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Abstract— The combination of a cheap single-point laser
range finder (LRF) device and cameras has become increasingly
useful in recent research and industrial applications. While the
single dot laser range finder can only provide depth for a single
pixel in the observed image, it’s cost and size can be useful
for handheld devices or very lightweight robotic platforms.
In this work, we propose two accurate calibration methods
for determining the position and direction of the laser range
finder with respect to the camera. Notably, we can determine
the full calibration, even without observing the laser range
finder observation point in the camera image. We evaluate
both methods on synthetic and real data demonstrating their
efficiency and good behavior under noise.

I. INTRODUCTION

The combination of a cheap single-point laser range finder
(LRF) device and cameras has become increasingly useful
in recent research and industrial applications [1], [2]. While
the single dot laser range finder can only provide depth for
a single pixel in the observed image, it’s cost and size can
be useful for handheld devices or very lightweight robotic
platforms. The calibration of such setups is therefore of
considerable interest. In this work, we propose two accurate
calibration methods for determining the position and direc-
tion of the laser range finder with respect to the camera. The
first method observes the laser dot on the known target plane
to add constraints on the 3D location of the measured point.
Fig. 1a illustrates the detailed setup for this method. The
second method only uses the distance measurement from
the laser range finder as constraint, thereby avoiding the
requirement to observe the laser dot location in the image.
Fig. 1b visualizes this second measurement setup. Both
methods integrate with standard camera calibration methods
[3], and offer a very simple calibration procedure. From our
best knowledge, our methods are the first in literature to
tackle calibration issue for this setup.

2D, scanning or 3D laser range finders, which distance
to many points simultaneously, are well-known in literature
[4], and have been widely used, especially in robotics [5],
[6], [7], [8], [13]. However, such multi-points LRFs are
usually expensive and heavy, limiting the use in small and
lightweight devices. Therefore some researchers looked to
more affordable single-point LRFs, for example, Patel et. al.
[1] and Wither et. al. [2] proposed to use such single-point
LRFs in their augmented reality systems. In recent years,
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single-point LRFs were further miniaturized and can be
found in inexpensive measurement tools. Nowadays, mobile
devices can be easily equipped with a single-point LRF
model [2], [10]. These devices open new opportunities for
a wide range of applications which have been impractical
previously. Therefore, a simple and accurate calibration
procedure for systems comprising a single-point LRF and
a camera is required.

Several calibration methods have been proposed for the
setup of multi-points LRF and camera in literature. One
widely known calibration method by Zhang and Pless [3] cal-
ibrates the camera intrinsic parameters and multiple-points,
on projective line, LRF’s relative pose with respect to the
camera. Besides, Unnikrishnan and Hebert [11] developed
a fast and easy to use software which allows to calibrate
camera intrinsics and relative pose of 3D LRF. Recently,
Vasconcelos et. al. [4] introduced new calibration method
which requires a minimal of three captured plane poses
for the setup of multiple-points, on projective line, LRF
and camera such as in Zhang and Pless’s setup; however,
Vasconcelos et. al. focused only on calibrating the relative
pose between LRF and camera while assuming that the
camera’s intrinsics are well calibrated beforehand.

Although calibration for the setup of single-point LRF and
camera can benefit from the methods discussed, espeically
the method proposed by Zhang and Pless [3]. However, our
calibration of the relative pose between single-point LRF
and camera requires a different approach, where laser range
observation is limited to single point per video frame. This
poses different challenges regarding prior work. Additionally,
global optimization to refine camera’s intrinsics and the
relative pose must be constructed with different formulas.

In this work, we propose two methods to tackle the chal-
lenges of extrinsic single-point LRF and camera calibration.
Our evaluation results show that the proposed methods are
highly accurate and efficient. Furthermore, we offer an easy
to use software implementation demonstrating a complete,
simple calibration procedure.

