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Abstract— Mapping and exploration are essential tasks for
swarm robotic systems. These tasks become extremely challeng-
ing when localization information is not available. In this paper,
we explore how stochastic motion models and weak encounter
information can be exploited to learn topological information
about an unknown environment. Our system behavior mimics
a probabilistic motion model of cockroaches, as it is inspired by
current biobotic (cyborg insect) systems. We employ tools from
algebraic topology to extract spatial information of the envi-
ronment based on neighbor to neighbor interactions among the
biologically inspired agents with no need for localization data.
This information is used to build a map of persistent topological
features of the environment. We analyze the performance of our
estimation and propose a switching control mechanism for the
motion models to extract features of complex environments in
an effective way.

I. INTRODUCTION

Swarm robotic systems have been considered as the sub-
ject of intense research in recent years. Behaviors such as for-
mation, coverage, flocking, and consensus are adopted from
groups of moving animals in order to develop behavioral-
based distributed motion coordination algorithms. Cock-
roaches, for example, while not exhibiting highly organized
and complicated individual and group behaviors, still demon-
strate weak cooperation and information sharing with each
other. Furthermore, they are shown to manifest interesting
individual and local behaviors such as diffusive random
walks [1], wall following [2], climbing and tunneling [3]. An
overview of studies on analysis of emergent self-organized
motion coordination algorithms based on local interactions
in biological groups is provided in [4] and [5]. Application
of such algorithms on distributed and embedded systems
makes the execution of distributed sensing missions includ-
ing monitoring, surveillance, exploration, and search and
rescue feasible.

An inevitable factor in designing such distributed swarm
systems is to provide them with capability of stable, robust,
and optimized performance in uncertain and adverse environ-
ments. Consider for example a disaster zone response sce-
nario, in which an earthquake or a hurricane has taken place.
Our aim is to explore and obtain a map of an unstructured un-
known environment using a swarm robotic system to find and
rescue survivors. However, under such rough conditions of
the terrain, odometry information received from the robotic
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Fig. 1. A physical environment with a swarm of biobotic (cyborg insect)
agents and their corresponding local sensing neighborhoods.

agents contains a high amount of uncertainty as a result of
the abrupt structure of the environment. One may choose
to employ a swarm of biologically inspired robots equipped
with complex locomotion capabilities (such as climbing and
crawling [6]), that enables them to explore and survive in
such harsh environments. Alternatively, we can make use of
existing biological agents via biobotic systems [7], where
the natural locomotion capabilities of insects are fused with
neuromuscular stimulation for their navigation (see figure 1).
However, biobotic agents are provided with weak odometry
capacities. Moreover, due to bandwidth constraints, vision
sensing is also impractical. Additionally, by virtue of power
constraints, long range RF communication and localization
are unfeasible. Consequently, the system cannot be provided
with strong and accurate localization information, and tradi-
tional localization and mapping algorithms such as SLAM
[8] would fail to perform effectively. Alternatively, charac-
terization of such scenarios can be accomplished by taking
advantage of the randomness presented in the locomotion al-
gorithm and employing topological representation techniques
to estimate an abstract model of the environment rather than a
complete metric mapping. Methods from algebraic topology
can extract topological features from an environment without
requiring localization information, which differentiates them
from traditional approaches, and as a result, these methods
are more suitable for scenarios in which weak or no local-
ization is provided.

In this paper, we study exploration and mapping of un-
known environments using a distributed swarm robotic sys-
tem. In particular, we consider swarms of biobotic agents [7],
which according to the above discussion, cannot make use of
traditional localization techniques as a result of weak odom-
etry information and limited sensing. Hence, we develop
algorithms that do not depend on odometry or any other
type of traditional localization schemes. Instead, we consider
estimation of a topological model for the environment based
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on limited information retrieved from the agents. Specifically,
we assume that biobots are able to detect other agents in their
proximity, and record their IDs and times of encounter and
send these information to a base station. We consider biobotic
agents whose motion model adopts to the locomotion model
of cockroaches, including wall-following and random walk
behaviors. Then, we employ algebraic topology to extract
persistent features of the environment, such as connectivity
and holes, based on agent encounter information. Finally,
we explore the use of parameters from the motion models
as external inputs for efficient mapping of the environment.

