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Abstract— In this paper, a quaternion based nonlinear output
feedback tracking controller is developed to address the attitude
and altitude tracking problem of a quadrotor unmanned aerial
vehicle (UAV) which is subject to structural uncertainties and
unknown external disturbances. A set of filters are introduced
to provide estimation for the unmeasurable quadrotor UAV’s
angular and translational velocity signals. The Lyapunov based
stability analysis ensures that a semi-global asymptotic tracking
result is achieved and all closed loop states remain bounded with
a suitable choice of control gains.

I. INTRODUCTION

As a special micro helicopter, the quadrotor UAV attracts
great attention from military and civil applications in recent
years. Due to its advantages such as vertical taking off and
landing (VTOL), rapid maneuvering and precise hovering,
the potential for the quadrotor UAV in applications as diverse
as firefighting and environmental monitoring has been well
established. Recently several literatures have proposed some
new methods for the control of the quadrotor UAV’s attitude,
but design of nonlinear control mechanisms for quadrotor
UAVs in presence of structural uncertainties and unknown
external disturbances is still a challenging task.

Because the Euler angle representation always exhibits
singularity, hence a lot of efforts have been directed toward
the quaternion based controller design. In [1], a modified
sliding mode quaternion feedback controller was proposed
for the quadrotor UAV and an observer was introduced to
estimate the time varying disturbance, which was treated as
an unknown state and an uniform ultimate bounded tracking
result was achieved. In [2], an output feedback controller
based on PD control structure was applied to address the
attitude tracking problem of a rigid body in quaternion coor-
dinate space. A low-gain dynamic observer was introduced to
provide estimation for the unmeasurable angular velocity and
the Lyapunov stability analysis showed that this controller
achieved an uniform practical asymptotic tracking result.
Two quaternion based adaptive output feedback controllers
were introduced in [3] for the attitude control of a spacecraft
with uncertain dynamics. A nonlinear reduced-order observer
was utilized to estimate the unmeasurable speed signals
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and a Chebyshev neural network (CNN) was introduced
to approximate the spacecraft’s motion. The approximation
errors and external disturbances were compensated by a
hyperbolic tangent function. Both robust adaptive controllers
presented in [3] with CNN could guarantee an uniform
ultimate bounded tracking result. In [4], the authors pro-
posed a quaternion adaptive neural network controller to
address the attitude tracking problem of manipulators, which
yielded an uniform ultimate bounded tracking result. In [5], a
quaternion hybrid control law was proposed. In the kinematic
subsystem, a virtual optimal angular velocity was design.
Then for the dynamic subsystem, a finite-time control law
was employed to force the actual angular velocity to track
the virtual optimal angular velocity. The hybrid controller
yielded a global asymptotic set stability. A quaternion feed-
back controller was introduced in [6] which utilized a nested
saturation method for prior input bound, and could force the
closed loop trajectory into a prior fixed neighborhood of the
origin in a finite time.

Motivated by the controllers presented in [7] and [8],
we consider the quadrotor UAV as a rigid body having
four degree of freedom (altitude and orientation) which
is subject to structural uncertainties and unknown external
disturbance. A set of filter signals are developed to estimate
the unmeasurable angular and translational velocity signals.
A nonlinear robust term was developed to eliminate the struc-
tured uncertainties and unknown time-varying disturbance.
Compared with other attitude control design, this output
feedback controller need less model knowledge and only
the output states are available for the control development.
The Lyapunov based stability analysis is used to prove that
the proposed control mechanism can achieve a semi-global
tracking result and all closed loop signals remain bounded.

The remainder of this paper is organized as follows. The
dynamic model of a quadrotor UAV is presented in Section 2.
Section 3 shows the attitude controller design and stability
analysis. The altitude controller is developed and stability
analysis is proposed in Section 4. Conclusion and future
work are discussed in Section 5.

