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Abstract— This paper introduces Locally Weighted Least
Squares Policy Iteration for learning approximate optimal
control in settings where models of the dynamics and cost
function are either unavailable or hard to obtain. Building
on recent advances in Least Squares Temporal Difference
Learning, the proposed approach is able to learn from data
collected from interactions with a system, in order to build a
global control policy based on localised models of the state-
action value function. Evaluations are reported characterising
learning performance for non-linear control problems including
an under-powered pendulum swing-up task, and a robotic door-
opening problem under different dynamical conditions.

I. INTRODUCTION

In recent years, a number of methods for the approximate

solution of optimal control problems have been proposed.

Examples include variants on Differential Dynamic Program-

ming (DDP) [1], [2], Iterative Linear Quadratic Regulator

design (ILQR) [3], [4] and Path Integral Policy Iteration (PI2)

[5]. A common strategy in these approaches is their use of

local approximations of the system dynamics and the cost, in

order to compute local optimal control laws along a nominal

trajectory. This simplifies potentially high-dimensional, non-

linear control problems within local regions of the state

space, enabling their approximate solution.

While such approaches have been shown to be effective in

many robotic problems, their applicability in many situations

may be limited by their requirement for (i) an accurate model

of the system dynamics, (ii) a closed-form expression for

the cost function, and (iii) the requirement for accurate state

estimation from sensor measurements. These are necessary

for constructing the local approximations to the dynamics

and cost, and thereby the local solution to the control

problem considered.

In many practical situations, however, such information

is either unavailable or difficult to obtain. For example, in

tasks where robots are asked to interact with objects in an

unstructured environment (such as in a disaster response sce-

nario), models of the dynamics are unlikely to be unavailable,

and may change with time (e.g., as the disaster unfolds).

Furthermore, in absence of such models of environmental

dynamics, it is usually not possible to specify cost functions

in closed form, since this implies knowledge of how the

desired states and control inputs affect the desired outcomes

of the behaviour. For instance, consider a cost function

specifying maximum distance throwing of an object with
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unknown aerodynamics: if the mass, air-resistance, wind-

speed etc. are unknown, the cost (i.e., distance thrown) for

a given controller cannot be predicted prior to its execution.

The approach taken in this paper continues in the spirit

of applying local approximation techniques to simplify non-

linear optimal control problems. However, rather than relying

on model knowledge, we explore the use of model-free

reinforcement learning techniques, based on recent advances

in Least Squares Temporal Difference (LSTD) learning [6],

[7], [8]. The proposed approach is inspired by local learning

techniques [9], [10] that have been used for learning models

of the dynamics of robotic systems. In contrast to these

prior works, however, here control policies are directly learnt

from data, avoiding sources of error from inaccuracies in the

dynamics model. Empirical evaluations are reported char-

acterising performance of learnt controllers for non-linear

problems, including an under-powered pendulum swing-up

task [11] and a simulated robotic door-opening task.

II. PROBLEM DEFINITION

In this paper, we focus on approximate optimal control

in settings where model information (i.e., the form and/or

parameter values) about (i) the dynamics and (ii) the cost, is

not explicitly available.

Formally, it is assumed that the deterministic, discrete-time

approximation of the (unknown) dynamics has the form

xt+1 = f(xt,ut) (1)

where ut ∈ R
Q is a vector of control inputs with restriction

on their admissible values u ∈ [umin,umax], and xt ∈ R
P

is the state at time step t. Access to the latter is assumed to

be restricted to observations yt ∈ R
R through some bijective

sensor function1

yt = h(xt) (2)

the functional form and/or parameters of which are also

assumed unknown.