The remainder of the paper is organized as follows: Sec-
tion II provides an overview of the related previous work. In
Section III, we describe the motion model of agents based on
the natural behavior of cockroaches. The mathematical tools
for the analysis and estimation of the topological models are
introduced in Section IV. In Section V, simulation studies
are presented including the exploration of a swarm control
mechanism based on switches on motion behavior. Finally,
conclusion and future extensions of the presented work are
discussed in Section VI.

II. RELATED WORK

In this section, we present the state of the art on: motion
models inspired by insects, hole detection in sensor networks,
and feature extraction based on topological representation of
an environment.
Cockroach research: During the past decade, researchers
in experimental biology and biomedical engineering have
investigated models for the motion of individual cockroaches
[1] as well as groups of them based on experimental data [9],
[10]. Hardware platform developments include: a matched
size miniature robot simulating the individual and group
behavior of cockroaches based on hierarchical potential
fields [11]; and a small autonomous robot equipped with
an onboard camera and antenna-like contact sensors [12].
Hole detection in sensor networks: Finding the topology of
a domain embedded in Rd is closely related to detecting its
holes [13]. In sensor networks, a coverage hole is described
as a region which is not covered by any agent [14]. Corke et
al. [15] developed distributed algorithms for detecting loca-
tion and borders of holes in a wireless sensor network. They
implemented a local algorithm based on iterative convex
hull method as well as a remote hole detection algorithm.
However, their algorithm can only be applied to static and
symmetric ad-hoc networks. In [16] the existence of holes
are investigated by identifying the nodes where packets may
get stuck.
Topological characterization of a domain: Traditional meth-
ods that require localization of agents for coverage charac-
terization are not designed for large position uncertainty.
Hence, methods that extract topological information were
introduced. Ghrist et al. [17] developed an algebraic topo-
logical approach for stationary sensor networks based on
persistent homology. The main feature of their approach
was employing homology to characterize the coverage of a
network by using only knowledge of which nodes are within

Fig. 2. Peripheral and central partitions (left) and the finite state machine
representing the individual motion model of a cockroach (right)

a neighborhood [18]. In contrast to much of the previous
work, in which a unit-disk model for the sensor coverage
was assumed, E. Lobaton et al. [19] extended these topolog-
ical models to incorporate long-range directional sensors in
the presence of occluding objects, and demonstrated their
approach in real networks of cameras. Muhammad et al.
[20] developed distributed algorithms for the computation
of these homologies through the use of gossip algorithms.
The aforementioned studies mostly focused on static sensor
networks.

Providing the nodes in a network with mobility increases
the difficulty of the problem. One way to reduce this com-
plexity is to look for patterns created by tracing the encoun-
ters of the nodes instead of investigating the mobility data
itself. As such, Walker [21] employed persistent homology
to compute topological invariants from encounter data of
the mobile nodes in Mobile Ad-Hoc networks in order to
infer global information regarding the topology of a physical
environment. However, the nodes are assumed to follow a
simple mobility model.

III. MOVEMENT MODEL OF COCKROACH-LIKE AGENTS

In this section, we describe the probabilistic model rep-
resenting agents’ motion in a bounded space based on the
movement model of Blattella germanica cockroach, which is
mainly adopted from [1] and [9].

It has been shown that individual cockroaches, when
detecting an edge in the arena, perform wall following. Once
they are far from the walls, their movements can be fitted
on a diffusive random walk model. During agents’ movement
they might decide to have short or long stops. In a group level
behavior, as interacting with other agents, cockroaches stop
with higher probabilities when they encounter an aggregation
and join the aggregated agents, and probabilistically leave the
aggregation when they collide with a moving agent. In this
paper, we limit the agents in our swarm model to follow
only the individual motion characteristics of cockroaches for
simplicity. A schematic of a finite state machine summariz-
ing the states of the agents and their transitions based on
occurring events is presented in figure 2 (left).