II. THE QUADROTOR UAV MODEL

In this paper, we consider the quadrotor UAV as a
rigid body having four degree of freedom in the Cartesian
space. Motivated by the need to obtain the dynamic and
kinematic model of the quadrotor UAV, two right hand
frames are utilized. Let B be a body-fixed frame located
at the center of mass of the quadrotor UAV, denoted by
B =

{
xB yB zB

}
. The other frame is the inertial
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frame fixed at some position of the earth, denoted by I ={
xI yI zI

}
where zI is the vertical direction to the

earth. The quadrotor UAV system considered in the paper
can be modeled via following state space representation, a
combination of rotation and altitude motion [9]

Jω̇ = S(Jω)ω + N(ω) + τ + D1

mz̈ = −kz ż −mg + cos θ cos φu + D2
(1)

where ω(t) = [ ω1(t) ω2(t) ω3(t) ]T ∈ R3 denotes the
angular velocity of the UAV with respect to the inertial frame
I defined in the body fixed frame B. The matrix J ∈ R3×3

in (1) represents the unknown constant, diagonal, positive-
definite, inertia matrix. The matrix S(·) in (1) denotes a
general form of skew-symmetric matrix defined as follows

S(ξ) =




0 −ξ3 ξ2

ξ3 0 −ξ1

−ξ2 ξ1 0


 (2)

for ∀ξ =
[

ξ1 ξ2 ξ3

]T ∈ R3. The nonlinear aerody-
namic damping moment, denoted by N(ω) ∈ R3 in (1), is
defined as follows

N(ω) =




g1 + g2 |ω1| 0 0
0 g3 + g4 |ω2| 0
0 0 g5 + g6 |ω3|


ω

(3)
where gi ∈ R for i = 1 · · · 6 is unknown parameter. The
input u(t) ∈ R in (1) denotes the vertical lift force and
τ(t) = [ τ1(t) τ2(t) τ3(t) ]T ∈ R3 are three torques
in roll, pitch and yaw directions. The external disturbance
terms, denoted by D1(t) ∈ R3 and D2(t) ∈ R, are defined
in the following form

D1(t) =
[

d1(t) d2(t) d3(t)
]T

D2(t) = d4(t)
. (4)

In (1), the constant m ∈ R denotes the unknown mass of
the quadrotor UAV. The altitude of the quadrotor UAV is
denoted by z(t) ∈ R, and φ(t), θ(t) ∈ R in (1) represent
roll and pitch angles, respectively. The constant kz ∈ R
is an unknown aerodynamic damping coefficient, and g =
9.81m/s2 is the acceleration of gravity.

Remark 1: The disturbance signal di(t) for i = 1 · · · 4 in
(4) is continuous differentiable and bounded up to its second
derivative di(t) ∈ C2, i.e., di(t), ḋi(t), d̈i(t) ∈ L∞.

III. ROTATION SUBSYSTEM CONTROL DESIGN

A. Quaternion Error Dynamics

According to the Euler’s theorem [10], any rotation matrix
can be uniquely represented by a rotation angle ψ(t) ∈ R
about a suitable unit vector k(t) ∈ R3 [11] and [12]. Thus,
utilizing the algorithm provided in [11], the angle ψ(t) and
an unit vector k(t) can be calculated for any given rotation
matrix. Given (ψ, k) ∈ R4, an alternative parametrization of
the attitude is provided by a unit quaternion vector q(t) =[

qo(t) qT
v (t)

]T ∈ R4 [10] and [12], which can be utilized
to describe the orientation of the body fixed frame B with

respect to the inertial frame I. Specifically, the unit quater-
nion provides a method to describe the rigid body’s attitude
without singularity issue, and is defined via the angle-axis
parameters as q(t) =

[
cos( 1

2ψ(t)) kT (t) sin( 1
2ψ(t))

]T
.

Note that the unit quaternion is subject to the constraint
qT q = 1. It is important to mention that we obtain the
following transformation matrix, R(q) ∈ SO(3), for the
Euler parameters [10], [13] and [14]

R(q) = (q2
o − qT

v qv)I3 + 2qvqT
v − 2qoS(qv). (5)

Utilizing the fact RRT = 1 and taking the time derivative
of R(q), we can obtain the following equation

Ṙ = −S(w)R. (6)

The unit quaternion q(t) =
[

qo(t) qT
v (t)

]T ∈ R4 can be
directly derived form (5) and (6), and written as

q̇o = − 1
2qT

v ω q̇v = 1
2 (qoI3 + S(qv))ω (7)

where I3 denotes the 3 × 3 identity matrix. The expression
in (7) can be modified as follows

q̇ =
1
2
B(q)ω (8)

where the auxiliary term B(q) =
[

BT
o BT

v

]T ∈ R4×3

with Bo = −qT
v ∈ R1×3 and Bv = qoI3 + S(qv) ∈ R3×3.

