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Abstract— Recently, the double generating function method
for finite time linear quadratic optimal control problems was
proposed. This paper applies it to the on-demand optimal gaits
generation of a compass biped robot walking on the level
ground. The double generating function method is employed
to generate reference optimal gaits and inputs considering the
energy consumption by linearizing the compass biped robot.
The simulation result shows that the modeling error caused by
the linearization is small when the robot walks with a reasonable
step length and a appropriate time period. This implies that
the optimal states and inputs for the linearized system can be
treated as the optimal ones for the original nonlinear system.
The biggest advantage of the double generating function method
is that it can generate a parametrization of optimal gaits
for different boundary conditions and different time periods.
Therefore, it is very useful to generate the optimal states and
inputs on demand and in real time for the real biped robots.

I. INTRODUCTION

In the last decade, the biped locomotion problem is

well studied. There already exist a lot of theoretical and

experimental results of the gait generation methods for biped

robots. Most of gait generation methods concerned with the

stability of the biped robot use the well-known concept of

Zero-Moment Point (ZMP) proposed by Vukobratovic [1].

Another important issue of concern for biped robots is energy

consumption. This problem can be formalized to a standard

optimal control problem which is solved by the shooting

method or the parametric optimization method [2], [3]. In

addition, the passive dynamic walking was proposed by

McGeer more than twenty years ago from the view of saving

energy [4]. In the following years, the motion analysis of the

passive walking were studied by many researchers, e.g., [5],

[6], [7], [8]. Although the passive walking does not need

any input, it can only walk along a slight slope. Therefore,

some locomotion control methods considering the energy

consumption are proposed to make a biped robot walking

on a level ground based on the passive walker, e.g., [9],

[10], [11], [12]. Considering the case of the biped robot

whose model parameters are not known exactly, an optimal

gait generation method is developed using iterative learning

control [13], [14].
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Given a cost function which takes the energy consumption

in account, the optimal trajectory generation problem has

been widely studied in very diverse fields. In robotics,

the reference trajectories of biped walking robots are often

chosen to reduce the energy consumption (the cost function)

[15]. On the other hand, when a robot is walking in a

complex environment, it should be able to avoid obstacles.

This implies that the initial position and/or velocity, the

designed terminal position and/or velocity, and the walking

time period for each step are very often different. From

this view point, the optimal gait generation problem for a

biped robot is equivalent to a family of optimal control

problems parameterized by boundary conditions. The finite

time optimal control problem can be reduced to computing

the state trajectory of a Hamiltonian system. In particular, it is

reduced to a two-point boundary-value problem (TPBVP) for

ordinary differential equations (ODEs) [16]. There are a lot

of methods, e.g. the shooting method [17] and its extension

[18], to solve it. The basic principle of the shooting method

is computing the trajectory repeatedly so that the exact one

satisfying the boundary values is obtained. Therefore, we

need to solve the TPBVP again if we change the boundary

values when we use conventional methods. This will cause

a heavy on-demand computation effort for the real robots.

Recently, trajectory generation methods based on the gen-

erating functions are proposed [19], [20]. Since a generating

function gives a family of the optimal inputs by the canonical

transformation for different boundary conditions, a family

of the optimal trajectories can be obtained by numerical

integration along the system dynamic equation. A recursive

algorithm based on the result of [19] is proposed to solve H-

JEs for the generating functions for a nonlinear system [21].

For finite-time linear quadratic optimal control problems, the

authors proposed a method named the double generating

function method to compute a parametrization of optimal

trajectories by using a pair of generating functions [22].

This paper applies the double generating function method

[22] to a compass gait biped robot on the level ground. The

double generating function method gives the optimal state

and input trajectories as functions of the boundary conditions,

the initial time, and the terminal time directly. Since the

generating functions can be calculated in advance for a

given finite time linear quadratic optimal control problem,

the on-demand computation time of adjusting the step length

and the time period is almost none. Here, the on-demand

computation time is the time calculating optimal trajectories

after determining the boundary conditions in this paper.

