in [19].

This paper presents an extension to the operational space
of the controller reported in [20] that has been previously
presented in the joint space for kinematically similar ma-
nipulators. Compared to the previous work, the present

scheme can be used with heterogenous local and remote
manipulators, moreover, the unit quaternions are employed
to represent the orientation of the end–effectors and thus
such representation is singularity-free. The proposed scheme
is a proportional plus damping injection (P + d) controller
that uses a simple first-order filter that requires only the
pose (position and orientation) measurements of the end-
effectors, saving the need to use the generally costly and
noisy velocity sensors. It is demonstrated that, under the
common assumption that the human operator and the en-
vironment define passive maps from velocity to force, the
controller ensures that velocities and pose errors between the
local and remote robot manipulators are bounded. Further, if
the human operator and the environment do not exert any
forces, it is proved that the velocities and the pose errors
asymptotically converge to zero.

The layout of the paper is as follows. In Section II, the
operational space dynamic model of the teleoperation system
is derived and the unit quaternion kinematics is presented.
In Section III is detailed the main result, the P + d controller
with proper stability proofs. Experimental validation, using
two robot manipulator of 6-DoF, and the conclusions are
given in Sections IV and V, respectively.

Notation. R := (−∞,∞), R>0 := (0,∞), R≥0 :=
[0,∞). λm{A} and λM{A} represent the minimum and
maximum eigenvalues of matrix A, respectively. ||A|| de-
notes the matrix-induced 2-norm. |x| stands for the stan-
dard Euclidean norm of vector x. Ik and 0k represent the
Identity and all-zeros matrices of size k × k. For a given
matrix A ∈ Ra×b, where b ≥ a, A† is its pseudo-inverse
A† := A>(AA>)−1. For any function f : R≥0 → Rn,
the L∞-norm is defined as ‖f‖∞ := sup

t≥0
|f(t)|, L2-norm

as ‖f‖2 := (
∫∞
0
|f(t)|2dt)1/2. The L∞ and L2 spaces are

defined as the sets {f : R≥0 → Rn : ‖f‖∞ < ∞} and
{f : R≥0 → Rn : ‖f‖2 <∞}, respectively.

II. TELEOPERATOR DYNAMICS AND KINEMATICS

The local and remote manipulators are modeled as a pair
of ni-DoF fully actuated, revolute joints, manipulators. Their
Euler-Lagrange (EL) equations of motion, in joint space, are
given by

M̄`(q`)q̈` + C̄`(q`, q̇`)q̇` + ḡ`(q`) = τh − τ ` (1)
M̄r(qr)q̈r + C̄r(qr, q̇r)q̇r + ḡr(qr) = τ r − τ e,

where qi, q̇i, q̈i ∈ Rni , i ∈ {`, r}, are the joint posi-
tions, velocities and accelerations, respectively; M̄i(qi) ∈
Rni×ni are the symmetric positive definite inertia matrices;
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C̄i(qi, q̇i) ∈ Rni×ni are the Coriolis and centrifugal effects
matrices; ḡi(qi) ∈ Rni are the gravitational torques vectors;
τ i ∈ Rni are the controllers and τh, τ e ∈ Rni are the joint
torques induced by the human and environment forces, uh
and ue, applied at the end-effector of the local and remote
manipulator, respectively.

A. Operational Space Dynamics

The pose of the i-end-effector, i ∈ {`, r}, relative to
the world reference frame, is denoted by pi ∈ R3, for the
position, and by ξi ∈ S3, for the orientation that is described
by a unit quaternion. The relation between the joint velocities
and the end-effector linear vi and angular ωi velocities,
expressed also relative to the world reference frames, is given
by

ẋi =

[
vi
ωi

]
= Ji(qi)q̇i (2)

where ẋi ∈ R6 and Ji(qi) ∈ R6×ni is the geometric
Jacobian matrix. Note that vi = d

dtpi = ṗi. Using the
principle of the virtual work, the following relations between
joint torques and Cartesian forces are obtained

τ i = J>i (qi)ui, τh = J>` (q`)uh, τ e = J>r (qr)ue (3)

where ui,uh,ue ∈ R6 and ui := [f>i m>i ]> where fi,mi ∈
R3 represent the linear forces and moments, respectively
(similarly, uh,ue contain the corresponding linear forces and
moments). Using the pseudo-inverse of Ji(qi) and (2), yields

q̈i = J†i (qi)ẍi + J̇†i (qi)ẋi (4)

