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Abstract—A continuum manipulator with triangular notches 

is proposed for the potential medical applications, which is 

driven in the plane by wires embedded in bilateral symmetry 

channels. The focus of this present research is a mechanics-based 

kinematic model of the proposed continuum manipulator using 

the Timoshenko beam theory to map the driven load to the 

manipulator shape. In the proposed model, the continuum 

manipulator is divided into several V-shape units, each of which 

consists of two 2-node Timoshenko beam elements. Compared 

with previous approaches, our proposed model discards the 

constant curvature approximation, in which the distributed 

force caused by the interface contact between the wire and the 

V-shape unit is also considered simultaneously. The proposed 

mechanics model is validated experimentally on a segment of 

Nitinol flexible manipulator, which illustrates the effectiveness 

of our model to describe the continuum manipulator shaping. 

 

I. INTRODUCTION 

Continuum arms can be defined as continuously curving 
manipulators with flexible structures or joints, which exhibit 
marvelous behaviors similar to biological trunks, tentacles 
and snakes etc [1-2]. Continuum arms, also known as 
hyper-flexible, hyper-redundant, and continuous backbone 
robot arms, have attracted more attention from variety of 
fields, especially in medical applications due to their 
incredible characteristics for continuously bending, infinite 
degree of freedom, and dexterity in constrained environments. 
In contrast to rigid links and joints, the continuum manipulator 
is ideal for surgeon operation in constrained environments, 
which offers some distinctive features such as inherent 
compliance, reduced weight, fault tolerance, and whole arm 
manipulation capability. Those features have also naturally 
inspired researchers to develop continuum robots for 
minimally invasive surgery (MIS), such as single port 
abdominal surgery (SPAS) and natural orifice transluminal 
endoscopic surgery (NOTES) [3-6]. Compared with the 
traditional MIS systems, the SPAS and NOTES minimize the 
incision trauma and shorten the recovery time. Recently, more 
generic SPAS and NOTES robots based on continuum design 
have been proposed for the applications of prostatectomy, 
cholecystectomy, fetal surgery, and endoscopic diagnosis and 
intervention, et al [7-15]. 

The characteristic of continuum arms challenge the 
developing and formulating the kinematic model. In contrast 
to rigid-link robots, the kinematic model and mechanics 
model of the continuum robot are coupled. Consequently, the 
kinematic modeling of continuum robots cannot be formulated 
solely in terms of constrained motion between rigid bodies, 
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but must also incorporate deformation modeling of elastic 
components. Recently, some mechanics models have been 
established for continuum robots. Jones and Walker [9] 
developed a modular kinematic framework for a multi-section 
elephant trunk robot, which enables real-time task and shape 
control by relating workspace coordinates to actuator inputs. 
This approach also considers physical manipulator constraints. 
Dupont et al [10, 11] developed a multi-tube quasistatic model 
of concentric tube robot with external loads to robot shape and 
tip configuration. In their approach, the continuum robot is 
modeled as a single Cosserat rod with properties along its 
length corresponding to the composite stiffness and initialized 
curvatures of the unloaded robot. Trivedi et al [16] used the 
Cosserat rod theory to derive the continuum robot’s deflection 
which is subject to the external loading. Webster et al [17, 18] 
presented a mechanics model based on Bernoulli Euler beam 
for a concentric tube continuum robot, in which the torsional 
effects were added to the modeling framework in straight 
transmissions. Xu and Simaan [12] demonstrated intrinsic 
force sensing capabilities of a flexible multi-backbone 
continuum robot, using screw theory to analyze the limitations 
and provide geometric interpretation to the sensible wrenches. 
Camarillo et al [19] presented a new linear model for 
transforming desired beam configuration to tendon 
displacements, and the distributed force caused by tendon 
along the length of the tendon-beam interface was also 
considered. In some models mentioned above, the piecewise 
constant curvature approximation is employed, and the 
distributed force generated by the tendon, wire and cable is 
neglected. However, it is obvious that the piecewise constant 
curvature assumption is not sufficient for precision modeling 
and real-time controlling, especially when torsion, lateral 
force, external forces and moments are applied [20]. 

This paper presents a novel continuum manipulator which 
is constructed from a Nitinol tube with triangular notches and 
driven in the plane by wires. This paper is mainly focused on a 
new mechanics-based model mapping between driven wire 
tension and arm shape. The model is essential in kinematic 
modeling and controlling the manipulator accurately in future, 
and can be applied to other continuum manipulators with 
similar notched structure. In the proposed model, the 
deflection profile of the continuum manipulator is not subject 
to the constant curvature approximation and the distributed 
force caused by the driven wire is considered simultaneously. 