The dynamic equation of a compass biped walking robot is
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approximated by the Jacobian linearization to us the double

generating function method. The optimal state and input

trajectory generated for the linear model is taken as the

reference one. A conventional PD controller is designed to

track the reference state trajectory with the reference input

for the original nonlinear model. Therefore, the modeling

error by the linearization can be shown by comparing the

state and input trajectories generated by the simulation of

the nonlinear control system with the reference ones. The

simulation result shows the modeling error caused by the

linearization is very small when the robot walks in a low

speed with a reasonable size of the step length. At the same

time, both of them are not so large. This means that the

optimal state and input trajectories for the linearized system

can be used as the optimal ones for the original nonlinear

system in practice. Because of the advantage of the double

generating function method, it would be very useful for

controlling the real biped robots, especially, when they are

walking in a complex environment.

This paper is organized as follows. The preliminaries of

the finite time linear quadratic optimal control problem and

the double generating function method are introduced in

Section 2. Section 3 addresses the optimal gaits generation

problem for the biped robot and designs a PD controller

to analyze the modeling error caused by the linear approx-

imation. The simulation and the error analysis illustrate the

effectiveness and the usefulness of the double generating

function method for controlling the real biped robots in

Section 4.Section 5 concludes the paper.

II. PRELIMINARIES

This section introduces some preliminaries of finite time

linear optimal control problems and how to solve it using

the double generating function method proposed in [22].

A. Linear Optimal Control Problem

A finite time linear optimal control problem and how it is

rendered to a two-point boundary-value problem (TPBVP)

for ordinary differential equations (ODEs) are introduced in

this subsection [23]. Given a linear finite time optimal control

problem, the system equation is

ẋ = Ax+Bu, (1)

where x(t) ∈ R
n is the state, A ∈ R

n×n is a constant matrix,

B ∈ R
n×m is a constant matrix, u ∈ R

m is the input. Define

a cost function

J(x0,u) =
1

2

∫ t f

t0

(xTQx+uTRu)dt, (2)

where the symbols x0 ∈R
n is the initial value of the state, t0

and t f are initial and terminal time respectively, Q ∈R
n×n is

a semi-positive definite matrix, and R ∈ R
m×m is a positive

definite matrix. The purpose is to find an optimal input u∗(t)
minimizing the cost function J as

u∗(t) = argmin
u

J(x0,u) (3)

subject to the boundary condition

x(t0) = x0, x(t f ) = xt f
, (4)

where xt f
∈ R

n is the terminal value of the state.

Let us introduce a column vector λ ∈ R
n to represent the

costate, according to Pontryagin’s minimum principle [23],

a necessary condition for the minimum of the performance

index in (2) is

ẋ = Hλ (x,λ ,u), λ̇ =−Hx(x,λ ,u), (5)

u∗ =−R−1BT
λ , (6)

where the boundary value is given in (4), H(·) denotes the

partial derivative ∂H/∂ (·), and H(·) is the Hamiltonian

function which is defined as

H(x,λ ) =
1

2
xTQx+λ

TAx−
1

2
λ

TBR−1BT
λ . (7)

Therefore, the optimal control problem (1)-(4) is equivalent

to the TPBVP for ODEs (5). We will use the double

generating function method to solve it.

B. Double Generating Function Method [22]

This subsection explains the double generating function

method for a TPBVP. This method can generate a family of

optimal trajectories with almost no on-demand computation

for different boundary conditions. Given the linear Hamilto-

nian system (5), there exist four types of generating functions

S1, S2, S3, and S4. Every type of the generating function

has both forward and backward versions (denoted by the

subscript f and b respectively). In fact, the first type and

the fourth type of generating function are not well-defined

at the initial time or the terminal time [19]. Among the

left well-defined generating functions, any two can give the

optimal trajectories and inputs. However, the initial value

of the costate λ0 and/or the terminal value of the costate

λt f
are necessary when we use other pairs of generating

functions except for the pair of S3 f (λ ,x0, t) and S3b(λ ,xt f
, t).

Furthermore, it will cause numerical instability as the time

interval increases if we use a pair of generating functions

with the same time direction [22]. Therefore, the pair of

S3 f (λ ,x0, t) and S3b(λ ,xt f
, t) is more convenient to generate

optimal state and input trajectories for different boundary

conditions than the other pairs of generating functions.

The generating functions S3 f (λ ,x0, t) and S3b(λ ,xt f
, t)

have the following forms respectively:

S3 f (λ ,x0, t) =
1

2
λ

TZ3 f (t)λ +λ
TY3 f (t)x0 +

1

2
xT

0W3 f (t)x0,

(8)

S3b(λ ,xt f
, t) =

1

2
λ

TZ3b(t)λ +λ
TY3b(t)xt f

+
1

2
xT

t f
W3b(t)xt f

.