The object of this section is to design the control input
τ(t) to ensure the attitude tracking for the quadrotor UAV
system shown in (1) without the measurement of the angular
velocity signals ω(t). For this purpose, the desired attitude
of the quadrotor UAV is represented by a desired body
fixed, orthogonal coordinate frame Bd. The corresponding
rotation matrix is denoted by Rd ∈ SO(3). The desired unit
quaternion, qd(t) =

[
qod(t) qT

vd(t)
]T ∈ R4, is utilized to

described the orientation of Bd. The desired angular velocity,
denoted by ωd(t), is the angular velocity of the desired body
frame Bd with respect to the inertial frame I expressed in
Bd. The desired rotation matrix Rd(t) can be expressed by
qd(t) as follows

Rd(qd) = (q2
od − qT

vdqvd)I3 + 2qvdq
T
vd − 2qodS(qvd). (9)

The time derivative of qd(t) is related to the desired angular
velocity ωd(t) through the following kinematic equation

q̇d =
1
2
Bd(qd)ωd (10)

where the auxiliary term Bd(qd) =
[

BT
od BT

vd

]T ∈ R4×3

with Bod = −qT
vd ∈ R1×3 and Bvd = qodI3+S(qvd) ∈ R3×3

similar to (8). To quantify the mismatch between the current
and desired orientation of the quadrotor UAV, the quaternion
tracking error, denoted by eq(t) =

[
eo(t) eT

v (t)
]T ∈ R4,

is defined as follows

eo = qoqod + qT
v qvd

ev = qodqv − qoqvd + S(qv)qvd
(11)

which also satisfies the constraint

eT
q eq = 1. (12)

3052



We define the rotation matrix, denoted by R̃ ∈ SO(3), that
brings Bd into B as follows

R̃ = RRT
d = (e2

o − eT
v ev)I3 + 2eveT

v − 2eoS(ev). (13)

Utilizing the rotation matrix R̃ , the desired unit quaternion
describing the orientation of the desired body fixed frame Bd

can be expressed in frame B as follows

q̇od = − 1
2qT

vdR̃ωd

q̇vd = 1
2 (qodI3 + S(qvd))R̃ωd

. (14)

The angular velocity of B with respect to Bd expressed in
B, denoted by ω̃ ∈ R3, can be written as follows [11]

ω̃ = ω − R̃ωd. (15)

Based on the previous definitions, the quadrotor UAV’s
attitude tracking objective can be stated as follows

lim
t→∞

ev(t) = 0 lim
t→∞

R̃(t) = I3×3 . (16)

From (11) and (13), it can be obtained that if lim
t→∞

ev(t) = 0

then lim
t→∞

R̃(t) = I3×3.

Remark 2: The desired unit quaternion qd(t) is selected
such that q

(i)
d ∈ L∞, for i = 0, 1, 2. It ensures that ω

(i)
d ∈

L∞, for i = 0, 1.
Remark 3: For the rotation matrix R, Rd and R̃, their

time derivative can be calculated utilizing Ṙ = −S(ω)R,

Ṙd = −S(ωd)Rd and
.

R̃ = −S(ω̃)R̃, respectively.
To design the attitude tracking controller τ(t), we will take

the time derivative of eq(t). Refer to [7], the time derivative
of eo(t) and ev(t) can be expressed as follows

ėo = − 1
2eT

v ω̃ ėv = 1
2 [S(ev) + eoI3×3] ω̃ (17)

where the angular velocity ω̃(t) has been introduced in (15).
The relation between angular velocity ω̃(t) and quaternion
error eq(t) can be rewritten via the following kinematic
equation

ėq =
1
2
Be(eq)ω̃ (18)

where Be(eq) =
[

BT
eo BT

ev

]T ∈ R4×3 with Beo =
−eT

v ∈ R1×3 and Bev = eoI3 + S(ev) ∈ R3×3. After taking
the time derivative of (15) and multiplying the resulting
equation with J , it can be obtained