The structure of this paper is as follows. Section II 
presents the overview of the continuum manipulator which 
provides a large hollow lumen for driven wires, power and 
signal cables of end micro-instruments. Section III introduces 
the mechanics model of the continuum manipulator based on 
Timoshenko’s beam model. Section IV discusses the 
kinematic model based on the mechanics model. Finally, the 
proposed model is experimentally validated in Section V and 
the article is concluded in Section VI. 
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II. CONTINUUM MANIPULATOR DESIGN 

A. Design Consideration 

Minimally invasive medical procedures involve the 
manipulation of tools, sensors and endoscopic devices inside 
the body while minimizing damage to surrounding anatomical 
structures. The requirements for different surgery 
performances are different, although all actions are required to 
be implemented in confined space, so the DOF (Degree of 
Freedom) of robot system must be enough to meet the MIS 
requirements. The continuum manipulator arm is a good 
choice in confined cavity compared to the traditional 
link-joint systems, which can achieve large scale deformation 
but is difficult to manipulate. In order to fulfill the MIS tasks, 
the robot should be a foldable system, be able to pass through 
a small incision, and operate the target organs and involved 
tissues with enough precision and force. In addition, the 
translational workspace should be able to be limited within 
50mm×50mm×50mm [7]. 

The design objective of the continuum arm is to determine 
the position of the tip-tool and the dimension of the lumen for 
actuation and sensing. Design requirements include, enough 
degree of freedom for tool manipulation and exploration, 
compact size for insertion through incision, high dexterity of 
manipulation, and geometry extensible to fit various size of 
components. 

B. Manipulator Design 

According to medical constrains, a 30-35mm incision is 
available for laparoscopic operations [14], so a design of the 
continuum manipulator with 10mm diameter is acceptable. 
The proposed continuum manipulator is driven by wires 
which pass through bilateral symmetry channels of Nitinol 
tube (shown in Fig 1). One end of the wires is fixed at the top 
of the tube and the other end is connected to the actuation 
motors to steer tightening or loosening the wires. When 
tension is applied on the wires, the flexible tube will bend 
naturally. The proposed flexible manipulator arm can achieve 
one-DOF bending motion in plane by alternating two wires’ 
tightening and loosening. Fig. 1 shows two segments can be 
stacked to be configured as two-DOF continuum snake-like 
arm, and the two bending planes are perpendicular to each 
other, i.e. the bending plane of one segment is the neutral 
plane of the other one. The driven-wire is fixed on the top 
frame of each segment, which causes the second segment 
driven-wire passing through the first segment. Since the 
driven-wire plane of first segment is identical to the neutral 
plane of second segment, the deformation of these two 
segments is decoupled. In our design of the notches arm, the 
arm only can be bended to the direction of opening and closing 
of the triangular notches, so the influence caused by the 
torsion and driven-wire force of the distal segment to the base 
segment can be neglected. In addition, the continuum 
manipulator features a large lumen to house support disks, 
additional driven wires for instruments, and sensor cables etc. 
In our proposed design shown in Fig. 1(a), the notches are 
identical, equally spaced, and interleaved, which are cut by the 
slow wire EDM. For the proposed flexible manipulator, the 

maximum bending angle max depends on the key geometric 

and physics variables, i.e. the notch angle α, the notch number 
N, the notch overlap, and material properties etc. 

 
max

N   (1) 

It can be seen that even though this paper focuses on a 
planar model of single segment, the work discussed and the 
approach outlined in this paper is generic, which can be 
further used into the full three-dimensional model of notched 
multi-segment and geometry optimization to enhance the 
system property with optimal design variables. 

 

Fig. 1 (a) Solid continuum arm model of two segments. (b) Connecting 

frame. 