(9)

They provide the following canonical transformation:

x =−
∂S3 f (λ ,x0, t)

∂λ
, λ0 =−

∂S3 f (λ ,x0, t)

∂x0
, (10)

x =−
∂S3b(λ ,xt f

, t)

∂λ
, λt f

=−
∂S3b(λ ,xt f

, t)

∂xt f

. (11)
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Moreover, they satisfy the corresponding HJE respectively

[19]:

∂S3 f (λ ,x0, t)

∂ t
+H(−

∂S3 f

∂λ
,λ ) = 0, (12)

∂S3b(λ ,xt f
, t)

∂ t
+H(−

∂S3b

∂λ
,λ ) = 0. (13)

Due to (10) and (11), the initial values of S3 f (λ ,x0, t) and the

terminal values of S3b(λ ,xt f
, t) are as follows respectively:

S3 f (λ ,x0, t0) =−λ
T
0 x0, S3b(λ ,xt f

, t f ) =−λ
T
t f

xt f
. (14)

By solving the first equation in (10) and (11) for x(t) and

λ (t), the following theorem is proposed, which gives a

parametrization of optimal trajectories and inputs for dif-

ferent boundary conditions and different time intervals for a

finite time linear optimal control problem.

Theorem 1. [22] Suppose that the matrices Z3 f (t), Y3 f (t),
Z3b(t), and Y3b(t) ∈ R

n×n, 0 ≤ t ≤ T , satisfy the following

ODEs

Ż3 f (t) =ZT
3 f (t)A

T +AZ3 f (t)−ZT
3 f (t)QZ3 f (t)+BRBT, (15)

Ẏ3 f (t) =(A−ZT
3 f (t)Q)Y3 f (t), (16)

Ż3b(t) =−ZT
3b(t)A

T
−AZ3b(t)+ZT

3b(t)QZ3b(t)−BRBT,
(17)

Ẏ3b(t) =(−A+ZT
3b(t)Q)Y3b(t), (18)

with the initial conditions

Z3 f (0) = 0, Y3 f (0) =−I, (19)

Z3b(0) = 0, Y3b(0) =−I. (20)

Then, for the finite time linear optimal control problem (1)-

(4), the optimal state x∗(t, t0,x0, t f ,xt f
) (t ∈ [t0, t f ]) and input

u∗(t, t0,x0, t f ,xt f
) (t ∈ [t0, t f ]), t f ≤ t0 +T , are given by

(

x∗(t,x0,xt f
, t0, t f )

u∗(t,x0,xt f
, t0, t f )

)

=

(

−Z3 f (t − t0)·
−R−1BT·

[

Z3b(t f − t)−Z3 f (t − t0)
]−1

[

Y3 f (t − t0)x0 −Y3b(t f − t)xt f

]

[

Z3b(t f − t)−Z3 f (t − t0)
]−1

[

Y3 f (t − t0)x0 −Y3b(t f − t)xt f

]

−Y3 f (t − t0)x0

)

. (21)

Here x0 = x(t0) and xt f
= x(t f ) are the given initial and

terminal values of the state respectively.

Theorem 1 claims that once we obtain matrices Z3 f (t),
Y3 f (t), Z3b(t), and Y3b(t) by calculating the numerical inte-

gration of (15)-(18), which are the coefficient matrices of the

generating functions of S3 f (λ ,x0, t) and S3b(λ ,xt f
, t), then

we can readily obtain the optimal state and input trajectories

for different boundary conditions as in (21).

III. OPTIMAL GAIT GENERATION FOR THE

COMPASS BIPED WALKING ROBOT

Firstly, the model of the compass biped walking robot is

introduced in the section. Then how to use double generating

function method to generate the reference optimal trajectories

and inputs is elaborated. At last, a PD controller is designed

to analyze the modeling error caused by the linearization.

A. The Compass Biped Walking Robot

This subsection introduces a compass gait biped robot.

A walking robot, named the compass gait biped [5], can

walk down a gentle slope under appropriate initial conditions

[4]. Now, let us consider it walks on the level ground with

input, which is depicted in Fig. 1. The physical parameters

and variables are shown in Table I. The main modeling

assumptions are listed as follows (for the other common

assumptions, refer to [5]).

Assumption 1. The transition of the supporting leg occurs

instantaneously when the swinging leg touches the ground

and previous supporting leg leaves the ground.