The goal is to find a controller (policy) ut = π(yt) that

minimises the long-term cost

J =

∞
∑

t=0

ι(xt,ut) (3)

where ι(xt,ut) (or, equivalently, j(yt,ut) := ι(h−1(yt),ut)
when expressed in terms of state observations) is the in-

stantaneous cost incurred in applying command ut in state

1Note that, the sensor function h represents a transformation of the state
space of the original problem. This commonly arises in robotic systems
where the minimal/most natural representation of the system state x may
not be directly sensed. It is assumed that no perceptual aliasing [12] occurs
in this transformation.
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Dynamics:

Iq̈ = J(q)⊤fr+τe

Sensing:

y = (r⊤, ṙ⊤)⊤

Cost: g(q) =

{

d(1− cos(q)) −π
2 <q< π

2

d otherwise

Fig. 1. Simplified model of door opening, formulated as a hidden state
optimal control problem. Here, I denotes the door inertia, J(q) the Jacobian
from the door angle to the hand contact point and τe the external torques
(e.g., from friction, obstacles, door closing mechanisms, etc.). The terms r

and ṙ are the hand position and velocity (that may be sensed, e.g., through
the arm kinematics) and fr is the Cartesian force applied by the hand. Other
quantities are marked in the diagram.

xt. The latter is assumed to be unknown or, equivalently,

incomputable due to lack of knowledge of (1)-(2). It is,

however, assumed that observations, jt, of the instantaneous

cost can be made through sensory observation. For example,

if the goal is to minimise energy in system powered by

electric motors, jt may correspond to the instantaneous

power consumption, as measured by sensing the current

drawn.

A. Motivating Example: Uncertainties in Opening a Door

To motivate these assumptions, consider the situation in

which a robot is required to open a door in an unstructured

and unfamiliar environment, as illustrated in Fig. 1. Even for

this seemingly simple task, there are numerous uncertainties

that make it difficult to determine a control strategy for this

task. For example, there are uncertainties in

• Dynamics parameters such as the dimensions (height,

width, thickness), inertial properties (total mass, mass

distribution) and friction (at the hinges, around the frame).

Estimation of these properties is challenging based purely

on sensor information.

• External dynamic effects, e.g., from a closing mechanism,

unseen obstacles blocking the door, ‘jamming’ of old, ill-

maintained doors, other forms of damage to the door.

• State estimation, since direct feedback about the state of

the door (e.g., hinge angular position and velocity) is

unlikely to be available. The robot may be able to sense

(e.g., through vision) or compute (through its forward

kinematics) the location of an end-effector, but uncertainty

about the door parameters (e.g., width, hinge location),

makes this insufficient to compute the door state.

• Cost predictions due to uncertainties in the dependencies

between the cost and the state/control parameters. For ex-

ample, measuring performance by the clearance afforded

when passing through the door, (i.e., the gap between door

and frame, g, see Fig. 1), uncertainties exist as to whether

the door opens inwards or outwards, or the gap size at a

certain hinge angle (e.g., due to unknown door geometry).

One approach to tackling these problems is to use data,

collected from interactions with the system, to design the

optimal controller. Ideally, to maximise the autonomy of

the robotic system, it should (i) work directly with avail-

able sensing with minimal assumptions on the form of the

(unknown) dynamics and cost, and (ii) learn quickly and

efficiently from limited data to minimise exploration (testing

of different control strategies). In the following, an approach

based on LSTD learning is proposed.

III. METHOD

The approach proposed in this paper is an extension of

the Least Squares Policy Iteration (LSPI) algorithm [13], a

model-free, off-policy reinforcement learning approach in the

family of temporal difference (TD) learning methods.

A. Least Squares Policy Iteration

In its original form, LSPI learns an optimal control policy

based on a global model of the state-action value function

Qπ(yt,ut) =

∞
∑

s=0

γsj(ys+t,us+t) (4)

that predicts the future (discounted) cost incurred when

starting in state xt (where yt=h(xt)), applying command ut

and acting according to policy u=π(h(x)) thereafter [14].

Here, γ∈ [0, 1) is a discount factor, and state transitions are

dictated by the system dynamics (1). Learning proceeds by

iterating between: (i) policy evaluation, in which an estimate

of (4) is formed, and (ii) policy improvement, in which the

control policy is updated according to the estimate.

1) Policy Evaluation: Policy evaluation consists of esti-

mating (4) for a given control policy π(y). In the standard

formulation of LSPI [13], the approximation of Qπ uses a

global linear model

Q̃π(y,u) = θ⊤φ(y,u) (5)

where θ ∈ R
M are the model parameters and φ(y,u) ∈ R

M

is a vector of features. The latter may be hand-selected for

a given application, or consist of generic features (e.g., a set

of polynomials, radial basis functions, etc.).