J
.
ω̃ = N(ω) + τ + D1 + J

[
S(ω̃)R̃ωd − R̃ω̇d

]
(19)

− S(ω̃ + R̃ωd)J(ω̃ + R̃ωd)

where (1), (15) and Remark 3 have been utilized. Based on
(18), it can be obtained that

ėv =
1
2
Bevω̃. (20)

To facilitate the development of the tracking controller, two
auxiliary matrices, denoted by Jev(t) ∈ R3×3 and P (t) ∈
R3×3, are defined as

Jev = B−T
ev JB−1

ev P = B−1
ev . (21)

Due to the fact that det(Bev) = eo(t), the initial value of
eo(t) is not zero and the subsequent control law will be
designed to guarantee that eo(t) 6= 0. By taking the time
derivative of (20), and multiplying the resulting equation by
Jev, the following equation can be obtained

Jev ëv =
1
2
JevḂevω̃ +

1
2
B−T

ev J
.
ω̃. (22)

After substituting (19) into (22), the following equation can
be obtained

Jev ëv +C∗ėv +N∗ =
1
2
B−T

d D1+
1
2
B−T

d N(ωd)+τeq (23)

where the auxiliary function C∗(t) ∈ R3×3, N∗(t) ∈ R3

and τeq(t) ∈ R3 are defined as

C∗ = −JevṖ−1P − 2PT S(JP ėv)P , (24)

N∗ = −1
2
PT J

[
S(2P ėv)R̃ωd − R̃ω̇d

]
+ PT S(P ėv)JR̃ωd

+
1
2
PT S(R̃ωd)JR̃ωd + PT S(R̃ωd)JP ėv − 1

2
PT D1

+
1
2
B−T

d D1 − 1
2
PT N(ω) +

1
2
B−T

d N(ωd), (25)

τeq =
1
2
B−T

ev τ =
1
2
PT τ. (26)

The two following properties of the dynamics in (23) will
be employed in the subsequent controller design and stability
analysis [7].

Remark 4: The inertia matrix Jev(t) and centripetal-
coriolis matrix C∗(t) satisfy the following skew-symmetric
equation

αT ( 1
2 J̇ev − C∗)α = 0 ∀α ∈ R3 . (27)

Remark 5: The inertia matrix Jev(t) is symmetric and
positive definite, and satisfies the following inequalities

j1 ‖α‖2 ≤ αT Jevα ≤ j2 ‖α‖2 (28)

where j1 and j2 are some positive constants.

B. Output Feedback Controller Development

In this section, control torque input τ(t) is designed based
on the restriction that the quadrotor UAV’s angular velocity
ω(t) is not measurable and the dynamic model parameters
in (1) are unknown. The following filters are employed to
provide estimation for the unmeasurable angular velocity
signals [15]

η = ev + ėv + ef

ef = p− k2ev

ṗ = −(k2 + 1)p + k2
2ev + ev

(1−eT
v ev)2

(29)

where ef (t), rf (t) ∈ R3 are the outputs of the filters, p(t) ∈
R3 is an auxiliary variable used in the filter implementation,
k2 ∈ R is a positive constant. The initial value of p(t) is
set to be p(0) = k2ev(0). Based on the signals in (29) and
subsequent analysis, the output feedback tracking controller
τeq(t) can be designed as

τeq = −K1sgn(ev + ef ) + k2ef − ev

(1− eT
v ev)2

(30)
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where K1 ∈ R3×3 is a constant, diagonal, positive definite
matrix, and the function sgn(•) is defined as

sgn(α) =
[

sgn(α1) sgn(α2) sgn(α3)
]T

(31)

∀α =
[

α1 α2 α3

]T
. The actual control torque input

τ(t) can be computed via (26). By taking the time derivative
of (29), multiplying the resulting equation by Jev(t), and
substituting (23), the following expression can be obtained

Jev η̇ = −C∗η − k2Jevη +
1
2
BdD1 + Nev +

1
2
BdN(ωd)

+ τeq + Jω̇d +
1
2
S(ωd)Jωd (32)

where the auxiliary function Nev(t) ∈ R3 is defined as

Nev = C∗(ef + ev) + Jev(η − ev +
ev

(1− eT
v ev)2

) (33)

− 2Jevef −N∗.