Assumption 2. The collision of the swinging leg with the

ground is assumed to be inelastic and without sliding.

2
θ

2
u

1
u

H
m

1
θ

m

ma

b
bal +=

Fig. 1. Compass Gait Biped

TABLE I

PARAMETERS AND VARIABLES

Notation Meaning Unit

mH hip mass kg
m leg mass kg
a length from m to ground m
b length from hip to m m
l total leg length m

g gravity acceleration m/s2

θ1 supporting leg angle w.r.t. vertical rad
θ1 swinging leg angle w.r.t. vertical rad
u1 ankle torque Nm
u2 hip torque Nm

θ (θ1,θ2)
T

θ̇ (θ̇1, θ̇2)
T

u (u1,u2)
T

Then the compass gait biped robot with energy input in Fig.

1 can be modeled as [5]

M(θ)θ̈ +N(θ , θ̇)θ̇ +G(θ) =Cu, (22)

where

M(θ) =

[

mH l2 +ma2 +ml2 −mlbcos(θ1 −θ2)
−mlbcos(θ1 −θ2) mb2

]

, (23)

N(θ , θ̇) =

[

0 −mlbθ̇2 sin(θ1 −θ2)
mlbθ̇1 sin(θ1 −θ2) 0

]

,

(24)

and

G(θ) =

[

−(mH l +m(a+ l))gsinθ1

mgbsinθ2

]

, C =

[

1 −1

0 1

]

.

(25)

3110



B. Optimal Gait Generation For The Linearized System

Defining the state x as

x = (θ1,θ2, θ̇1, θ̇2)
T = (x1,x2,x3,x4)

T, (26)

then the linearized dynamic equation of the biped robot in

Fig. 1 is written as

ẋ = Ax+Bu, (27)

where u = (u1,u2)
T,

A =











0 0 1 0

0 0 0 1
g(mH l+ma+ml)

mH l2+ma2 −
mgl

mH l2+ma2 0 0

gl(mH l+ma+ml)
b(mH l2+ma2)

−
g(mH l2+ma2+ml2)

b(mH l2+ma2)
0 0











, (28)

and

B =











0 0

0 0
1

mH l2+ma2
l−b

b(mH l2+ma2)
l

b(mH l2+ma2)
mH l2+ma2+ml2−mbl

mb2(mH l2+ma2)











. (29)

Let us consider a cost function which takes the energy

consumption into account as in (2). The objective is to find a

family of optimal inputs u∗(t) minimizing the cost function

J subject to a family of the boundary condition. In practice,

both of the ankle input and the hip one should not be too large

because of the limitation of the actuators. We should choose

the appropriate weighting matrix R of the cost function (2)

with respect to the input and the time period t f − t0. Then,

a family of optimal state and input trajectories for different

boundary conditions and different time intervals are given by

Theorem 1. The following algorithm is obtained readily to

generate the reference trajectories for the biped robots.

Algorithm 1

1. Linearize the dynamic equation in (22) to obtain the

matrices A and B as in (28) and (29) respectively;

2. Determine the matrices Q and R in (2);

3. Select T (larger than or equal to the largest designed

time period for the given robot) and integrate (15)-(18)

numerically forward from 0 to T with the initial values in

(19) and (20);

4. Use (21) to generate the optimal state trajectory and

optimal input;

5. If we change the boundary condition and/or terminal time

t f and/or initial time t0 (t f − t0 ≤ T ), go to step 4.

This algorithm implies that it is very convenient to change

the boundary condition and/or the time period for each step

for the biped robots, since the on-demand computation for

this change is almost none. However, these trajectories and

inputs are optimal for the linearized system. Therefore, if we

want to treat these trajectories and inputs as the optimal ones

for the original nonlinear system, it is necessary to analyze

the modeling error caused by the linear approximation.

The following subsection will introduce a conventional PD

controller to follow the reference trajectories. Then we can

analyze the modeling error by comparing the state and the

input trajectories of the simulation result of the original

nonlinear system with the reference ones.

C. Trajectory Tracking Based on PD Control

It is well known that most of industrial manipulators

are equipped with the simplest proportional and derivative

(PD) controller. Now, let us consider the conventional PD

controller to track the reference trajectory with the reference

input for the compass biped walking robot based on the input

generated by the double generating function method.