The parameters θ are learnt from data through LSTD

learning [13]. Specifically, samples {yn,un, ȳn, jn}Nn=1 are

assumed, where ȳn is the sensed state after the transition,

when command un is applied in state xn (i.e., ȳn=h(x̄n)
with x̄n = f(xn,un) and yn = h(xn)), and jn is the

instantaneous cost of making that transition. To form an

estimate from these data, self-consistency with respect to

the Bellman equation [7], [8] is sought, as measured by the

temporal difference error

δ = Q̃π − Tπ[Q̃π] (6)

where Q̃π ∈ R
N is the vector of model predictions (i.e.,

Q̃π

n = Q̃π(yn,un)) and Tπ[Q̃π] ∈ R
N are the model

predictions under the Bellman operator

Tπ[Qπ(y,u)] = j(y,u) + γQπ(ȳ,π(ȳ)). (7)

Assuming the linear model (5), the predictions Q̃π lie on the

manifold corresponding to the column space of Φ ∈ R
N×M,

where Φmn := φm(yn,un). This is not true of the vector

Tπ[Q̃π] (due to the action of the Bellman operator) and
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so the least squares fixed point that minimises (6) within the

column space of Φ is sought instead, i.e., the point for which

Φ⊤(Q̃π − Tπ[Q̃π]) = 0. (8)

Substituting Q̃π = Φθ, expanding the Bellman operator

Tπ[Q̃π] = j+γΦ̄θ (where Φ̄mn :=φm(ȳn,π(ȳn)) and j=
(j1, · · · , jN )⊤) and rearranging, yields the optimal estimator

θ∗ = (Φ⊤(Φ− γΦ̄))−1Φ⊤j = A−1b. (9)

where2 A := Φ⊤(Φ−γΦ̄) ∈ R
M×M and b := Φ⊤j ∈ R

M.

In a standard implementation, solving (9) has computational

complexity of order O(M3).
2) Policy Improvement: Using the estimate (9), policy

improvement is achieved by computing the optimal controls

π∗(y) = argmin
u

Q̃π(y,u) (10)

i.e., the policy that obtains the minimum cost according to the

value function. Depending on the choice of feature vectors

φ(y,u), this may be done analytically or numerically3. The

value function of the updated policy (10) is then estimated

according to the evaluation step, and iterations between

the policy evaluation and improvement steps continue, until

convergence is met (measured, for example, according to a

minimum change in the parameter vector θ) [13].

3) Selection of Basis Functions: The simplicity of LSPI,

and its potential for off-policy, model-free learning make

it an appealing candidate for the problems considered in

Sec. II. However, one of the major difficulties in its direct

application is the selection of an appropriate set of features

φ for forming the estimate of Qπ . While hand-selection of

features using domain knowledge may be possible in some

cases, this is usually non-trivial since it is often not clear how

the dynamics and cost in a given problem will impact on Qπ .

In the setting considered here, this is further exacerbated by

the assumption that prior knowledge of the environmental

dynamics, and their impact on the cost, are highly limited or

absent.

An alternative, is to use basis functions forming a generic

function approximator, such as polynomials, or a set of radial

basis functions. However, difficulties are then encountered in

terms of scalability: due to the very large number of basis

functions required for adequate coverage of the state-action

space and/or sufficient representational power for non-linear

Qπ . This causes a sharp increase in the computation of the

optimal parameters through (9) due to the cubic dependence

on M, a demand for larger quantities of data [15], and can

also cause difficulties in the policy optimisation step (10).

B. Locally Weighted Least Squares Policy Iteration

In this paper, instead of constructing a single, global estima-

tor (5), the use of local learning techniques is investigated.

In the spirit of fast, local regression techniques [9], [10],

the estimate of Qπ is composed through a set of simple,

2Note that, a unique solution to (9) is ensured provided that the basis
functions (columns of Φ) are linearly independent, [13].

3In [13], the commands are assumed to be discrete such that solving (10)
amounts to simply looking up the command with the minimum value. Here,
the primary interest is in robotic applications with continuous commands.

but generic local models [6]. This avoids the need for prior

domain knowledge in selecting features and also improves

the computational efficiency, as outlined below.