The dynamical model of the teleoperator in the operational
space is

M`(q`)ẍ` + C`(q`, q̇`)ẋ` + g`(q`) = uh − u` (5)
Mr(qr)ẍr + Cr(qr, q̇r)ẋr + gr(qr) = ur − ue

where (3) and (4) have been substituted in (1) and

Mi(qi) :=
(
J†i

)>
M̄i(qi)J

†
i , gi(qi) :=

(
J†i

)>
ḡi(qi),

Ci(qi, q̇i) :=
(
J†i

)> (
M̄i(qi)J̇

†
i + C̄i(qi, q̇i)J

†
i

)
.

The coordinate frames are defined as follows: Σ` is
located at the end-effector of the local manipulator and it
is referenced to the local world frame ΣW,`; ΣW,r is the
world reference frame for the remote site and it is assumed
that both ΣW,` and ΣW,r have the same orientation and
appropriate scaling; Σr is the frame attached to the remote
manipulator end-effector. The teleoperation system elements
and its associated coordinate frames are shown in Fig. 1.

The operational space models (5) have the following
properties [21], [22]:
P1. ∀qi, 0 < λm{Mi}I6 ≤Mi(qi) ≤ λM{Mi}I6 <∞.
P2. ∀x ∈ R6, x>(Ṁi − 2Ci)x = 0.
P3. ∀x,y ∈ R6, ∃kc ∈ R>0, |Ci(x,y)y| ≤ kc|y|2.
P4. If y, ẏi ∈ L∞ then d

dtCi(x,y) is a bounded operator.
With regards to the human and the environment interac-

tions, this paper makes the following standard assumption:

A1. The human operator and the environment define pas-
sive, velocity to force, maps, that is, ∀t ≥ 0,

−
∫ t

0

ẋ>` (σ)uh(σ)dσ ≥ 0,

∫ t

0

ẋ>r (σ)ue(σ)dσ ≥ 0. (6)

When the human and environment passivity assumption is
not met, Input-to-State Stability can be proved using similar
arguments as those in the proof of our main result. This fact
is omitted for brevity.

B. Representing the Orientation
The unit quaternions or Euler parameters (ξ = [η β>]> ∈

S3, η ∈ R and β ∈ R3) are a nonsingular orientation repre-
sentation subject to a unit norm constraint (η2 +β>β = 1).
This representation can be derived from the rotation matrix
(R ∈ SO(3) := {R ∈ R3×3 : R>R = I3,det(R) = 1})
which is obtained from the direct kinematics of the robot
manipulator [21]. A list of properties and operations with
quaternions can be found in [23], [24].

The orientation disparity (error) between two frames, Σi

and Σj , relative to the world frame, can be described by
the rotation matrix R̃ij := RiR

>
j ∈ SO(3). The unit

quaternion, ξ̃ij , describing the orientation disparity between
these two frames is given by [15], [16], [25]

ξ̃ij = ξi ⊗ ξ
∗
j =

[
η̃ij
β̃ij

]
=

[
ηiηj + β>i βj

ηjβi − ηiβj − S(βi)βj

]
(7)

where ⊗ denotes the quaternion product; ξ∗ = [η − β>]>

is the quaternion conjugate and S(·) is the skew-symmetric
matrix operator such that, for all a ∈ R3,

S(a) =

 0 −a3 a2
a3 0 −a1
−a2 a1 0


It is well–known that, for all a,b ∈ R3, the skew–symmetric
matrix operator satisfies:

S(a)T = S(−a) = −S(a)

S(a)b = a× b

S(a)a = 0.

The relation between the time–derivative of the unit
quaternion and the angular velocity, relative to the world
reference frame, is given by

ξ̇i =

[
η̇i
β̇i

]
=

1

2
U(ξi)ωi (8)

where U(ξi) ∈ R4×3 is defined as

U(ξi) =

[
−β>i

ηiI3 − S(βi)

]
Finally, it also holds that

˙̃ξij =

[
˙̃ηij
˙̃βij

]
=

1

2

[
−β̃
>
ij

η̃ijI3 + S(β̃ij)

]
ω̃ij (9)

−
[

0

S(β̃ij)

]
ωi.

where ω̃ij = ωi − ωj .
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Fig. 1: Elements and coordinate frames of the teleoperation system.