The control law is designed for the dynamic equation of

compass biped walking robot (22) as follows:

τ = Kθ (θ
re f

−θ)+K
θ̇
(θ̇ re f

− θ̇)+ure f , (30)

where, Kθ and K
θ̇

are diagonal constant matrices, they play

the P-gain and the D-gain role respectively, and θ re f =
(x∗1,x

∗
2)

T = (θ1,θ2)
T, θ̇ re f = (x∗3,x

∗
4)

T = (θ̇1, θ̇2)
T, and ure f =

(u∗1,u
∗
2)

T are the optimal trajectory and input respectively

generated by the double generating function method for the

linearized compass biped walking robot. Fig. 2 shows the

structure of the PD controller for the compass biped walking

robot.

ref
θɺ

ref
θ

refu

−

+ K
θ

+ K
θɺ

+

+
+

plant

−
θɺ

θ

Fig. 2. The PD controller

IV. SIMULATION AND RESULT ANALYSIS

This section gives the simulation result. We take the

compass gait biped robot in Fig. 1 with the parameters

a = 0.5[m], b = 0.5[m], l = 1.0[m], m = 5[m], mH = 10[Kg],

and g = 9.8[m/s2] as an example. We select the design

parameters Q = I (the identity matrix) and R = diag(10,1)
based on some heuristic simulations. If R = diag(1,1), the

ankle torque is larger than the hip one; if R = diag(100,1),
the ankle torque can be very small, but the hip torque will be

very large. Due to the limitation of the space, we only show

a few of simulation result. The P-gain and D-gain of the

PD controller in Fig. 2 are designed as Kθ = diag(100,50),
K

θ̇
= diag(50,20).

In what follows, the time period of one step for the biped

robot begins from the time just after the previous transition

of the supporting leg and ends at the time just before the next

transition of the supporting leg. Then the initial and terminal

values of the states for one step are those of the states at the

time just after the previous impact and that just before the

next impact respectively. The optimal trajectories and inputs

generated by the double generating function method for the

linearized system are taken as the reference ones. For any

figure in the remainder of this paper, the dashed lines denote

the reference state and input trajectories and the solid lines
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denote the state and the input ones generated by employing

the PD controller for the original nonlinear system.

The biggest advantage of the double generating function

method is that it can generate a parametrization of optimal

trajectories and inputs for different boundary conditions. To

show the advantage the double generating function method,

we will consider the continuous walking for the biped robot

in Fig. 1. Since a continuous walking contains many steps,

it is necessary to introduce the transition model for different

steps firstly. Assumption 2 implies that the robot configu-

ration does not changed during the instantaneous transition

stage [24], then

θ
+ = Γθ

−, (31)

with:

Γ =

[

0 1

1 0

]

. (32)

Here, the matrix Γ exchanges the supporting and the swing-

ing leg angles for the upcoming swinging stage. The pre-

impact and post-impact variables are identified with the

superscripts − and + respectively. Similarly, it is very easy

to know that

θ
− = Γθ

+. (33)

Assumption 2 also implies that the angular momentum of

the robot about the impacting foot as well as the angular

momentum of the pre-impact supporting leg about the hip are

conserved. These conservation laws lead to a discontinuous

change in robot velocity. This reads:

Φ
−(θ−)θ̇− = Φ

+(θ+)θ̇+, (34)

where,

Φ
−(θ−) =

[

−mab+(mH l2 +2mal)cos(θ−

2 −θ
−

1 ) −mab

−mab 0

]

, (35)

Φ
+(θ+) =

[

ml(l −bcos(θ+
1 −θ

+
2 ))+ma2 +mH l2,

−mbl cos(θ+
1 −θ

+
2 ),

mb(b− l cos(θ+
1 −θ

+
2 ))

mb2

]

. (36)

Due to (31) and (34), the post-impact angular velocity of the

legs of the robot can be derived from the pre-impact angular

velocity of the legs as

θ̇
+ = (Φ+(θ+))

−1
Φ

−(θ−)θ̇−

= (Φ+(Γθ
−))

−1
Φ

−(θ−)θ̇−. (37)

Now, let us consider a family of boundary conditions for

seven steps, the compass biped robot begins walking from the

stationary state and ends at the stationary state. The terminal

value of the first step is determined heuristically, e.g.,

x(t f ) = (0.1,−0.1,0.4,−0.4)T. (38)