Consider a bounded environment D ∈ Rd, e.g. the one
shown in figure 2. We split the environment into peripheral
and central partitions. Peripheral partition, P , is defined as
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a subset of the points which are within a distance of rp with
respect to the boundary of D, i.e. P = {p ∈ D | ‖p − q‖ <
rp, for some q ∈ ∂D}. The central partition consists of the
set of the rest of the points in the environment.

The movement model of an individual agent could be
obtained by incorporating the motion models in the two
regions.

1) Peripheral Partition (P): When agents are close
enough to the boundary of the environment, they perform
a wall following behavior with a constant average velocity
of vp. During their movement, they can either make a
probabilistic stop for a period of time and then continue
their movement, or leave the peripheral partition towards
the central one. The agents’ stop is modeled as a memory-
less process characterized by an exponential distribution
with a characteristic time τstop,p representing the average
time elapsed before an agent stops. Once an agent stops,
it could either remain active with a probability of psh,p,
characterized by short stops, or inactive with the probability
of 1 − psh,p, described as long stops. Each of these two
stopping events are characterized by exponential distributions
with characteristic times τs,p and τl,p, respectively. When
the agents are following the boundary of the arena, they
leave the peripheral zone after an average of τexit seconds,
which denotes the characteristic time of the corresponding
exponential distribution. They leave the peripheral partition
with an angle of θexit with respect to the tangent vector to
the boundary at their current position distributed as a uniform
density U(0, π).

2) Central Partition (C): Motion characteristics of the
agents in the central partition is modeled as a diffusive
random walk with piecewise fixed orientation movements,
characterized by line segments, interrupted by direction
changes. The average length of the line segments l∗, is
considered to be the characteristic length of an exponential
distribution for the path lengths. As for angular reorientation,
we assume an isotropic diffusion, where p(θnew|θcurrent) =
p(θnew) ∼ U(0, 2π), resulting in a uniform distribution of
angle reorientation independent of the previous angle.

As in the peripheral partition, the agents stop their random
walk on average after a characteristic time of τstop,c. The
short and long stops are characterized with probabilities of
psh,c and 1 − psh,c and characteristic times τs,c and τl,c,
respectively.

IV. TOPOLOGICAL CHARACTERIZATION OF
ENCOUNTERS

Consider a network of N finite dimensional moving agents
in a bounded environment D ∈ Rd and denote the set of IDs

TABLE I
RANDOM WALK AND WALL FOLLOWING MODEL PARAMETERS

Zone Mean Speed l∗ τstop(n) psh(n) τs(n) τl(n)
C 15 mm/sec 30 mm 20 0.93 0.5 20
P 10 mm/sec - 20 0.93 0.5 20

Fig. 3. An example of a filtration (left) and the corresponding Betti
diagrams in dimensions 0 and 1 (right). The diagrams confirm the existence
of a persistent connected component in the interval [t0, t4] and a 1-
dimensional hole which is born at t2 and persists for the rest of the filtration
time

assigned to all agents by I. We assume that motion dynamics
of the agents mimics the movements of cockroaches as
described in Section III. The agents are provided with weak
localization information, i.e. they can only identify the other
agents within their radius of detection. However, they are
provided with their own tags, and are able to capture the
tags of the other agents coming into their detection radius,
as well as the time at which this encounter event occurs. This
information is sent to a base station.

Algebraic topology, in contrary to geometric techniques,
which aim to estimate shapes and distances, deals with the
way that objects are connected. Using tools from algebraic
topology, we can construct a model of the environment
using combinatorial objects called simplicial complexes.
We investigate persistent features of the environment like
connected components and holes via persistent homology, a
mathematical tool from computational topology.

In the next subsection, we briefly go over the concepts
we use from persistent homology throughout the rest of the
paper. For more details the reader is encouraged to refer to
[22].

A. Persistent Homology

A standard method to map a collection of data points to
a combinatorial object in order to analyze their topologi-
cal structure is to represent them as a simplicial complex.
Given a set of vertices V , a k-simplex is defined as a set
{v1, v2, . . . , vk+1} where vi ∈ V , ∀i and i 6= j,∀i, j. For
example, a graphical interpretation corresponds to thinking
of a 0-simplex as a vertex, a 1-simplex as an edge, and a
2-simplex as a triangle. A finite collection of simplices, is
called a simplicial complex.