II. METHOD

A. Common preliminaries

Our calibration methods integrate with the standard cam-
era calibration methods that use the observations of a known
planar target pattern from different camera poses. We assume
that n images Ii, i = 1 . . .n of the target were recorded and
that through camera calibration, both the intrinsic parameters
of the camera and the n extrinsic pose parameters pi for each
image Ii were estimated. Thus, the pose of planar target is
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Fig. 1: Method 1 (left) uses the pose of a calibration target plane Πi, the distance of a point on the plane ri and the
observation of the laser dot on the same point in the camera image Oi. Method 2 (right) dispenses with the observation of
the laser dot and only uses the plane pose and distance measurement.

known for each image. The pose is fully determined and in
real world units, because the target pattern dimensions are
known in real world units.

Camera intrinsics and extrinsics calibration: Camera
calibration aims to find intrinsic parameters and extrinsic
parameters of the camera.

Given world 3D point [Xw,Yw,Zw]
T , and transformation

pose = [R|t], 3D point in camera coordinates is:

[
xc yc zc

]T
= R

[
Xw Yw Zw

]T
+ tT (1)

x′ = xc/zc,y′ = yc/zc,r =
√

(x′− cx)2 +(y′− cy)2 (2)

Camera’s lens distortion model is formulated as radial
distortion, thus we have

x′′ = x′(1+ k1r2 + k2r4) y′′ = y′(1+ k1r2 + k2r4)

where k1,k2 are radial distortion coefficients.
Camera linear model is formed as a 2x3 matrix (4DOF):(

u
v

)
=

[
fx 0 cx
0 fy cy

]
∗
(

x′′

y′′

)
(3)

where fx, fy are focals, cx,cy are principle point coordinates
on image plane, and u,v are in pixel coordinates.

The camera calibration is formulated as non-linear opti-
mization of the following objective equation:

Ocam = ∑
i, j

∥∥∥∥[u j
v j

]
− campro j(posei ∗Wj)

∥∥∥∥
2

(4)

where Wj = [X j,Yj,Z j]
T are known 3D points of the cali-

bration target, [u j,v j]
T is the 2D pixel location observations

of the 3D points, and campro j() function is to map 3D point
in camera coordinate to image plane. For campro j(), it is
described in Eq. (1), (2) and (3).

Algorithm 1 Calibrate camera intrinsics and LRF extrinsics.

Require: Known planar target with 3D point positions.
Ensure: Camera parameters ( fx, fy,cx,cy,k1,k2),

Laser range finder position P and direction D.
1: Estimate plane poses Πi and camera intrinsics

( fx, fy,cx,cy,k1,k2) using camera calibration.
2: Setup linear constraints for LRF parameters for each Πi,

using Eq. (7) for Method 1 or Eq. (9) for Method 2.
3: Solve LRF parameters (P,D)T from linear constraints.
4: Refine estimated LRF parameters using Eq. (10).
5: Refine camera intrinsics and LRF parameters (P,D)T

jointly in Eq. (10).

B. The Algorithm

Algorithm 1 provides an overview of the proposed es-
timation method for complete camera and single-point LRF
calibration. In step (1) applies well-known camera calibration
techniques [3] to calibrate the camera intrinsics and pose
of the calibration target. Given camera intrinsics and plane
poses, we obtain a system of linear equations for the LRF
extrinsics (step (2)) and solve it (step (3)). The linear equa-
tions in step (3) guatantee a closed form solution which is
relatively close to the optimal solution. Therefore, nonlinear
least square optimization of the objective function in Eq. 10
can be applied in order to refine the initial estimated LRF
extrinsics. Finally, global bundle adjustment is applied to
solve the same objective function as before; however, we
now adjust camera intrinsics, plane poses, and LRF extrinsics
simultaneously. The final step is only necessary when there
are much noise in measurements.

C. Method 1: Laser Dot and Range Observations

The first method effectively measures a set of 3D points
both in the LRF coordinate system as well as in the camera
coordinate system (see Fig. 2). Then a 5 DoF transformation
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Fig. 2: Top-down view of 3D geometry of Method 1.

between the two coordinate systems can be estimated, while
the rotation around the axis of the laser is undefined. We
represent the transformation as the point of origin of the
laser P and the direction D in the camera coordinate system.
The direction is assumed to be of unit length ‖D‖= 1 which
provides the 2D rotation freedoms.