III. PROPOSED CONTROLLERS

Before going through the local and remote proposed
controllers, let first us define the following pose error signals,
for i, j ∈ {`, r} and i 6= j

eij =

[
p̃ij
β̃ij

]
=

[
pi − pj

ηjβi − ηiβj − S(βi)βj

]
(10)

It should be underscored that eij = 0 clearly implies that
pi = pj . However, it is not trivial to see that it also implies
that both orientations are the same. For that reason, we follow
the same procedure as in Proposition 1 in [14]. Note that
eij = 0 implies that β̃ij = 0 and hence

ηjβi − ηiβj = S(βi)βj

Since (ηjβi − ηiβj) and S(βi)βj are orthogonal to each
other, the above equation only holds if βi and βj are parallel,
hence S(βi)βj = 0. Thus βi = ηi

ηj
βj .

On the other hand β̃ij = 0 implies that η̃ij = ηiηj +

β>i βj = ±1 (from the normality condition of the quater-
nions). Finally

ηiηj +
ηi
ηj
|βj |2 = ±1

ηi(η
2
j + |βj |2) = ±ηj ,

hence ηi = ±ηj , which in turn implies that βi = ±βj . This
corresponds to the same orientation in SE(3).

Since in this paper it is assumed that only the local and
remote pose is available for measurements, the controllers
make use of the following linear velocity estimator

ẏi =

[
ẏvi
ẏωi

]
= −Λiyi +

[
pi
ξi

]
(11)

where yi ∈ R7 is the filter state which is decomposed in
two elements yvi ∈ R3 and yωi ∈ R4. Matrix Λi ∈ R7×7 is
diagonal and positive definite.

The proposed local and remote controllers are given by

u` = k`e`r + d`Ψ`ẏ` − g`(q`) (12)
ur = −krer` − drΨrẏr + gr(qr)

where ki, di ∈ R>0 and

Ψi =

[
I3 03×4
03

1
2U>(ξi)

]
(13)

The local and remote dynamics (5) in closed–loop with
the controllers (12) are

M`(q`)ẍ` + C`(q`, q̇`)ẋ` + k`e`r + d`Ψ`ẏ` = uh(14)
Mr(qr)ẍr + Cr(qr, q̇r)ẋr + krer` + drΨrẏr = −ue

The main result of this paper is the following:
Proposition 1: Consider the bilateral teleoperator (5) and

assume that the linear and the angular velocities are not
measured. Additionally suppose that Assumption A1 holds.
Then, controller (12) with (11) ensure that velocities and
pose errors are bounded. Further, if the human operator does
not inject forces on the local manipulator and the remote
manipulator does not interact with the environment, i.e.,
uh = ue = 0, then velocities and pose errors asymptotically
converge to zero. That is

lim
t→∞

ẋi(t) = lim
t→∞

eij(t) = 0 �

Proof: Consider the following function

Vi =
1

2

[
ẋ>i Mi(qi)ẋi + di|ẏi|2

]
+ δi

∫ t

0

ẋ>i (σ)u∗(σ)dσ

where δ` = −1, δr = 1, u∗ = uh if i = ` and u∗ = ue if i =
r. From Assumption A1 and Property P1, it can be proved
that Vi is positive semi-definite and radially unbounded with
regards to ẋi and ẏi. Its time–derivative, evaluated along
(14) and using Property P2, yields

V̇i = −ẋ>i [kieij + diΨiẏi] + diẏ
>
i ÿi.

At this point one should note that

ẋ>i Ψiẏi = v>i ẏvi +
1

2
ω>i U>(ξi)ẏωi

= v>i ẏvi + ξ̇
>
i ẏωi,
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where (13) has been used to obtain the first equation and (8)
for the second one. Further, using (11), the term ẏ>i ÿi is

ẏ>i ÿi = −ẏ>i Λiẏi + ẏ>vivi + ẏ>ωiξ̇i.