It is proposed to learn a set of K local models,

Q̃π

k (y,u) = θ⊤
k φ(y,u) (11)

that are combined into a global prediction through the

weighted combination

Q̃π(y,u) =

K
∑

k

ŵk(y)Q̃
π

k (y,u). (12)

Here, ŵk(y) is a normalised weighting function that assigns

responsibility to the kth local model for predictions accord-

ing to its distance in y to the query point. Several choices

of weighting function exist, for example the tricube function

[16] or normalised Gaussians [9], [10].

Note that, the global model (12) can potentially represent

any non-linear Qπ with appropriate choice of the local

models (or, more specifically, the basis functions φ(y,u)).
An efficient choice of φ(y,u) is discussed in Sec. III-B.2.

1) Policy Evaluation through Locally Weighted LSTD:

For training the models (11), a weighted version of LSTD

may be employed to localise the model fit. As noted in [6],

[13], the relative importance of the temporal difference errors

in (6) can be adjusted by re-weighing the elements of the

vector of temporal difference errors δ := (δ1, . . . , δN )⊤.

In the proposed approach, the parameters θk of the kth

local model are estimated according to the weighted temporal

difference error

δk = Wk(Q̃
π

k − Tπ[Q̃π

k ]) (13)

where Wk ∈ R
N×N is a diagonal weighting matrix, with

elements selected in order to give greater priority to fitting

nearby data according to that model’s weighting function4,

i.e., (Wk)nn = ŵk(yn).
Through a similar derivation as described in Sec. III-A.1,

the solution to (13) can be computed in closed form (for

each local model) as

θ∗
k = (Φ⊤Wk(Φ− γΦ̄))−1Φ⊤Wkj = A−1

k bk (14)

where Ak ∈ R
M×M and bk ∈ R

M.

At this stage, it is possible to see a computational advan-

tage of the proposed approach for fitting (potentially non-

linear) Qπ in large state spaces. The computational complex-

ity of solving (14) independently for each of the local models

is O(M3), causing computation of the global fit (12) to

have O(M3K) complexity. At first glance, this seems more

expensive than the original version of LSPI. Note, however,

here M is kept small through use of simple, generic local

models. Increases to the model’s representational power (e.g.,

if Qπ is strongly non-linear) are achieved not by increases

to the number of basis functionsM, but by addition of local

models K, resulting in a linear increase in complexity5.

4A similar strategy of using local weighting for weighted least squares
fitting is employed in locally weighted regression (e.g., [9], [10]), but note
that, here learning has no access to target data (i.e., samples of Qπ).

5Note also that, since the learning of each local model is independent,
this computation can easily be parallelised to yield further speed-up.
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Fig. 2. Visualisation of locally weighted LSPI with the basis (15). (a)

Estimate Q̃π composed from a weighted combination of local models that
are globally quadratic in u. (b) Derivatives of the models with respect to

u are linear in u. (c) Solving for ∇u[Q̃π ] = 0 (intersection with the blue
area) yields the (non-linear) policy (18).

2) Local Quadratic Models for Efficient Policy Improve-

ment: Considering the selection of φ(y,u) for the local

models (11), in principle, any linearly independent set of

features may be used. In this paper, the choice is guided by

efficiency, at the cost of introducing bias in the approxima-

tion (12). Specifically, the local models use a quadratic basis

of the form

φ(y,u) = UT[(y⊤,u⊤, 1)⊤(y⊤,u⊤, 1)] ∈ R
M (15)

where UT[·] is an operator that forms a column vector

from the upper triangular part of its matrix argument. With

this basis, the dimensionality of φ(y,u) is M = 2(R +
Q)+(R+Q) C2+1. Using this basis, it is straightforward to

retrieve the optimal policy from the estimate (12).

Taking derivatives with respect to u, the minimum is the

solution of

∇u[Q̃
π(y,u)] =

K
∑

k

ŵk(y)∇u[θ
⊤
k φ(y,u)] = 0. (16)

Since θ⊤
k φ(y,u) is quadratic, its derivative is linear:

∇u[θ
⊤
k φ(y,u)] = L

y

ky + Lu
ku+ l1k (17)

where L
y

k ∈R
Q×R, Lu

k ∈R
Q×Q and l1k ∈R

Q are matrices

with entries selected from θk (see appendix). Substituting

into (16) and rearranging, yields

π∗(y) = − (
∑

kŵk(y)L
u
k )

−1 ∑

kŵk(y)(L
y

ky + l1k). (18)

The policy π(y) is non-linear in y due to the weighed

contributions of each of the local models: See Fig. 2.