A filtration is a collection of complexes X(t) such that if
t < s then X(t) ⊂ X(s), meaning that all simplices in X(t)
are included in X(s).

Topological invariants are mappings which aim to classify
equivalent topological objects into the same classes. Betti
numbers are ranks of a special type of topological invariants,
called homology groups. The k-th Betti number, denoted by
βk, is a coarse measure of the number of k-dimensional holes
in the topological space. In particular, β0 is the number of
connected components and β1 is the number of holes in the
complex.

Persistent homology is a topological technique that enables
us to extract topological information of an environment via
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Fig. 4. Example of encounter events for 8 agents moving on a circle: the
trajectories over time as orange curves and encounter points as white circles
(left), and the corresponding encounter complex (right)

filtered simplicial complexes. It describes the topology of
these complexes by means of a collection of Betti intervals,
or persistent intervals. Each k-dimensional Betti interval
[tbi , tdi ] can be associated to a k-dimensional hole with an
appearance or birth time tbi and closing or death time of
tdi

. βk diagrams are used to visualize k-dimensional Betti
interval signals over filtration time.

As an example, consider the filtered simplicial complex
shown in figure 3 as well as its Betti diagrams for dimensions
0 and 1. At time t0, there exist three vertices and one edge
resulting in two connected components. At t1, one more
vertex, two more edges, and one 2-complex are added which
makes one of the components join the other one giving death
to the corresponding connected component in β0 diagram of
figure 3; but another connected component appears which
gives birth to a line in the same diagram. Adding more
edges at t2 results in one connected component and gives
birth to a cycle which is shown in β1 diagram of figure 3.
At t3 more simplices are added yet there is no change in
the number of connected components and cycles. Clearly,
X(t1) ⊂ X(t2) ⊂ X(t3) ⊂ X(t4).

Persistent homology has been used to extract coverage
hole information out of stationary sensor networks in [17].
However, this approach mainly concerns about the coverage
holes in the sensing domain of the collection of the nodes
as a sensor network, while we do not care about the holes
in coverage but the topology of the physical environment
itself. Hence, this technique by itself cannot be applied to
our study case. On the other hand, for a network of moving
agents, we can make use of a subset of data associated with
encounters between agents instead of dealing directly with
the collection of points (pi(t), t), where pi(t) is the position
for the i-th agent at time t. This enables the construction of
a combinatorial structure called the encounter complex.

B. Encounter Complex

For moving agents in the environment, we say that an
encounter event Ei occurs at time ti if the Euclidean distance
between two agents with ID’s I1, I2 ∈ I and position vectors
pI1(ti) and pI2(ti), ‖pI1(ti)− pI2(ti)‖, is less than a prede-
fined encounter threshold, Te. Accordingly, we construct the
weighted encounter graph GE with vertex set V = {vi} with

vi corresponding to the i-th encounter event Ei defined as

vi = [ti, I1, I2] . (1)

Two vertices vi and vj are connected with edge weights
wij = |ti − tj |, if the events Ei and Ej involve a common
agent. Having the set of all pairwise distances, we define a
metric on the set of events as a matrix GE whose elements
are the length of shortest paths between two event nodes.
Given a distance threshold ε, a (k− 1)-dimensional simplex
is formed if there is a subset of k points in the graph that are
within ε distance from each other. The Rips complex (also
referred to as the Encounter complex [21] in this application)
for this ε value is the collection of all such simplices. A
filtration is obtained by varying the value of ε from 0 to the
diameter of the weighted graph.

Consider, for example, four agents moving with constant
speed on the boundary of a circle with radius r = 20cm
in clockwise direction, and four other agents move under
the same conditions but in counterclockwise direction. The
trajectories of the agents over time as well as the encounter
events are shown in figure 4 (left), and the encounter complex
based on the metric defined above is depicted in figure 4
(right). It can be observed that although the aforementioned
metric is independent of the positions of the encounter
events, using filtered complexes, we can extract topological
information from the environment.