III. MECHANICS MODELING 

A.  Mechanics Model of the Flexible Arm 

As shown in Fig. 2, the whole structure can be divided into 
several individual V-shape units, in order to establish the 
framework for the mechanics-based model of the flexible arm. 
The Fig. 2 (b) shows the contact interface between the 
V-shape segment and the driven wire. If the concerned part 
shown in Fig. 2 (b) is separated from the structure, a force 
balance can be formulated, in which the tension force FT (with 
α1 and α2 respectively) and the distributed contact force Fw are 
involved. 
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Fig. 2 The segments of the flexible manipulator arm in the bending plane and 

the forces applied on the V-shape unit. 
It can be seen that a V-shape segment can be considered as 

a combined structure with two rings. It is obvious that the 
stiffness of the overlap area is relatively high, so the 
deformation mainly concentrated in the beam segments 
between the overlaps of the triangular notches, as shown in Fig. 
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3. It also should be noted that the deformed segment is a part 
of an arc structure with small central angle, so it can be 
simplified as two straight beams. As shown in Fig. 3, the blue 
straight beam and the orange arc segment are hypothesized as 
identical structures, which are the main deformation area. 

In our design, the thickness and the length are 0.6 mm and 
1.67 mm respectively, so the slenderness ratio (slenderness 
ratio is defined as ratio of the length of beam to cross section) 
of beam A and beam B is relatively small. Therefore, the 
mechanics model of the beam should be formulated based on 
3-dimensional 2-node Timoshenko beam model rather than 
Euler-Bernoulli beam. As shown in Fig. 3, each arc beam of 
the V-shape unit is divided into two 2-node Timoshenko beam 
elements. The global coordinate system O-XYZ is assigned in 
the left corner of the V-shape unit, and the O-XY is the bending 
plane. For the separated beam A and B, the local coordinate 
system Oi-UiViWi and Oj-UjVjWj can be assigned respectively. 
Beam A and B have identical geometry properties, and share 
the same node j. To facilitate the coordinate transformation, Oi 
and Oj locates at the centroid of the left sections of beam A and 
beam B respectively. U-axis′ and V-axis′ positive direction is 
along element axis from the left node to the right one.  

The deformation area
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Fig. 3 Analysis of V-shape unit and coordinate assignment. 

B. Stiffness Model  

For a 3-dimensional 2-node Timoshenko beam element, 
there are 12 displacement components consisting of 3 linear 
displacements x, y, z and 3 angular displacements θx, θy, θz in 
node i and node j respectively, as shown in Fig. 4. The 
stiffness matrix of a 3-dimensional 2-node Timoshenko beam 
element can be derived based on consistent shape functions 
[21]. 

 

Fig.4 Nodal forces and nodal displacements of Timoshenko beam in local 

coordinate system. 

There are three forces and three moments for each node (i 
and j) corresponding to three linear displacements and three 
rotational displacements respectively. The node force vector 
and displacement vector in the local coordinate system can be 
formulated as follows. 

 [  ] [  Y  Z     Y  Z    ]
T

i j i i i xi yi zi j j j xj yj zj
P P P X M M M X M M M   (2) 

 
j j j xj j zj

[  ] [  y  z     x  y  z    ]
T T

i j i i i xi yi zi y
D D D x         (3) 

Then the stiffness model of the beam can be established as 
below, 

 P K D   (4) 

where P , K and D  are the nodal load vector, nodal stiffness 

matrix, and nodal displacement in the local coordinate system, 

respectively. The elements in the nodal stiffness K  matrix can 

be expressed based on material properties and structural 

parameters. Normally, the stiffness matrix in the global 

coordinate system can be expressed as follows, 

 T
K T KT  (5) 

where T is the transformation matrix based on the direction 

cosine matrix from the local coordinate to the global 

coordinate. 
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A

A

B

B

T

T
T

T

T

 
 
 
 
 
  

 (6) 

where TA and TB are the direction cosine matrix of the two 

Timoshenko elements shown in lower right corner of Fig. 3. 
Finally the stiffness model in the global coordinate system 

can be formulated as below, 
 P K D   (7) 

where P, K and D are the nodal load vector, stiffness matrix, 

and nodal displacement in the global coordinate system, 

respectively. 

C. Mechanics Model of Single V-shape Unit 

As shown in Fig. 5, each V-shape unit consists of upper 
and lower segments, and each segment is composed of two 
Timoshenko beam elements, therefore other parts are 
considered as rigid bodies. For the flexible segments i-j-k or 
d-e-f, as mentioned above, two beams (i-j and j-k or d-e and 
e-f) are used in discussion with the shared node j or e. As 
shown in Fig. 5, the external load FT acts longitudinally at the 
distal tip and the distributed load normal to the curvature of 
the beam acts on the interface between the wire and the beam. 
M is the moment acting on the node k and d, and L1 and L2 are 
the length of Timoshenko element and assumed rigid body 
respectively. 