An implication of the use of the quadratic basis (15),

localised in y according to (12), is that the set of value

functions Qπ that may be represented without error is

restricted to those that are globally quadratic in u. In

general, this cannot be guaranteed. However, even with this

approximation, reasonable performance can be obtained (as

evidenced in the evaluations, see Sec. IV).

Algorithm 1 LWLSPI

Require: Data {yn,un, ȳn, jn}
N
n=1, discount factor γ,

initial policy π0.

1: Evaluate φn = φ(yn,un), n = 1, · · · ,N .

2: Set π ← π0.

3: while θk, k = 1, · · · ,K changing do

4: Evaluate φ̄n = φ(ȳn,π(ȳn)), n = 1, · · · ,N .

5: for k = 1, · · · ,K do

6: Compute statistics:

Ak =
∑N

n ŵk,nφn(φn − γφ̄n)
⊤

bk =
∑N

n ŵk,nφn jn.

7: Retrieve parameters θk = A−1
k bk.

8: end for

9: Update policy

π(y)← − (
∑

kŵk(y)L
u
k )

−1 ∑

kŵk(y)(L
y

ky + l1k).
10: end while

11: return Policy π(y) [optionally: Q̃π(y,u)]

Combining the policy evaluation steps (ref. Sec. III-B)

and the policy improvement step (18), the complete algo-

rithm, Locally Weighted LSPI (LWLSPI), is provided in

Algorithm 1.

IV. EVALUATION

In this section, the performance of LWLSPI is evaluated

for learning in two non-linear control tasks, including the

pendulum swing up problem [11] and a simulated robotic

door opening task6.

A. Pendulum Swing Up

The goal of the first evaluation, is to characterise learning

performance in a simple, non-linear control problem. As

an illustrative task, performance in the pendulum swing-up

problem [11] is tested, in which the task is to control a

pendulum, under the influence of gravity, to stabilise at the

upright position (see Fig. 3(a)).

The dynamics of the pendulum are described by

ml2q̈ + µq̇ −mgl sin q = τ (19)

where m = 1 kg is the mass, l = 1m is the length of the

pendulum and µ=0.01Nms/rad is the viscous friction co-

efficient. The system state (assumed fully observable, i.e.,

y = x) is described by the angular position and velocity

x = (q, q̇)⊤ and the control input is the torque around the

pivot u = τ , with limits u ∈ [−5, 5]Nm. The latter cause

the pendulum to be underpowered (i.e., unable to lift its own

weight) making swing-up and stabilisation non-trivial.

Task performance is measured by the height reached by

the pendulum bob h(q) = l cos(q) [11], with an additional

penalty for high torque use

j = −h(q) + wτ τ
2 (20)

where wτ = 7.5 × 10−4. Note that, (20) is not explicitly

provided to the learner: Feedback about performance is

provided indirectly through data samples jn collected during

6Data used in these evaluations is freely available for download (DOI:
10.6084/m9.figshare.748806). Software may be requested from the corre-
sponding author.
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Fig. 4. Swing up task performance with respect to the average cost and
balancing time tup for the test trajectories (mean±s.d. over 20 trials) as (a)
the number of data and (b) the noise increases.

exploration. In the setting where model information, such as

knowledge of l, is unavailable, such data may be obtained,

for example, by visual estimates of the bob height.

As training data, 8000 data points are collected in the form

of trajectories recorded from the pendulum during motor

babbling. In particular, each trajectory is initiated at rest, at a

uniform-randomly selected joint angle, q ∼ U [−2π, 2π] rad,

and a trajectory is generated by applying uniform-random

commands τ ∼ U [−5, 5]Nm at each time step for 10 s of

operation. During each trajectory, the joint angular position,

velocity, command and pendulum bob height are recorded at

sampling rate 40Hz.