After substitution (30) into (32), the following closed loop
system can be obtained

Jev η̇ = −C∗η − k2Jevη + D′
1 + Nev + k2ef (34)

−K1sgn(ev + ef )− ev

(1− eT
v ev)2

where the auxiliary function D′
1(t) ∈ R3 is defined as

D′
1 =

1
2
BdN(ωd) +

1
2
BdD1 + Jω̇d +

1
2
S(ωd)Jωd. (35)

It is not difficult to check that D′
1(t) and dD′1(t)

dt are bounded.
Remark 6: Based on Remark 1, the fact that the rotation

matrixes R, Rd, R̃ are always bounded, and the structure of
(29) and (33), it can be shown that [7]

‖Nev‖ ≤ ρ(‖zq‖) ‖zq‖ (36)

where zq(t) ∈ R9 is defined as

zq =
[

eT
f ηT eT

v√
1−eT

v ev

]T

(37)

and the positive function ρ(‖zq‖) is a non-decreasing in
‖zq‖ .

C. Stability Analysis

Before presenting the main result of the section, a lemma
which will be invoked later is stated firstly.

Lemma 1: Let the auxiliary function L(t) ∈ R be defined
as follows

L = ηT [D′
1 −K1sgn(ev + ef )] . (38)

If the control gain matrix K1, introduced in (30), is selected
to satisfy the following sufficient condition

K1i > ‖D′
1(t)‖∞ +

∥∥∥∥
d

d(t)
[D′

1(t)]
∥∥∥∥
∞

(39)

where K1i is the element of matrix K1, and ‖•‖∞ denotes
the infinity norm, then

∫ t

0

L(τ)dτ ≤ ζb (40)

where the positive constant ζb is defined as

ζb =
∑3

i=1K1i |evi(0)| − eT
v (0)D′

1(0). (41)

Proof: Please refer to [15].
Theorem 1: The control law proposed in (30) ensures

that all the closed loop signals are bounded and semi-global
asymptotic tracking in the sense of (16). This result holds
provided that K1 is selected to satisfy (39), and k2 is selected
to satisfy the following condition

k2 >
(kn + 1)

j1
(42)

and

kn >
1
4
ρ2(

√
λ2

λ1
‖y(0)‖) (43)

where λ1 and λ2 are defined as

λ1 = 1
2 min(1, j1) λ2 = max( 1

2j2, 1) . (44)

The positive constants j1 and j2 have been defined in (28).
The initial value of auxiliary variable y(t) is set as

‖y(0)‖ =

√√√√
∥∥∥ ev(0)

(1−eT
v (0)ev(0))2

∥∥∥ + ‖η(0)‖
+

∑3
i=1K1i |evi(0)| − 1

2eT
v (0)B−T

d D′
1(0)

.

(45)
Proof: Let the auxiliary function Q(t) ∈ R be defined

as follows

Q = ζb −
∫ t

0

L(τ)dτ (46)

where the ζb and L(t) have been introduced in Lemma 1.
It is not difficult to check that Q ≥ 0. To prove the above
theorem, an nonnegative function V (t) ∈ R is defined as
follows

V =
1
2
ηT Jevη +

1
2
eT
f ef +

1
2

eT
v ev

(1− eT
v ev)2

+ Q. (47)

Note the function V (t) can be bounded as

λ1 ‖y‖2 ≤ V ≤ λ2 ‖y‖2 (48)

where y =
[

zT
q

√
Q

]T ∈ R10. After taking time
derivative of (47), and substituting (29), (32) and (46) into the
resulting equation, the following expression can be obtained

V̇ = −eT
f ef − eT

v ev

(1− eT
v ev)2

− k2η
T Jevη + ηT Nev (49)

= −‖zq‖2 + ηT η − k2η
T Jevη + ηT Nev

upon the use of the definition of zq(t). After applying (28)
and (36) to (49), it can be obtained