The stiffness matrix of beam with two Timoshenko beam 
elements and three nodes can be formulated in the global 
coordinate system by integrating the stiffness matrices of the 
Timoshenko beam i-j and j-k according to the diagonal 
superposition principle, 

 

11 12

21 22 11 12

2

21 22

                 0

         

0                   

A A

A A B B

a

B

k k

K k k k k

k k

 
 

  
 
 

 (8) 

where Ka , K
A 

ij , K
B 

ij , are the assembly stiffness of upper beam in 

V-shape unit, sub-block stiffness matrix of beam A and B in 

Fig. 3, respectively. The subscripts with i and j present the 

index of node in each Timoshenko element respectively. 
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When the load-displacement relationship of node j, k and 
d, e is investigated, the lower right corner 12-dimensional 
matrix of Ka can be chosen as a new stiffness matrix Ku in the 
following discussion. 

 22 11 12

2

21 22

     
K  =   

             

A B B

u B

k k k

k k

 
 
  

 (9) 

Since the geometric of upper and lower combined beam 
are identical, the stiffness of upper and lower beam is the same. 
The stiffness matrix of single V-shape combined beam 
element can be expressed as follows. 

 
0

=
0

u

u

K
K

K

 
 
 

 (10) 

Therefore, the displacement of upper and lower beam in 
the V-shape unit can be solved as below via the stiffness 
equation in the global coordinate. 
 

u
P K D   (11) 

The distributed load is considered on the i
th

 V-shape unit, 
which is applied on the upper beam. When the (i+1)

th
 

distributed load is considered, it is also discussed on the upper 
beam of the (i+1)

th 
V-shape unit. Since the deformation occurs 

on the notches deformed area (i-j-k and d-e-f), the force can be 
moved from node a to node k. The force vector of upper and 
lower combined beam element is shown as below, 

 0

0
u

l

P
P

P

 

  

 (12) 

where the Pu and Pl contain six force elements and six 
moment elements acting on the upper and lower combined 
beam element respectively. Since the driven force is parallel 
to the deformation plane, the force and moment acting on the 
node k and node d are not zero, which include the driven force 
in X and Y direction (Fx, Fy) and the driven moment (M).  

With the equation (10), (11), (12), the displacement of 
every node in each combined Timoshenko beam of the 
V-shape unit can be calculated. Displacement vector of upper 
and lower combined beam element is expressed as follows. 

 0

0
u

l

D
D

D

 

  

 (13) 

 

Fig. 5 Force analysis of upper and lower beam segment’s combinations. 

The wk and wd in the displacement vector D represent the 

deformation angle of node k and node d. wk and wd are the 
same direction (clockwise or anti-clock wise) in the global 
coordinate, so the bending angle of the single V-shape unit can 
be formulated as below. 
 

d kkd w w
     (14) 

Considering the balance of the wire in the contact area, the 

bending angle kd can also be calculated as below. 
 ( )

kd w
f F   (15) 

It can be hypothesized that when the flexible manipulator 
arm is deformed, the wire is under a balance condition, 
therefore the contact force Fw can be formulated as below. 
 (sin( )

w T kd
F F    (16) 

Generally, the process for θkd solving includes five steps, 
in which iterative approach is employed. 

 Firstly, Fw is zero, and based on that to solve kd(1). 

 Secondly, according to equation (15), Fw of first 
step can be calculated. 

 Thirdly, according to the (10)-(12), to solve kd (i) 
and calculate the error with the consideration of Fw 

in the second step. The error is shown as follows 
 ( 1) ( )( )

k k k
i i i

  
         (17) 

 Then the X and Y direction force and moment 
generated on node a after deformation can be 
formulated as below. 

 

( ) sin( ) ( ) cos( )

( ) cos( ) ( ) sin( )

_ ( ) ( ) 2 cos( ) ( ) 2 sin( )

x T kd w kd

y T kd w kd

F i F F i

F i F F i

M a i Fy i L Fx i L

 

 

 

   

   

     

 (18) 

 Finally, to evaluate the value of the error. If the 
value is not equal to zero, repeat the second step to 

the fourth step until kd is zero, i.e. the single 
V-shape unit and the driven wire are all under 
balance condition. 

After the single V-shape unit bending is discussed, we can 
write the static equilibrium equations and solve the reaction 
force Fy(2), Fx(2) and moment M(2) shown in Fig. 5, which 
are the initialized force and moment for the second V-shape 
unit respectively. 