Given a finite point cloud, or a finite metric space rep-
resenting a point cloud, there are several ways to con-
struct such a filtered simplicial complex. However, extracting
topological information from the encounter complex can
be computationally expensive due to the large number of
events present. This is the motivation behind the development
of the witness complex [23], in which a small subset of
the points, called landmark points, is selected on which a
smaller filtration, the witness complex, is constructed such
that it possess the same topological properties as the original
one. A well-known method for selecting landmark points,
is the maxmin algorithm. The methodology of the maxmin
algorithm and the construction of the witness complex can be
found in detail in [23]. We make use of the implementation
available in [24].

V. RESULTS

In this section, we perform an exploratory study on how
to robustly extract topological information of an unknown
environment based on the weak encounter information of
biobotic agents. We carry out our analysis though numerical
simulations of a swarm of insect like agents with parameters
described in section III.

We first explore topological characterization of two test
environments, and investigate the effectiveness of the pro-
posed topological mapping technique on the extraction of
features from the environments. A motion model parameter
is exploited as an exploration controller input to switch
from interior mapping to boundary estimation of our test
environments. Particularly, we vary the characteristic time
before exiting the wall following behavior to its default value
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Fig. 5. Block diagram of the topological estimation of an environment
based on encounter events and witness complex

of τexit = 7.69s, corresponding to the agents’ natural motion
(NM), to the extreme values of ∞ and 0, corresponding to
a pure wall following (WF) or a pure random walk (RW)
behavior. We will employ switching to WF in order to map
the boundary of the environments. Then we propose an
alternatively switching swarm controller between RW and
WF in order to perform interior and boundary mapping
of more complex environments, which cannot be modeled
with a fixed topological estimation set-up. To compute the
persistent homology of the filtered encounter complexes, we
use javaPlex [24] software package, aimed at implementing
persistent homology and related techniques.

Figure 5 overviews the general process of estimating
a topological model for an unknown environment as a
block diagram. For visualization of the point cloud data
corresponding to the distance metric GE , we make use
of Multi-Dimensional Scaling (MDS) technique to obtain
corresponding coordinates in the Euclidean space [25].

A. Topological analysis of encounter complex

We consider two octagonal environments, D1 (a simply
connected region) and D2 (a region with a hole). Topological
features of the interior of D1 and D2 can be described as both
having only one connected component, and D2 having one
1-dimensional hole while D1 has no holes in its interior.

1) Cases 1 & 2: A total of 150 agents are used in
both scenarios, which are initialized in close proximity from
each other (see t = 0 for cases 1 and 2 in figure 6). In
addition to parameters presented in tables I, we set our
control parameter to the value corresponding to the natural
motion, i.e. τexit = 7.69s. For case 1, the configuration of
the agents over three time samples, t = 10s, 25s and 80s
are presented in figure 6. It can be observed that at t = 80s
the agents cover almost equally the whole environment.
Simulation results for environment D2 are also shown as
case 2 in the same figure. Because of the topology of D2

it takes longer for the agents to disperse in the whole area.
The encounter events are recorded to be used to produce
the metric graph GE . However, we only select nE = 3000
encounter points to extract topological information from, and
out of these points only nl = 100 landmark points are
selected for construction of the witness complex using the
maxmin algorithm. The trajectories of the agents as well
as the corresponding encounter events over time for case 2
are shown in figure 7(a). The point cloud obtained using
MDS corresponding to the events in case 2 are plotted in
figure 7(b). It can be observed that although these points
do not correspond to the real position of the events in the
physical space, they represent the topological features of the

Fig. 6. Dispersion of the swarm in the environment over time under
four different cases. Cases 1 and 2 correspond to the natural motion (NM)
behavior, and cases 3 and 4 refer to the wall following (WF) behavior

environment correctly. Corresponding landmark points are
depicted in figure 7(c).

The resulting witness complexes as well as β0 and β1
diagrams are presented in figure 8. In case 1, the witness
complex represents a single connected component with no
holes. One can come to the same conclusion looking at
the persistent diagrams of dimension 0 and 1. There is
one persistent connected component in β0 diagram and no
persistent features in β1 diagram. On the other hand, for case
2, a single connected component with a hole is observed in
the witness complex, agreeing with a single persistent feature
in the corresponding β0 and β1 diagrams.