Using the previous equations yields V̇i = −diẏ>i Λiẏi −
kiẋ
>
i eij which in view of (10) can be written as

V̇i = −diẏ>i Λiẏi − kiv>i p̃ij − kiω>i β̃ij .

Now, consider the error functional

W =
1

2
k`|p̃`r|2 + k`

[
(1− η̃`r)2 + |β̃`r|2

]
,

which is positive semi-definite and radially unbounded with
regards to p̃`r, 1− η̃`r and β̃`r. Its time–derivative yields

Ẇ = k`p̃
>
`r

˙̃p`r − 2k`(1− η̃`r) ˙̃η`r + 2k`β̃
>
`r

˙̃β`r

= k`p̃
>
`r

˙̃p`r + k`β̃
>
`rω̃`r

where, to obtain the second equation, (9) has been used
together with the properties of the skew–symmetric matrices.

Defining V = V` + k`
kr
Vr + W and using the fact that

p̃ij = −p̃ji and β̃ij = −β̃ji yields

V̇ = −d`ẏ>` Λ`ẏ` −
dik`
kr

ẏ>r Λrẏr ≤ 0.

Since V ≥ 0 and V̇ ≤ 0, ẏi ∈ L2. Moreover, ẋi, ẏi, e`r ∈
L∞ (since e`r = −er` then er` ∈ L∞). This finishes the
first part of the proof.

For the second part, assume uh = ue = 0. In this case,
the closed–loop system (14) becomes

ẍi = −M−1
i (qi) [Ci(qi, q̇i)ẋi + kieij + diΨiẏi] .

From the above equation, note that if ẍi, ẋi and ẏi are
asymptotically convergent to zero then this implies that eij
also asymptotically converge to zero.

The time–derivative of system (11) is

ÿi = −Λiẏi +

[
vi
ξ̇i

]
, (15)

hence, boundedness of ẋi, ẏi and the relation (8) between
angular velocity and time–derivative of the quaternion ensure
that ÿi ∈ L∞. This last and ẏi ∈ L2 supports the fact that
lim
t→∞

ẏi(t) = 0. Hence

lim
t→∞

∫ t

0

ÿi(σ)dσ = lim
t→∞

ẏi(t)− ẏi(0) = −ẏi(0).

Moreover, since ÿi, ẏi, ẋi, eij ∈ L∞, it can be easily proved
—from the closed–loop system and the time–derivative of
(15)— that ẍi,

d
dt ÿi ∈ L∞. This in turn, implies that ÿi

is uniformly continuous. A direct application of Barbalǎt’s
Lemma ensures that lim

t→∞
ÿi(t) = 0 and from (15) that

lim
t→∞

vi(t) = lim
t→∞

ξ̇i(t) = 0, thus from (8), lim
t→∞

ẋi(t) = 0.
Finally, convergence to zero of ẍi is ensured by Barbalǎt’s

Lemma with the facts that lim
t→∞

∫ t
0

ẍi(σ)dσ = −ẋi(0) and
that ẍi is uniformly continuous. Hence lim

t→∞
eij(t) = 0. This

completes the proof.

Fig. 2: Experimental validation setup.

Fig. 3: PhanTorque library

IV. EXPERIMENTAL VALIDATION

Fig. 2 depicts the experimental setup used for the valida-
tion. The local robot is a PHANTOM Premium 1.5 R© Haptic
Device and the remote robot is a PHANTOM Premium
1.5 High Force R© Haptic Device. Both robots have 6-DoF
and are fully actuated (http://www.sensable.com). Each of
the robots is connected to a computer through the parallel
port, the controllers are programmed using Matlab version
7.11 and Simulink version 7.6. The communication channel,
which transmits the pose from the local to the remote sites,
and vice-versa, is implemented through UDP ports within the
local laboratory network. The communications between the
haptic devices and the computer is done using a Simulink
library developed within this work, called PhanTorque (see
Fig. 3). This library has been designed following the similar
idea of the Phansim library in [26], the main differences
between them is that the PhanTorque library allows to set the
torques to the 6 haptic’s actuators, and can read the position
and the transformation matrix of the haptic’s end-effector.