A 3D point X measured by the laser range finder can be
represented in camera coordinates using the origin of the
laser P and direction D as

X =

Px + r ·Dx
Py + r ·Dy
Pz + r ·Dz

= P+ r ·D . (5)

The same point X can be observed in the camera image,
if it lies on the calibration target plane and the laser creates
a dot that can be detected. Then the point’s 3D coordinates
are given by re-projecting the image observation (u,v)T back
onto the plane Π =

(
a b c d

)
X =

−d
au+bv+ c

u
v
1

= z

u
v
1

 . (6)

Setting equation (5) equal to (6) and rewriting for the
unknowns (P,D)T provides 3 linear constraints from a single
image (

I r · I
)(P

D

)
= z

u
v
1

 . (7)

Given two or more images observing the calibration target
and the laser dot on the target plane, the equations in (7) are
stacked for the observations and solved for the vector of
unknowns (P,D)T in a least squares sense.

Existence of a solution: The system is solvable as long
as two different points on the laser ray are measured, and
therefore two different distances ri are observed. Then the
system is of rank 6 and solvable.

D. Method 2: Range Observations Only

Image processing for detecting the laser dot may not
always be feasible, depending on lighting situation, calibra-
tion target and the LRF device itself. Furthermore, some
applications require the LRF to measure points outside the
camera’s field of view. For example the Hedgehog tracking
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Fig. 3: One sample setup where the laser dot is oblique.

system [12] uses a set of lasers to cover different directions.
Fig. 3 shows a model of such a setup.

To address these situations, we propose a second method
which uses only range observations while requiring that the
laser beam hits a reference plane that is known relative to
the camera. Without loss of generality, we assume that the
laser beam hits the calibration target plane, but any other
plane rigidly connected to it is also viable. It is shown from
the work of Wei and Hirzinger [13] that calibration for these
situations can be solved without requiring knowledge about a
reference plane. In contrast, our method specializes on setups
which the reference plane is known. Consequently, we can
achieve more efficient calibration method.

Given again the target plane Π =
(
a b c d

)
, we now

only assume that the LRF measures the distance to a point
on that plane. Therefore the 3D point X given by (5) must
coincide with the plane Π. This leads to the following linear
equation

Π ·X =
(
a b c d

)
·


Px + r ·Dx
Py + r ·Dy
Pz + r ·Dz

1

= 0 . (8)

Eq. (8) can be rearranged in the unknowns (P,D)T to
obtain a single linear constraint((

a b c
)

r ·
(
a b c

))(P
D

)
=−d . (9)

Using at least 6 input images, we obtain 6 or more con-
straints and can solve the resulting system for the unknowns
(P,D)T . Again similar to II-C, we also obtain any scale
difference between the camera coordinate system and the
LRF coordinate system.

Existence of a solution: To obtain a solution, the matrix of
constraints must have full rank 6. For the first 3 columns, full
rank implies that the normal vectors of all planes span a space
of rank 3. This implies that the planes cannot all be parallel,
or be parallel to a single direction in space. Furthermore, the
second 3 columns are the same set of normal vectors, but
scaled by different ranges. Again, to add further 3 ranks, the
ranges should differ between the individual planes. Overall,
if the camera/LRF setup is moved to different distances from
the target plane and into orientations covering all 3 space,
then the matrix will be of full rank.
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E. Bundle Adjustment

Zhang and Pless [3] demonstrated that applying refinement
to camera intrinsics, plane poses, and LRF relative pose in a
global bundle adjustment enhances overall accuracy. In this
work, we used a similar approach to do non-linear refinement
on the camera intrinsics, plane poses, and LRF relative
pose. We minimize a single energy function comprising two
terms: reprojection error and LRF distance error as given
by equations (7) and (9). The first term is to adjust camera
intrinsics and plane poses, while the second term refines the
LRF relative pose.