2) Cases 3 & 4: Now we aim to perform a boundary
mapping for D1 and D2. To this end, we exploit the control
parameter to switch to WF behavior. Corresponding witness
complexes and barcodes (see figure 8) confirm the existence
of one connected component and one hole for the boundary
of D1 and two connected components and two holes for
the boundary of D2, corresponding to its inner and outer
octagonal boundaries.

TABLE II
PERSISTENT FEATURES EXTRACTED FOR THE SWITCHING PHASES

Phase I Phase II Phase III Phase IV
Time interval [0, 40] [40, 150] [150, 300] [300, 400]
Motion Model NM WF RW WF

β0 1 1 1 2
β1 0 1 1 2
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Fig. 7. (a) Trajectories of the agents and the encounter events in Euclidean space for case 2, (b) corresponding point cloud of the metric space using
MDS, and (c) the corresponding landmark points.

B. Switching swarm behavior for topological mapping

Now we consider a more complex environment, D3,
consisting of two polygons, one simply connected and the
other with one hole inside, connected via a narrow passage as
shown in figure 9 (left). We start the simulation with the same
initial configuration as in Case 1 with an NM behavior in the
left polygon and n = 250 agents. The resulting configuration

Fig. 8. Witness Complexes, and β0 and β1 persistent diagrams for the four
scenarios in figure 6. The coordinates of the landmark points are obtained
using the MDS algorithm.

after a transient time of 40 seconds is shown in figure 9 (a).
It can be observed the agents are not able to pass the passage
as they are bouncing back and forth between the edges of
the passage due to the nature of their random walk motion.
As a result, most of the agents cannot penetrate the right
side of D3. The resulting persistent diagrams are shown in
the same figure, exposing one simply connected component,
which is incorrect.

In order to overcome this problem, we adopt a switch-
ing controlling scheme to extract as much information as
possible out of the encounter data. We propose to switch
controller parameter τexit between its two extreme cases.
The type of motion models, the intervals of duration, and
the persistent β0 and β1 features of the different phases
considered are shown in Table II. The length of the phases
are selected manually to ensure enough time for dispersion
of all the agents. Figure 9 shows the corresponding physical
configurations and persistent diagrams for each phase. As

Fig. 9. Configuration of the swarm at the end of each phase (left) and the
corresponding β0 and β1 diagrams (middle and right).
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described before, at the end of phase I, we observe a single
persistent connected component in the β0 diagram, and no
persistent β1 holes. At the end of phase II, we observe that
a single connected components and a hole are found due
to the wall-following behavior of the system. At the end of
phase III, a single connected component and a single hole are
found, which leads us to believe that a new region has been
discovered since this hole was not observed during phase I.
This also indicates the existence of a narrow passage. Finally,
at the end of phase IV, two connected components and two
holes are observed, which supports our observations from
phase III. As a summary, we can say that the environment
consists of a simply connected region and a region with a
hole connected by a narrow passage, which is a description
for the environment.

VI. CONCLUSION AND DISCUSSION

In this study, we explored a topological estimation ap-
proach under weak localization assumptions. We used en-
counter information of agents with motion models inspired
by cockroach behavior to extract topological information of
the environment from persistent features. We then made use
of a motion parameter to switch between different swarm
behaviors in order to perform both interior and boundary
mapping of the environment.

During our experiments, we observed that this estimation
process is sensitive to the number of agents, number of time
samples, number of encounter events, and landmark selection
algorithm. If few agents are used, then the events will take
place at sparse locations over the time-space domain, which
does not permit for proper estimation of topological features.
It was also observed that a higher number of encounters was
needed when performing wall following, which we believe
is due to the lack of change on direction of the agents. More-
over, the number of landmarks needed for proper estimation
increases with the number of holes.

We plan to address the aforementioned sensitivity issues
by investigating any lower bounds required for a provably
accurate estimation of the topological features. This may
also lead to better landmark selection methodologies for data
reduction when computing the persistent diagrams.

The proposed switching strategy for exploration and map-
ping from Section V.B, needs to be further investigated. As
future work, we will investigate a more careful control of the
motion parameters. For example, the length and frequency
of switches between the different phases can lead to faster
exploration and more accurate mapping.
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