The gravitational torques vectors for the two robots,
gi(qi) ∈ R6, have been approximated by calculating the
gradient of the potential energy of the three haptic’s segments
(l1, l2, l3), which are shown in Fig. 4. The gravity vector
for both robots is defined by equation (16), where g is the
gravity constant. The gravity vector parameters shown in the
TABLE I have been estimated in the context of this work as
an additional contribution. The Jacobian of the haptic devices
can be found, in detail, in [27]. The controllers and the
velocity estimator gains have been set to k` = 17, d` = 1.5,
kr = 20, dr = 7, and Λi = 1000I7.
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gi(qi) =


0

g((m1ilc1i +m2il1i +m3il1i) cos(q2i) + (m2ilc2i +m3il2i) sin(q3i) +m3il3i cos(q3i + q5i))
g((m2ilc2i +m3il2i) sin(q3i) +m3ilc3i cos(q3i + q5i))

g(m3ilc3i sin(q3i + q5i)sin(q4i))
g(m3ilc3i cos(q3i) cos(q5i))

0

 (16)

Fig. 4: Segments and masses of the robots.

Parameter Local robot Remote robot
Masses (kg) m1=0.0056

m2=0.005
m3=0.09

m1=0.026
m2=0.01
m3=0.09

Lengths (m) l1=0.21
l2=0.21
l3=0.1

l1=0.21
l2=0.21
l3=0.07

Center of masses (m) lc1=0.105
lc2=0.21
lc3=0.1

lc1=0.105
lc2=0.21
lc3=0.07

TABLE I: Estimated parameters of the gravity vectors.

Fig. 5 and Fig. 6 show the pose time evolution of the
local and the remote robots. During the first 1.5s, the
gravity compensation term (16) is applied to both robots,
which allows to set different initial conditions. At 1.5s, the
proposed controllers (12) are activated and the local and
the remote robots asymptotically converge to a common
pose. From second 4 to second 22, a human operator exerts
forces in the local manipulator end-effector. From these
results we can conclude that the remote robots asymptotically
tracks the local robot trajectory. Finally, when there are no
external forces on the local and the remote robots, their
pose converge again to a common pose (last three seconds).
The pose error behavior is shown in Fig. 7. Fig. 8 and
Fig. 9 present the experimental results for the linear and the
angular velocities, respectively. In these figures it is observed
that the errors and velocities asymptotically converge to
zero after the controllers are activated, that the errors are
bounded when external forces appear and that the pose error
converges to zero when there are not any external force.
These experimental results confirm the performance of the
theoretical results reported in this work.
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Fig. 5: Local and remote robots positions.
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5449



−1

−0.5

0

0.5
[r

a
d
/s

]

 

 

ωx,ℓ ωx,r

−2

−1

0

1

2

3

[r
a
d
/s

]

 

 

ωy,ℓ ωy,r

0 5 10 15 20 25

−1

0

1

[r
a
d
/s

]

time [s]
 

 

ωz,ℓ ωz,r

Fig. 9: Local and remote robots angular velocities.

V. CONCLUSIONS

This paper proposes a P + d controller, for a bilateral
teleoperation system, which does not require the linear and
the angular velocity measurements for its implementation.
The controller has been designed in the operational space
and it employs unit quaternions to describe the end-effectors’
orientations. Unit quaternions provide a singularity-free ori-
entation representation contrary to the minimal representa-
tions. Under a passivity assumption on the human operator
and on the remote environment, boundedness of all sig-
nals has been established. Moreover, the paper also shows
that, if the human operator and the environment do not
exert forces on the manipulators, velocities and pose errors
globally asymptotically converge to zero. The effectiveness
of the proposed control scheme has been confirmed with
experimental validation performed with two robots of 6-DoF.

A clear theoretical extension of the proposed scheme is the
inclusion of time-delays in the communication channel. The
fact that damping injection cannot be employed in the present
scenario, due to the unavailability of velocity measurements,
renders the authors’ previous time-delay controllers [28],
[29], [7] unsuitable for a possible extension. For this exten-
sion other Lyapunov–Krasovskiĭ or Lyapunov-Razumikhin
functionals to prove stability with time-delays need to be
found. However, we have systematically confirmed, in sim-
ulations and experiments, that the proposed schemes are
robust to time-delays, but such assertion remains to be proven
theoretically.
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stable PD controller for bilateral teleoperators. IEEE Trans. Robot.,
24(3):753–758, June 2008.
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