Using this data, LWLSPI is then applied to learn a con-

troller. The estimate Q̃π , is formed from a set of local models

with Gaussian weighting functions, wk(y) = e−|y−ck|
2/2σ2

with fixed width σ2 = 0.125, and with the number and

placement of the centres ck chosen automatically according

to the data. Briefly, the latter is done by iterating through the

data, evaluating the activation of all existing local models for

every datum, and placing a new model whenever a datum

is found for which no model is activated above a minimum

activation threshold ŵmin = 0.03. In the evaluations reported

here, this yielded 88 models, on average. A typical data set,

and the associated local models, is illustrated in Fig. 3(b).

The results reported here use discount factor γ = 0.85 and

an initial policy that simply predicts zeros for all states, i.e.,

π0(y) = 0.

Learning performance is evaluated by computing (i) the

average cost incurred and (ii) the average time tup that the

pendulum spends upright (|q| < π/4 rad) [11] for a set of 10
test trajectories. The latter are recorded for 10 s of operation,

starting from rest at a set of evenly-spaced joint angles q ∈
[−π, π] rad. In the following, results are reported for 20 trials

repeated on different data sets.

Fig. 3(b) illustrates a sample test trajectory for an example

policy learnt by LWLSPI. As can be seen, the movement

starts with a phase of oscillation, in which the controller

pumps energy into the system in order to overcome gravity.

The pendulum is then stabilised, as the trajectory converges

to the upright position (q = 0 rad). Evaluated on the 10 test

trajectories over 20 trials, the average cost incurred by the

learnt policy is −1.79± 1.43 with a mean balancing time of

tup = 3.06±1.11 s. In Fig. 3(c), the cost of the intermediate

policies generated at each iteration of LWLSPI is plotted. As

can be seen, after only one iteration, a near-optimal policy

is reached, with only minor improvements from there on.

To test the robustness of learning, the evaluation is also

repeated for data sets containing (i) different quantities of

data and (ii) different levels of noise. For the latter, the state

yn and cost jn measurements7 are corrupted with zero-mean

additive Gaussian noise with variance proportional to the

scale of the data. The results are plotted in Fig. 4.

As can be seen, as the quantity of data increases the cost

gradually decreases, and a corresponding increase, in the

average balancing time is seen. Conversely, as the noise level

increases the opposite trend can be observed, in keeping with

expectations.

B. Door Opening

The focus of the next evaluation, is to test the robustness

of LWLSPI in adaptively learning controllers for different

systems with unknown dynamics, in the absence of direct

state measurements. As an example of this, the task of

learning to open unfamiliar doors, as discussed in Sec. II-A,

is examined.

The doors are modelled as rigid bodies, attached to a

rotational hinge, to which the robot may apply forces u=
fr∈R

2 in Cartesian space at the handle (see Fig. 1). The state

x=(q, q̇)⊤∈R2 is described by the hinge angle and angular

velocity, however, since the latter is assumed not to be

directly observable (ref. Sec. II-A), observations are given in

the form of end-effector position and velocity measurements

y = (r⊤, ṙ⊤)⊤ ∈ R
4. The latter may be provided from the

robot kinematics, or visual estimates.

The 5 doors considered include:

1) Pull-door: opens inwards, with hinge angle restricted to

admissible range − 2
3π < q < 0 rad.

2) Push-door: opens outwards, with hinge angle restricted

to 0 < q < 2
3π rad.

3) Swing-door: opens in either direction, with hinge angle

restricted to − 2
3π<q< 2

3π rad.

4) Pull-door with closer: identical to the pull-door, except

for the presence of a ‘closer’ that applies a restorative

force to bring the door back to the closed position.

The closer is simulated as a spring-damper system that

applies torque τc = −kcq − bcq̇ with kc = 1Nm/rad
and bc = 0.5Nms/rad.

7Note that, this matches real learning situations in which information
about the state and cost come from noisy sensor data, while the un, are
exactly known, since these are given from the controller.
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Fig. 5. Typical opening behaviours learnt for the different doors, visualised
in the state space (phase space of the hinge) x = (q, q̇)⊤. Solid black
lines show the trajectories generated from the learnt controllers (final state
indicated by •). Grey dots indicate locations of training samples. Black
dashed lines mark the angle for which the door is fully open (q = ±π/2).
In (c), the red line indicates the position of the obstacle.