V̇ ≤ −‖zq‖2 +
[
‖η‖ ‖zq‖ ‖ρ(‖zq‖)‖ − kn ‖η‖2

]
(50)

≤ −
(

1− ρ2(‖zq‖)
4kn

)
‖zq‖2

where the constant kn satisfies the following condition

kn < k2j1 − 1. (51)
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From previous equations, it can be obtained that

V̇ ≤ −γ ‖zq‖2 kn > 1
4ρ2(‖zq‖) (52)

where γ is some positive constant. It should be noted that
even though the selction of kn in (52) is related with the state
zq(t), but it can be transfter to the condition (43) which is
only dependent on the initial value of the system states by
following the similar steps in [15]. By utilizing (52) and
following the similar steps in [15], we can conclude that
all the closed loop signals remain bounded and the attitude
tracking is achieved in the sense (16), provided the control
gains being selected to satisfy (41), (42), (43), and (44).

IV. ALTITUDE DIRECTION CONTROLLER DEVELOPMENT

A. Altitude Error System

To facilitate the controller u(t) development, the dynamics
of altitude subsystem in (1) can be rewritten as

mz̈ = −kz ż −mg + u∗ + d4 (53)

where the auxiliary function u∗(t) ∈ R is defined as

u∗ = cos θ cos φu. (54)

The Euler angles can be computed from the quaternion via

θ = arcsin(2(q0q2 − q1q3))
φ = [arctan 2(q0q1+q2q3)

1−2(q2
1+q2

2)
] . (55)

The altitude tracking error, denoted by ez(t) ∈ R, is defined
as

ez = zd − z (56)

where zd(t) ∈ R denotes the reference trajectory of altitude.
Our objective is to design the controller u(t) such that
ez(t) → 0 as t →∞, under the restriction that the velocity
signal ż(t) is not measurable. Inspired by [15], we propose
the following filters to solve the above stated problem

ėfz = −efz + rfz efz(0) = 0 (57)

rfz = pz − (k2z + 1)ez (58)

ṗz = −rfz − (k2z + 1)(ez + rfz) + ez − efz

pz(0) = (k2z + 1)ez(0) (59)

where efz(t), rfz(t) ∈ R are the outputs of the filters,
pz(t) ∈ R is an auxiliary variable used in the filter imple-
mentation, k2z ∈ R is a positive constant. An auxiliary term,
denoted by ηz(t) ∈ R, is defined as follows

ηz = ėz + ez + rfz. (60)

After taking the time derivative of (58), we obtain the
following equation

ṙfz = −rfz − (k2z + 1)ηz + ez − efz. (61)

After taking the time derivative of (60) and substituting (56)
and (61) into the resulting equation, the following expression
can be obtained

η̇z = z̈d − z̈ − 2rfz − efz − k2zηz. (62)

After multiplying (62) by m and substituting (53) into the
resulting equation, we have

mη̇z = −k2zmηz + Nz −m(2rfz + efz)− u∗ (63)

where the auxiliary function Nz(t) ∈ R is defined as

Nz = kż + mg + mz̈d − d4. (64)

Let Nzd(t) = Nz( zd żd ), due to the fact that zd(t) and
żd(t) ∈ L∞, Nzd(t) and Ṅzd(t) ∈ L∞. The expression in
(63) can be rewritten as

mη̇z = −k2zmηz + Nzd + Ñz − u∗ (65)

where the function Ñz(t) ∈ R is defined as

Ñz = Nz −Nzd −m(2rfz + efz). (66)

Remark 7: Based on the definitions of Nz(t) and Nzd(t),
we can show Ñz(t) can be upper bounded as following

∥∥∥Ñz

∥∥∥ ≤ ρz(‖zz‖) ‖zz‖ (67)

where zz =
[

ez efz rfz ηz

]T ∈ R4, and the positive
function ρz(‖zz‖) is non-decreasing in ‖zz‖ .

B. Output Feedback Controller Development

To achieve the control objective, the altitude tracking
controller u∗(t) ∈ R is designed as

u∗ = k1zsgn(ez + efz)− (k2z + 1)rfz + ez (68)

where k1z and k2z are some positive control gains, sgn(•)
is a standard sign function. The actual lift force input u(t)
can be computed via (54). After substituting (68) into (65),
the closed loop dynamics of ηz(t) can be obtained as

mη̇z = −k2zmηz − k1zsgn(ez + efz) + Ñz (69)
+ Nzd + (k2z + 1)rfz − ez.