O = ∑
i, j

∥∥∥∥(u j
v j

)
− campro j(posei ∗Wj)

∥∥∥∥2

+E (10)

For method 1, the objective function E in equation (10) is
as follows

E = ∑
i

∥∥∥∥∥∥(I ri · I
)(P

D

)
− zi

ui
vi
1

∥∥∥∥∥∥
2

+(‖D‖2−1)2 (11)

And, for method 2, the objective function E in equation
(10) is

E = ∑
i

∥∥∥∥(Πi ri ·Πi
)(P

D

)
+di

∥∥∥∥2

+(‖D‖2−1)2 (12)

In equation (11) and (12), we used the second term to
normalize the length of the laser direction D.

III. EVALUATION

In this section, we evaluate the two methods on synthetic
and real data, focusing on the estimated laser position and
direction. The experiments with synthetic data evaluate the
performance under the influence of noise, and the number
of measurements used. The real data validates the accuracy
results from the simulation.

A. Synthetic Data

In order to generate perfect ground truth data, we simulate
the imaging and distance measurement process. We use
the camera intrinsics of a real camera at image resolution
640x480, and simulate 100 plane poses at different distances
and orientation. Furthermore, we define the LRF parameters
(P,D)T . Then, for each plane pose, we calculate the re-
projection of a grid of 3D points on the plane, and simulate a
laser distance measurement by intersecting the plane with the
laser line. The re-projection of the intersection point provides
the 2D observation of the laser dot, while the distance to the
laser position is the range measurement.

Firstly, we investigate the performance of the two proposed
calibration methods under different noise magnitudes. We
simulate camera observation noise by adding 2D Gaussian
noise (σ = 1 pixel) to the pixel observations, and laser range
noise by adding Gaussian noise (σ = 2mm) to the distance
measurements. For different noise levels, we scale the default
standard deviations by a factor in the range [0.25− 3.0].
For this investigation, we use 3 poses for Method 1 and

7 poses for Method 2. For each method, we run 100 trials
with different subsets of poses from the simulated set.

We evaluate three different conditions: (I) camera noises
only, (II) laser range noise only and (III) both sources of
noise. Fig. 4 illustrates the errors in estimating LRF position
and direction for the two methods. The position error is the
distance between estimated and ground truth position, while
the direction error is the angle between estimated and ground
truth direction.

The errors grow respectively with noise magnitude as
expected. Furthermore, Method 1 has smaller errors in all
the cases comparing to Method 2, because it uses more
information from each image. For Method 1, the direction
error is independent from the laser noise, as the laser
measurement only defines the laser position P on the line
in space (see Fig. 2).

A second evaluation looks at the influence of the number
of measurements on accuracy. We use between 2 to 20 poses
for Method 1, and 6 to 20 poses for Method 2 and generated
for each number of poses 100 random trials. In all cases
a fixed Gaussian noise with σ = 1pixels on camera mea-
surements and σ = 2mm on laser measurements was used.
Fig. 5 shows estimation errors as functions of the number
of measurements used. Both methods improve significantly
with more than the minimal set of measurements. With 10
measurements or more, Method 1 reaches an acceptable
level (below 10−2m position error and around 10−1 angular
error). Method 2 needs 20 measurements or more to reach a
comparable accuracy.

We also observed that Method 2 is more sensitive to the
distribution of angles under which the calibration target is
seen. This is directly related to the linear system which is
better conditioned of the normal vectors of the plane cover
a larger part of the space.

B. Empirical Experiments

For evaluation on real data, we captured 100 plane poses at
random positions. Similar to the synthetic data, we evaluate
the two methods on different numbers of plane poses: 2 to
20 poses for Method 1, and 6 to 20 poses for Method 2.
We run 100 trials for each number of plane poses, randomly
chosen from the recorded 100 poses. Since no ground truth
data is available, we plot the distribution of the estimated
parameters (see Fig. 6) to demonstrate the reliability of the
proposed methods.