 

(2) cos( ) sin( )

(2) sin( ) cos( )

(2) (2) _ (2) _

T kd w kd

T kd w kd

y x

Fy F F

Fx F F

M F L y F L x

  

  

    

    

   

 (19) 

L_y and L_x is the moment arm of node a of second V-shape 

unit in X and Y axis that is caused by the first V-shape unit 

deformation, can be expressed as follows respectively.  

 
_ ( sin( ) (2 1 2) (cos( ) cos( ))) cos( )

_ ( cos( ) (2 1 2) (sin( ) sin( ))) cos( )

kd kd d

kd kd d

L y H L L

L x H L L

    

    

        

        
(20) 

The essential results of the analysis for the single V-shape 
unit are (13) and (18), with which the mechanics mode for 
single V-shape unit is established. 

D. Mechanics Model of the Flexible Manipulator Arm 

As mentioned above, the flexible manipulator arm is 
divided into several V-shape units, so the mechanics model of 
the continuum arm is based on the model of single V-shape 
unit. The global coordinate system O0-X0Y0Z0 is assigned on 
the right point of base platform, shown in Fig. 6(a). The 
mechanics-based model of each V-shape unit is investigated 
respectively, and the bending angle of the flexible manipulator 
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arm can be derived based on deformation of each individual 
V-shape unit. The stiffness matrix of every Timoshenko 
combination beam is identical in local coordinate systems. As 
shown in Fig. 6(a), N V-shape units include 2N Timoshenko 
combined beams, in which the index number of V-shape units 
is started from distal to the base of the flexible arm. 2N 
combined beams are divided into two groups, i.e. odd group 
(the index number i is odd) and even group (the index number 
i is even), where N represents the number of the upper and 
lower beam. 

The direction of external force and the additional moment 
of the i

th
 combined beam are changed due to the deformation 

of beams from 1 to i-1, shown in Fig. 6(a). When the 
deformation of continuum arm is discussed, the force vector 
Pu in (12) and the corresponding displacement vector Du of 
two node in each upper and lower combined beam can be 
simplified as follows, the forms of which are identical with the 
Pl and Dl.  

 1

1 1 1 1 1 1 2 2 2 2 2 2

[0  0  0  0  0  0    0  0  0  ]

=[            ]

T

u x y

T

u u v w u v w

P F F M M

D u v w u v w     

 
 (21) 

where Fx, Fy, and M+M1 are the external force and moment 
acting on the node k and d of each V-shape unit as shown in 
Fig. 6, and the vector form of beam in each V-shape unit is 
identical. The moment is composed two parts, i.e. the moment 
on node a (M), and the moment caused by the force 
transferring from node a to node k and node d (M1). As shown 
in Fig. 6, after the deformation the i

th
 V-shape unit will induce 

strong effects on the initialized force and moment of the 
(i+1)

th
 V-shape unit. According to the (14), the total bending 

angle consists of i V-shape units (2≤i≤N) can be formulated 

as follows, the right and left bending angle are equal in solving 
the total bending angle, 

 
1 1

_ ( ) ( ) ( ( ) ( ))

n i

kd wk wd

n n

sum i n n n   
 

     (22) 

where the kd(n) is the bending angel of each V-shape unit 

calculated via the load-displacement equation. The wk(n) and 

wd(n) is the bending angle of upper beam and lower beam in 
the i

th
 V-shape unit respectively. 

In the proposed model, the initialized force and moment 
acting on the node a of the i

th
 V-shape unit can be solved 

according to the (i-1)
th

 V-shape unit. The deformation of the 
first V-shape unit has been calculated in previous section, so 
the force and moment acting on the node a of each V-shape 
unit can be formulated as follows, 

 

( ) ( 1) cos( ( 1)) sin( ( 1)) ( ) sin( )

( ) ( 1) sin( ( 1)) sin( ( 1)) ( ) cos( )

( ) ( 1) ( 1) _ ( 1) _ ( 1)

y kd x kd w kd

y kd x kd w kd

y x

Fy i F i i F i F i

Fx i F i i F i F i

M i M i F i L y i F L x i

  

  

        

        

        

(23) 

where the L_y and L_x presents the moment arm acting on the 
i
th

 node a by the Fx(i) and Fy(i), which can be formulated as 
follows respectively. 