C. Stability Analysis

Before presenting the main result, the following lemma to
be invoked later is stated as follows.

Lemma 2: Let the auxiliary function Lz(t) ∈ R be defined
as follows

Lz = ηz(Nzd − k1zsgn(ez + efz)). (70)

If the control gain k1z ∈ R is selected to satisfy the following
sufficient condition

k1z > ‖Ndz(t)‖∞ +
∥∥∥Ṅdz(t)

∥∥∥
∞

(71)

where ‖•‖∞ denotes the infinity norm, then
∫ t

∞
Lz(τ)dτ ≤ ζbz (72)

where the positive constants ζbz ∈ R is defined as

ζbz = k1z |ez(0)| − ez(0)Nzd(0). (73)

Proof: Please refer to [15].
Theorem 2: The control law in (68) ensures that all

closed-loop signals are bounded and ez(t) and ėz(t) → 0
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as t → ∞ provided the control gain k1z satisfies (71), k2z

satisfies the following condition

k2z >
knz + 1

m
(74)

and the positive constant knz is selected to satisfy

knz >
1
4
ρ2

z

(√
λ1z

λ2z
‖yz(0)‖

)
(75)

where λ1z , λ2z ∈ R are defined as follows

λ1z = 1
2 min(1,m) λ2z = max( 1

2m, 1) (76)

and

|yz(0)| (77)

=
√
|e2

z(0)|+ |η2
z(0)|+ k1z |ez(0)| − ez(0)Nzd(0).

Proof: Let the auxiliary function Qz(t) ∈ R be defined
as follows

Qz = ζbz −
∫ t

0

Lz(τ)dτ (78)

where the ζbz and Lz(t) have been introduced in Lemma 2.
To prove the above theorem, an nonnegative function Vz(t) ∈
R is defined as follows

V =
1
2
mη2

z +
1
2
eT
fz +

1
2
e2
z +

1
2
r2
fz + Qz. (79)

Note the function Vz(t) can be bounded as

λ1z ‖yz‖2 ≤ Vz ≤ λ2z ‖yz‖2 (80)

where yz =
[

zT
z

√
Qz

]T ∈ R5, and λ1z, λ2z have been
defined in (76). After taking time derivative of (79), and
substituting (57), (60), (61) (69) and (78) into the resulting
equation, the following expression can be obtained

V̇z = −e2
fz − e2

z − r2
fz − k2zmη2

z + ηzÑz (81)

= −‖zz‖2 + (1− k2zm)η2
z + ηzÑz

upon the use of the definition of zz(t). After applying (67)
to (81), it can be obtained

V̇ ≤ −‖zz‖2 +
[
‖ηz‖ ρz(‖zz‖)− knz ‖ηz‖2

]
(82)

≤ −
(

1− ρ2
z(‖zz‖)
4knz

)
‖zz‖2

where knz ∈ R is a constant and satisfies the following
condition

knz < k2zm− 1. (83)

From previous equation, it can be obtained that

V̇z ≤ −γz ‖zz‖2 knz > 1
4ρ2

z(‖zz‖) (84)

where γz is some positive constant. It should be noted that
even though the selction of knz in (84) is related with the
state zz(t), but it can be transfter to the condition (75) which
is only dependent on the initial value of the system states
by following the similar steps in [15]. By utilizing (84)
and following the similar steps in [15], it can be proved
that all the closed loop signals remain bounded and the
attitude tracking is achieved, provided the control gains being
selected to satisfy (73), (74), (75) and (76).

V. CONCLUSIONS

In this paper, a quaternion based output feedback track-
ing controller for a quadrotor UAV system with structural
uncertainties and unknown external disturbances is devel-
oped. Through a Lyapunov based stability analysis, we have
demonstrated that a semi-global asymptotic altitude and
orientation tracking result is achieved and all closed loop
signals remain bounded. Future work will focuses on the
implementation of the proposed control algorithm on a real-
time quadrotor flying testbed.
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