5) Push-door with obstacle: identical to the push-door,

except for the presence of an unseen object behind

the door, causing it to ‘jam’ when hit. The obstacle

is assumed to be placed such that jamming occurs at

q = π/3 rad, and ‘jamming’ is modelled as a 40-fold

increase in the viscous friction after impact.

The doors have a common mass, 15 kg, width, 1m, and

viscous friction 0.1Nms/rad. Any impacts between the

door and its frame are modelled as inelastic collisions,

with coefficient of restitution cr = 0.1. Note that, (i) the

differences in the doors are such that qualitatively different

controllers (pushing, pulling, etc.) are required for successful

opening, (ii) none of the parameters are explicitly available

to the learner: The appropriate strategy must be determined

from interactions with the system.

The primary performance measure in this task is to

maximise the width of the gap g(q) (see Fig. 1), in the

shortest possible time. In addition, penalties are imposed

for (i) excessively high forces and (ii) very high velocities,

in order to reduce the risk of large internal forces or high

velocity impacts that could potentially damage the door or

robot. The resultant cost function is

j = −g(q) + wv ṙ
⊤ṙ+ wf f

⊤
r fr (21)

where wv = 5×10−3 and wf = 10−4. Note that, the quanti-

ties in (21) are only provided through sensor measurements

(g, ṙ) or directly from the controller (u = fr), as per the

assumptions described in Sec. II-A.

Door Success (%) Time (s) Cost

Pull door 100 1.04 ± 0.08 −2.13 ± 0.08
Push door 100 1.02 ± 0.11 −2.16 ± 0.11
Pull w/ closer 45 1.35 ± 0.30 −0.79 ± 0.92
Push w/ obstacle 75 1.10 ± 0.16 −1.58 ± 0.95
Swing door 75 1.20 ± 0.61 −1.95 ± 0.54
Swing door (extra data) 100 1.39 ± 0.29 −1.86 ± 0.25

TABLE I

SUCCESS RATE, OPENING TIME AND COST (MEAN±S.D.) FOR LEARNING

TO OPEN DIFFERENT DOORS OVER 20 TRIALS.

As training data, 5 trajectories (3000 data points) are

collected through motor babbling, with commands drawn

uniform-randomly from ui ∼ U [−25, 25]N, i ∈ {1, 2} at

every time step. In each trajectory, the door starts at rest,

in the closed position, i.e., x = (0, 0)⊤, and the robot end-

effector position, velocity, force and gap width are recorded

for 3 s. The model of Qπ is constructed in the same manner

as described in Sec. IV-A, using Gaussian weighting func-

tions, with fixed widths σ2 = 1.5 and minimum activation

threshold ŵmin = 0.3 for allocating models. The discount

factor is γ = 0.9 and the initial policy predicts zeros for all

states, π0(y) = 0.

Performance is evaluated on the (i) rate of success in

opening the door (across trials), (ii) average opening time

of successful trials, and (iii) cost incurred, when using the

learnt policy to generate a trajectory from rest at the closed

position. Here, ‘success’ is defined as the door reaching the

fully opened position (|q| ≥ π/2 rad), and coming to rest

(|q̇| < 0.05 rad/s) by the end of the trajectory. The results,

summarised in Table I and Fig. 5, are for 20 repeated trials

on different data sets.

Looking at the success rates (Table I), it can be seen that

LWLSPI has no difficulty in learning to open the pull- or

push- doors, and produces smooth trajectories (ref. Fig. 5)

that incur a similar level of cost. For the swing door, the

success rate is a little lower at 75%, with higher variance.

A consequence is somewhat unstable behaviour, with, for

instance, occasional high velocity impacts (see Fig. 5(e)).

Upon closer examination, the cause appears to be sparsity

of the data: the swing door has a larger state-space than the

push or pull doors, and therefore requires greater exploration

to gather sufficient data to learn a good policy. Repeating

the experiment with with a 7-fold increase in the number of

data confirms this: the success rate draws closer to that of

the push/pull doors (ref. Table I), with lower variance in the

cost.