The empirical evaluation results largely confirm our eval-
uation on synthetic data for both Method 1 and Method 2.
Moreover, it shows that in an empirical setup, Method 2
performs comparative to Method 1 when the number of plane
poses is from 8 to 12; and Method 2 slightly outperforms
Method 1 with larger number of poses. This seems contradict
to our synthetic evaluation whereas Method 1 has mostly
smaller errors comparing to Method 2. This indicates that a
major source of error in Method 1 is the accuracy of the laser
dot detection in the corresponding video image. This source
of error in reality is much larger than our noise simulation
in the synthetic evaluation. In our experiments, the accuracy
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(c) Method 1: Direction Angle Error
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Fig. 4: Error distribution under noise levels in the range of [0.25− 3.0] simulated on synthetic data for Method 1 (left
column) and Method 2 (right column). The boxes illustrate the position error (first row) and angular error of the direction
(second row) where the box shows the 25%− 75% quantiles, and the whiskers to 99.3%. In (c) the laser noise does not
influence the direction, therefore there is no direction error in this case.

2 3 4 6 8 10 12 14 16 18 20
10

−4

10
−3

10
−2

10
−1

10
0

10
1

Plot of Position Errors

P
o
s
it
io

n
 E

rr
o
r 

in
 m

e
te

r 
[l
o
g
 s

c
a
le

]

Refined

BA

Linear

(a) Method 1: Position Error

6 7 8 10 12 14 16 18 20
10

−4

10
−3

10
−2

10
−1

10
0

10
1

Plot of Position Errors

P
o
s
it
io

n
 E

rr
o
r 

in
 m

e
te

r 
[l
o
g
 s

c
a
le

]

(b) Method 2: Position Error

2 3 4 6 8 10 12 14 16 18 20
10

−3

10
−2

10
−1

10
0

10
1

Plot of Direction Errors

A
n
g
le

 E
rr

o
r 

in
 d

e
g
re

e
 [
lo

g
 s

c
a
le

]

(c) Method 1: Direction Angle Error
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(d) Method 2: Direction Angle Error

Fig. 5: Error distribution for different numbers of measurements for Method 1 (left column) and Method 2 (right column). The
pure linear solution is given in red, refined estimate for laser position and direction in green and full optimization including
camera intrinsics in blue. The noise level was fixed here to 2D Gaussian noise (σ = 1 pixel) for the pixel observations,
Gaussian noise (σ = 2mm) for range measurements.

of the laser dot detection varied in a range of approximately
2 pixels or more in few cases.

Similar to evaluation on synthetic data, we also observed
that Method 2 needs well conditioned plane poses where
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(c) Method 1: Direction Angle Distribution
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(d) Method 2: Direction Angle Distribution

Fig. 6: For both Method 1 (left column) and Method 2 (right column), we plot distribution of the estimated LRF parameters
(P,D) for real data including: length of P, and angle between D and camera direction. The pure linear solution is given in
red, refined estimate for laser position and direction in green and full optimization including camera intrinsics in blue.

angles between the planes cover a range up to 90 degrees.

IV. CONCLUSION AND FUTURE WORK

We proposed two methods for calibrating the relative pose
of a single point laser range finder with respect to a camera.
Method 1 requires range observations and 2D observation of
the laser dot in the corresponding frame; while Method 2
requires only range observations dispensing with any further
image processing, or in setups where the laser is not visible in
the camera image at all. Both methods can be used with any
normal camera calibration method using multiple images of
known targets. Furthermore, we described how the methods
are integrated with normal camera calibration and how to
model a joint optimization of camera and LRF parameters.

Our evaluation on both synthetic data and real data shows
that the proposed methods are reliable and accurate, es-
pecially Method 1. For the same given number of plane
poses, Method 1 performs significantly better than Method
2, according to our evaluation results.

While Method 2 using only laser range observations is
clearly more limited compared to the more direct Method
1 using both range observations and detected laser dot, we
think that it extends the ranges of possible setups. Therefore,
we plan to investigate other possibilities to gain higher
accuracy for this type of setups.
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