 

_ ( ) sin( ( ) cos( ( ))

(2 1 2) (cos( ( )) cos( )) cos( ( ))

_ ( ) cos( ( )) cos( ( ))

(2 1 2) (sin( ) sin( ( ))) cos( ( ))

kd d

kd d

kd d

kd d

L y i H i i

L L i i

L x i H i i

L L i i

 

   

 

   

  

      

  

      

 (24) 

On the other hand, the lateral force Fw is different for 
different V-shape unit, which is expressed as follows 

 
(sin( ( )) 1

( )
(sin( ( )) sin( ( 1))) 1

T kd

T kd kd

F i i i N
Fw i

F i i i N



 

   
 

    

 (25) 

Since the initialized force should be transferred to node k 
and node d of each V-shape unit, the force vector for the upper 
and lower beam in V-shape unit is different. The force vector 
for upper beam in the i

th
 V-shape unit can be formulated as 

follows. 

 
( ) [0  0  0  0  0  0

       ( )  ( )  0  0  0  ( ) ( ( ) cos( ) ( ) sin( )) 2]

u

T

x y

P i

F i F i M i Fy i Fx i L 



    
 (26) 

The force vector for lower beam can be formulated as 
below. 

 
( ) [0  0  0  0  0  0 ( )  ( )  0  0  0  

( ) ( ( ) cos( ) ( ) sin( )) (2 2 2)]

l x y

T

P i F i F i

M i Fy i Fx i L L 



       
 (27) 

The equation (26) and (27) are substituted into stiffness 

equation (11) yielding the kd of each V-shape unit. Finally, 

using (22), the total bending angle _sum(N) can be solved. 
To achieve the balance of flexible arm and driven wire, the 
iterative approach is employed for the calculation in each 
V-shape unit as mentioned above. The model mentioned 
above maps the beam articulation to the single wire tension. 

_sum(N) is the total bending angle of the flexible arm. 

IV. KINEMATICS OF CONTINUUM ARM 

In the actual applications of the proposed system, the 
mapping between the distal position and the length of driven 
wires is very important. For the purpose of controlling and 
future mechanical optimization, the forward kinematic model 
of the continuum manipulator arm is built mapping the joint 
space to the operation space. The flexible arm’s deformation 
is occurred by the deformation of single V-shape unit in a 
relatively concentrated area between the notches, so the 
kinematic model is built based on the separate set of points in 
the relatively concentrated area. The value of the separate 
points can be derived from a series of kinematic parameters 
below. 

Fig. 6 (b) illustrates the kinematics schematic of 14 V 
shape units. The frame 0 is the base frame, and the frame i (i

≥1) is located at the node k of the i
th

 V-shape unit. The {i} 

represents the right-hand frame with the axis {xi, yi, zi}.The T
 b

a 

represents the transformation matrix from frame a to b. In the 
proposed kinematic model, all of V-shape units are considered 
as independent joints. 
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Fig. 6 (a) A representation of the beam index in the mechanics model. (b) 

Schematic drawing of the continuum arm and the bending arm kinematic. It 

illustrates the individual joints and the used coordinate axis. 
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The kinematics model of the bending flexible arm is built 
modularized, and the D-H kinematic can be applied on each 
V-shape unit. The D-H table of the continuum arm is 
presented in Table I. The θkd(i) is the bending angle of i

th
 

V-shape unit, which can be calculated based on the mechanics 
model. The li is the height of the notch in V-shape unit during 
the deformation, which can be formulated as follows. 

 
1 2

( )
2 (2 ) sin( )

2

kd

i

i
l L L

 
     (28) 

TABLE I.  DENAVIT-HARTENBERG TABLE OF THE CONTINUUM ARM 

i 1 2 3 … 12 13 14 

αi 0 0 0 … 0 0 0 

li l1 l2 l3 … l12 l13 l14 

di 0 0 0 … 0 0 0 

θi θdk(1) θdk(2) θdk(3) … θdk(12) θdk(13) θdk(14) 

The forward kinematic of the continuum arm is computed 
using the transformation matrix from base frame {0} to the 

distal frame {14} 1 4

0
T  

 14 1 2 3 13 14

0 0 1 2 12 13
=T T T T T T        (29) 

The transformation matrix can be formulated as below. 