The worst performance is seen in the case of the pull

door with closer and the push-door with obstacle, with lower

success rate and higher average cost. Again, this can be

attributed to the data distribution: The effect of the closer

on the motor-babbling exploration strategy, for instance, is a

biasing of samples toward low-velocity movements around

the closed position leaving little data around the target

(open) position (the effect is similar for the obstacle), see

Fig. 5(c)&(d)). It is speculated that a more directed explo-

ration strategy (e.g., systematic testing of pushing and pulling

behaviour with different levels of force) would improve the

success rate for these cases too.
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V. CONCLUSION

This study presents an extension to Least Squares Policy

Iteration that enables learning of optimal feedback controllers

for non-linear problems in which the dynamics, sensing and

cost functions are unknown. By exploiting locally weighted

learning techniques, the proposed approach allows for gains

in computational efficiency compared to global methods,

by focusing learning only on regions in which data has

been seen. Numerical evaluations show the efficacy of the

approach in solving non-linear control problems, characterise

the data requirements (in terms of quantity and distribution),

noise susceptibility, and show the robustness in learning

controllers for systems with a range of different dynamics.

In future work, the adaptation of the size and shape of the

weighting functions will be investigated in order to achieve

greater accuracy and improve generalisation of the learnt

controllers. It is also intended that the empirical evaluations

be extended to include (i) more complex tasks in higher

dimensions (e.g., by increasing the sensor space to provide

richer information about the task), (ii) further investigation

of suitable exploration strategies to enable fast learning

in settings where the dynamics make random exploration

unsuitable.

APPENDIX: COMPUTATION OF Ly , Lu
AND l1

Define the symmetric matrices

Θk :=









(θk)1
1
2 (θk)2 · · · 1

2 (θk)R+Q+1

· (θk)R+Q+2 · · ·
1
2 (θk)2(R+Q)+1

...
...

. . .
...

· · · · · (θk)2(R+Q)+(R+Q)C2+1









(22)

and

Ψ :=





y

u

1



 (y⊤u⊤1) =





yy⊤ yu⊤ y

uy⊤ uu⊤ u

y⊤ u⊤ 1



 (23)

where Θk,Ψ ∈ R
(R+Q+1)×(R+Q+1). With these defini-

tions, the local model of the value function (11) can be

written as

Q̃π

k (y,u) = vec[Θk]
⊤vec[Ψ] = Tr[Θ⊤

k Ψ]. (24)

It is desired to solve

∇u[Q̃
π

k (y,u)] = ∇u[θ
⊤
k φ(y,u)] = 0. (25)

Note that ∂Q̃π

k

∂ui
= Tr

[

Θ⊤
k

∂Ψ

∂ui

]

(26)

where

D :=
∂Ψ

∂ui
=





0 ye⊤i 0

eiy
⊤ eiu

⊤ + ue⊤i ei
0 e⊤i 0



 (27)

where ei is the ith basis vector (i.e., a vector with 1 as the

ith element and zeros elsewhere).

Define the block-wise partition8 of Θ

8The k index is omitted in the following for readability.

Θ =









ΘR×R
11 ΘR×Q

12 ΘR×1
13

ΘQ×R
21 ΘQ×Q

22 ΘQ×1
23

Θ1×R
31 Θ1×Q

32 Θ1×1
33









(28)

and likewise for D, where superscripts denote the block

dimensions. Noting that the matrix product C=AB can be

formed blockwise according to Cαβ =
∑

γ AαγBγβ , (26)

can be re-written as

∂Q̃π

∂ui
=Tr









Θ12D21 · ·

·
∑3

j=1 Θ2jDj2 ·
· · Θ32D23







 (29)

where off-diagonal terms (irrelevant for computing the trace)

are omitted. Substituting for D and manipulating, yields

∂Q̃π

∂ui
=vec[(Θ12ei +Θ⊤

21ei)]
⊤y

+ 2vec[Θ⊤
22ei]

⊤u+ vec[(Θ23 +Θ⊤
32)]

⊤ei (30)

The matrices Ly, Lu and the vector l1 are thus defined as

Ly=





(λy
1 )

⊤

...

(λy

Q)
⊤



 , Lu=





(λu
1 )

⊤

...

(λu
Q)

⊤



 , l1=





λ1
1
...

λ1
Q



 (31)

where λ
y

i := vec[(Θ12ei + Θ⊤
21ei)] ∈ R

R, λu
i :=

2vec[Θ⊤
22ei] ∈ R

Q and λ1
i := vec[(Θ23 +Θ⊤

32)]
⊤ei ∈ R.
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