The time period is designed heuristically as 1.0 for the first

three steps and it is 0.8 for the left four steps, so the boundary

condition of the first step is
{

x1(t1
0 ) = (0,0,0,0)T, t1

0 = 0,

x1(t1
f ) = (0.1,−0.1,0.4,−0.4)T, t1

f = 1.0−.
(39)

Here, xi(t), t i
0, and t i

f denote the state at the time t, the initial

time, and the terminal time for the i-th step, respectively, and

t+ (or t−) denotes the time just after (or just before) t. The

second step and the third step are designed as a periodic gait,

the step length of the fourth step is designed to be larger than

the one of the previous step, e.g.,

x4(t4
f ) = (0.2,−0.2,0.8,−0.8)T, (40)

and the fifth and sixth steps are also designed as a periodic

gait. Finally, the biped robot stops walking. According to the

transition model (31) and (37), the boundary conditions of

the left six steps are calculated as


































































































x2(t2
0 ) = (−0.1,0.1,0.44,0.46)T, t2

0 = 1.0+,

x2(t2
f ) = (0.1,−0.1,0.40,−0.40)T, t2

f = 2.0−,

x3(t3
0 ) = (−0.1,0.1,0.44,0.46)T, t3

0 = 2.0+,

x3(t3
f ) = (0.1,−0.1,0.40,−0.40)T, t3

f = 3.0−,

x4(t4
0 ) = (−0.1,0.1,0.44,0.46)T, t4

0 = 3.0+,

x4(t4
f ) = (0.2,−0.2,0.80,−0.80)T, t4

f = 3.8−,

x5(t5
0 ) = (−0.2,0.2,0.81,0.69)T, t5

0 = 3.8+,

x5(t5
f ) = (0.2,−0.2,0.80,−0.80)T, t5

f = 4.6−,

x6(t6
0 ) = (−0.2,0.2,0.81,0.69)T, t6

0 = 4.6+,

x6(t6
f ) = (0.2,−0.2,0.80,−0.80)T, t6

f = 5.4−,

x7(t7
0 ) = (−0.2,0.2,0.81,0.69)T, t7

0 = 5.4+,

x7(t7
f ) = (0,0,0,0)T, t7

f = 6.2,

(41)

respectively.

Fig. 3 shows the state and the input trajectories for the

above designed seven steps, where the line in the i-th (i =
1,2, · · · ,7) time interval denotes the corresponding trajectory

of the i-th step. Fig. 4 shows he phase portrait of the steps 2-

3 and the steps 5-6, where the dashed and dotted lines denote

the velocity jumps occurred when the supporting leg and the

swinging leg exchange. Note that, θ1 (θ2) and θ̇1 (θ̇2) are

the angle of the supporting (swinging) leg and the angular

velocity, respectively. The supporting (swinging) leg may be

different for different steps in fact, but θ1 (θ2) and θ̇1 (θ̇2)

stick to the same leg in Figs. 3 and 4. We can see that both of

the state and the input trajectories for the original nonlinear

system generated by the PD controller are almost the same

with the reference ones from Fig. 3. This implies that the

modeling error caused by the linear approximation is very

small so that we can neglect it. Therefore, the optimal gaits

and inputs for the linearized model can be used as the optimal

ones for the original nonlinear model. What is the important

is that Fig. 3 (e)-(f) show that both of the generated ankle

input and the hip input are small (not larger than 15 [Nm]).
Therefore, they are useful in practice. In Fig. 4, it exhibits

that the closed loops for steps 2-3 and 5-6 which imply the

periodic motions generated.
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Fig. 3. State and input trajectories for the periodic gaits
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Fig. 4. Phase portrait of θ1 − θ̇1 for the periodic gaits

V. CONCLUSIONS

This paper shows the possibility of the application of

the double generating function method to the optimal gait

generation for a compass biped robot. Since the double gen-

erating function method is for the linear system, the dynamic

equation of the biped robot is linearized. A PD controller

is designed to analyze the modeling error caused by the

linearization. The simulation result shows that the modeling

error caused by the linearization is small when the robot

walks with a reasonable step length and a appropriate time

period. Because of the advantage of the double generating

function method, it is very convenient to generate the optimal

gaits and inputs on demand and in real time for the different

condition and the different time periods. Therefore, it would

be very useful for controlling the real robots. However, this

paper does not consider the condition of contact with the

ground for the biped robot, this will be studied in the future.
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