 
1

cos( ( )) sin( ( )) 0

sin( ( )) cos( ( )) 0 0

0 0 1 0

0 0 0 1

kd kd i

kd kdi

i

i i l

i i
T

 

 


 
 
 
 
 
 

 (30) 

The process mentioned above maps distal position to 
bending angle, and bending angle to tension force 
respectively. As shown in Fig. 7, the mapping relationship 
among driven space, joint space and operation space are 
illustrated, so it can be seen that the mechanics model is the 
basis of kinematic model when the assumption of constant 
curve is not used. 

Tension 

(FT)

Deformation

(θ_sum)
Position

Mechanics 

Model

Kinematic 

Model
Fig. 7 The diagram of the mechanics model and kinematic model. 

V. EXPERIMENTS AND RESULTS COMPARISON 

In this section, experiments are performed to validate the 
proposed mechanics model while changing the wire tension in 
increments of 1N in [0, 14]. The physical properties of the 
flexible arm are listed in Table II. The structure’s bending 
experiments are performed on two pieces of Nitinol 
continuum arm, which consists of 6 V-shape units and 19 
V-shape units respectively. Fig. 8 presents the 6 V-shape units 
flexible manipulator’s bending at three different wire tensions 
(0N, 10N and 14N, respectively) to show the effectiveness of 
our continuum arm. 

In order to observe and measure, a thin metal plate is glued 
on the top of the flexible manipulator, so the tilting of the plate 
indicates the bending angle of flexible arm. Since the weight 
of this thin plate can be neglected, it cannot induce the 
bending deformation of the flexible arm. Fig. 9 shows the 
experiment setup for this performance test of the proposed 
mechanics model. The bending angle is measured by the laser 
Tracker (Tracker3, API Inc.) via tracking the position of the 

target ball, the resolution and accuracy of which are 1μm and 
15μm respectively. The driven tension is generated by the 
standard weights from 100g to 1400g. For each bending angle, 
the measurement process is followed by (1) Choose two 
random points in the bending plane, and record the position of 
the two target balls (2) Construct the line between the two 
points via the Tracker3 embedded software. (3) Measure the 
angle between each constructed line and base line, which also 
can be implemented via the embedded software. (4) To reduce 
the man-made measurement error, repeat the process (1)-(3) 
three times, and calculate the average value as the final 
experimental result. 

TABLE II.  GEOMETRICAL PARAMETERS AND PHYSICAL PROPERTIES 

FOR FLEXIBLE MANIPULATOR ARM IN THE EXPERIMENTS 

Inner Diameter (mm) 8.8 

Outer Diameter (mm) 10 

Length of the Timoshenko element (mm) 1.67 

Width of the Timoshenko element (mm) 1 

Height of the Timoshenko element (mm) 1.35 

Yong’s Modulus (E) (Pa) 6e10 

Destiny of material (kg/m3) 6.45e3 

Poisson ratio 0.3 

After the points are all measured by the laser tracker, the 
line connecting the two points in each deformation is built by 
the software of the laser tracker. The angle between the lines 
can be calculated by the laser tracker software, which 
represents the deformation angle in different driven load.  

During the experiments, only one single side wire is 
actuated and the other one is under a free state. The discrete 
wire tension is acted on the driven wire from 0 to 14N in the 
experiments. Fig. 10 shows the mechanics model and the 
experiment results of two continuum manipulators with 
different number of notches. It can be seen that the result of 
mechanics matches the experimental result very well. 

 

 
Fig. 8 Deformation of 6 V-shape units prototype piece under different loads 

shows the effectiveness of this type of continuum arm. 
 

 
Fig. 9 The experimental test of the prototype continuum arm. 
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Fig. 10 The comparison results for bending angle between experiment and 

mechanics model analysis. 

VI. CONCLUSION AND FUTURE WORK 

In this paper, a mechanics-based kinematic model is 
proposed for the flexible manipulator arm with triangular 
notches. The proposed mechanics model is based on the 
improved Timoshenko’s beam theory, which decomposes the 
whole dexterous manipulator into several V-shape units for 
the deformation analysis. The distributed force caused by the 
driven wire is simultaneously considered in the model. Finally, 
the proposed model is validated through the comparison 
between the theoretical analysis data and prototype 
experiment results. The model and the method proposed in 
this paper are generic, which can be extended for analyzing 
this notched type of flexible manipulator arm. It provides the 
fundamental for model-based position control of continuum 
robots under external loads. Our future work will be dedicated 
to optimization of the manipulator geometry and extending the 
proposed approach to spatial bending with multiple wires. 
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