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Abstract— This study proposes a model that combines a
realistically scaled neural network made up of pools of spiking
neurons, with a musculoskeletal model of the human arm.
We used evidence from literature to design topological pools
of spinal neurons and their synaptic connections. The spiking
output of the motor neuron pools were used as the command
signals that generated motor unit forces, and drove joint motion.
Feedback information from muscle spindles was relayed to the
neural network via monosynaptic and disynaptic pathways.
Participant-specific parameters of the combined neuromuscu-
loskeletal (NMS) system were then identified from recorded
experimental data. The identified NMS model was used to
simulate the arm stretch reflex and the results were validated
by comparison to an independent recorded dataset. The models
and methodology proposed in this study show that large and
complex neural systems can be identified in conjunction with
the musculoskeletal systems that they control. This additional
layer of detail in NMS models has important relevance to
the research communities related to rehabilitation robotics and
human movement analysis.

I. MOTIVATION

Modeling of human neuromuscular physiology plays a
vital role in furthering our understanding of normal and
pathological movements. A class of such models incorporate
methods used in robotics such as kinematics, dynamics,
optimization and mathematical modeling to simulate physical
movements as the result of interactions between the neural,
muscular and skeletal systems [1], [2], [3], [4]. Among the
biggest challenges in neuromusculoskeletal (NMS) modeling
are 1) Approximating complex neuromuscular behavior
by mathematical functions that are reasonably simple, and
2) Determining parameters for these functions that can
accurately reproduce behavior outside of those directly
recorded. The Central Nervous System (CNS) organizes
movements by a tight coupling of action, feedback and
reaction with the muscular and skeletal systems. Despite
this, it is possible to isolate and study parts of this large
complex system. For example, the work on motor control
and reinforcement learning by Doya et al. [5] focuses on
the planning and modulation of movements from a neural
perspective, by modeling large populations of neurons and
studying the emergent behavior from interactions between
neurons. From a more physical perspective, we can also
consider the body as a biomechanical device interacting
dynamically or passively with the environment. Studies
can then focus on the actuation of this rigid-body skeletal
structure with muscles modeled as wires [2], [1] or finite
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Fig. 1. Schematic of the stretch reflex mechanism: In the posture illustrated
above, a stretch in the bicep muscle spindles causes the corresponding
sensory neurons (B SN) to fire. This causes subsequent excitation of the
Bicep motor neurons (B MN) via a monosynaptic pathway (B SN > B
MN), and simultaneous inhibition of the tricep motor neurons (T MN) via
a disynaptic pathway (B SN > IN > T MN). Note that only some of the
synaptic connections are shown for clarity of illustration.

element deformable volumes [6]. Studies that combine
neural control signals with musculoskeletal models have
the advantage of being closer to the biological process, but
can become computationally infeasible due to large model
scales. By reducing the complex neural dynamics to simpler
functions of lesser dimensions, we can focus on a subset
of movements occurring via known physiological processes
(for example, [2], [3]). These models have the ability to
capture some of the macroscopic movement behaviors such
as disturbance compensation [7], [8], stable locomotion [7]
and the stretch reflex [4]. However, as a limitation of the
simplified control architecture, subtle aspects of movement
generation such as the recruitment principle and rate coding
[9], may be difficult to capture.

Contributions:
This study models the stretch reflex of the bicep muscle in
the posture illustrated in Fig. 1. The model components are
detailed in Section II, followed by the human experiments
(Section III) used in the model parameter identification
process, Section IV. Results are presented in Section V and
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discussed in Section VI. The following contributions arise
from this study:
• Integration of realistic “spiking” neural networks with

musculoskeletal models
• Development of experimental and parameter estimation

methods for combined NMS models
• Simulation of the bicep stretch reflex in the human arm

II. NEUROMUSCULOSKELETAL MODEL
Fig. 1 shows an overview of the NMS model used in this

study. The network architecture and neuron model equations
detailed in this section were implemented in the software
NEST [10]. Forward kinematics and forward dynamics were
simulated using a custom-built software using robotics algo-
rithms and musculo-skeletal visualization, sDIMS [1]. Com-
munication between the NEST and sDIMS simulators was
implemented in the Message Parsing Interface (MPI) parallel
computing environment, using the MUSIC framework [11].

A. Neural Network

The neural network consisted of topological distributions
of Motor Neurons (MN), Sensory Neurons (SN) and In-
terNeurons (IN). The control input to the neural network was
constant stimulation (simulated DC current) applied directly
to the MN pools, and represented the cumulative descending
drives coming from the upper motor neurons and higher brain
centers.

Motor Neurons (MN): In biological muscle, one MN can
enervate several hundreds of muscle fibres; this is termed
as a Motor Unit (MU). For our study we chose the average
number of MUs found in the bicep, NB = 120, and tricep,
NT = 240, muscles based on counts from human physiology
[12]. It is also known that MUs are of varying strengths,
and that weaker MUs are slower and controlled by smaller
MNs (and vice versa). This type of architecture encodes
the recruitment principle [9], which states that for a given
recruitment (force) level, smaller MNs fire before larger ones.
To model this change in MN size, we varied the membrane
capacitance as smaller neurons have lower capacitance and
hence fire first. Human spinal MN diameters are known to
vary from 50µm to 90µm [9]. According to [13], specific
membrane capacitance of spinal cord neurons in the rat
ventral horn have been found to be 1.5 to 2.28µF/cm2.
Assuming a spherical surface area of the neuron, we then
get a variation for membrane capacitance from 117pF to
580pF. This variation was reproduced as a linearly increasing
function of MN count (1 = smallest, N = largest); Ci =
CSF(N/2− i)+ rc, with Ci as the membrane capacitance of
the ith MN, rc a constant that determines the mid-point of
the distribution (defined in Table II-A), N the total number
of MNs (in that specific pool), and CSF the scaling factor
used in parameter identification (detailed later in Sec. IV).
Dynamic behavior of MNs was modeled using the Integrate
And Fire (IAF) neuron model [14]. The IAF model represents
the general electrical behavior of neurons as:

dVm

dt
=−

(
Vm−EL

τm

)
+

Isyn(t)
C

+
Ie

C
(1)

where Vm is the membrane potential, EL is the resting
membrane potential, τm is the membrane time constant,
Isyn(t) is the sum of alpha-shaped synaptic currents, Ie is
the constant external input current and C the membrane
capacitance. Note that in our study we only modify the
capacitance C and assume default values estimated from
physiology for the other parameters (listed in Table II-A).
Details of the neuron model and integration scheme for the
subthreshold dynamics can be found in [14].

Neuromuscular Junction: Based on the MN pools mod-
eled above, the output of the neural network was (NB +NT )
efferent channels containing spike events. In human physi-
ology, these spikes result in MU twitch forces via electro-
chemical processes occurring at the junction of the MN
axons and the muscle fibres, called the motor end plates.
We decomposed this process into two parts: 1) neural spike
to activation 2) activation to MU force. The latter part is
detailed in Section II-B. Neural spike to activation was
approximated as the impulse response of a second-order
system [15]. In our implementation we used a modified
version of the discrete time equations developed by Cisi &
Kohn [3]:

a(t) = 2exp
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)
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)
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+
t2
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exp

(
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)
u(t) (2)

with, u(t) =
{

1, if spike detected
0, if no spike detected (3)

where, a(t) was the activation at time instance t and T max
the time to maximum force. Note that eq. (2) gives us the
instantaneous activation level of one MU (associated with
spiking behavior of one MN).

Sensory Neurons (SN): Each muscle spindle (MS) in the
muscle body is associated with one SN located just outside
the central spinal pools. Note that we henceforth use the
terms MS and SN interchangeably as they represent the same
physiological entity. The focus of this study was related to
the quickest of the MS pathways, the 1a afferent, with a
response time of about 20-30ms and primarily responsible
for encoding muscle velocity information. In a comparison
of various spindle models, Prochazka et al. [16] commented
on the efficiency of simple power-law models in representing
the macroscopic firing characteristics of cat muscle spindles.
Here, we were interested in only the first term of this model
that encodes the 1a afferent response, f (t) = 4.3v(t)0.6.
Frequency of spindle spikes f (t) was calculated from muscle
velocities v(t) in the forward dynamics simulation. We then
used a poisson process (as implemented in NEST [10]) to
approximate the frequency f (t) by discrete spike events.
We uniformly distributed, NBMS = 52, spindles in the bicep
muscle and, NT MS = 102, in the tricep muscle, based on
spindle counts from physiological studies [17].

Topology & Synaptic Connections: The neuron pools
shown in Fig. 1 were organized topologically to mirror their
arrangement in the human spine. This is especially important
as synaptic strengths were decided by the relative distance.
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Delay due to signal transmission (axonal conduction time),
was fixed at 5ms from MN to motor end plate and from
MS to SN, and 2ms for all other connections between
neuron pools. MNs of the bicep and tricep were arranged
in vertical columns, with each neuron a unit distance apart.
SN pools were arranged in a square grid, such that the
grid centers matched those of their respective MN columns.
The relative distances between the pools were chosen such
that they approximated the dimensions of their arrangement
in the human spinal column. The IN pool was arranged
in a square grid of NI = 50 identical IAF neurons located
between the two SN pools (IN default parameters are listed
in Table II-A). The number of IN in the pool, NI , was
chosen such that it approximates the IN/MN ratio found
in the human spine [9]. Note that here we only model the
IN pool responsible for inhibition of the tricep muscle (as
antagonist). Two types of pathways connected the various
neuron pools as shown in Fig. 1; 1) Monosynaptic Agonist
Excitation and 2) Disynaptic Antagonist Inhibition. For all
pathways, we assumed that all source neurons connect to all
target neurons. The synaptic weight of the connection was
varied according to the distance between each source-target
pair. The exact values of synaptic weights in physiology
is difficult to determine, however, it is well known that
neurons closest to each other form the strongest synapses
and that this synaptic weight rapidly decreases with distance
between pairs [9]. Here, we modeled this phenomenon as
a symmetrical Gaussian distribution with magnitude w and
variance σ , as a function of the distance between connecting
pairs. Thus, for our network all synaptic values could be
determined from the parameters:
• wBB+ & σBB+: Maximum weight and variance of synap-

tic distribution for Bicep SN to Bicep MN connections,
the ’+’ denotes excitation

• wT T+ & σT T+: Synaptic properties for Tricep SN to
Tricep MN

• wBI+ & σBI+: Synaptic properties for Bicep SN to IN
• wIT− & σIT−: Synaptic properties for IN to Tricep MN,

the ’-’ denotes inhibition

B. Musculoskeletal Model

The network detailed above is applicable to any generic
arrangement of agonist-antagonist muscle pair. In this study
we focus on the biceps and triceps muscles. This choice was
motivated by the large amount of literature available on the
neurophysiology of the arm muscles, and, the relative ease of
recording experimental data on the human arm (compared to
leg muscles). We also note that the bicep stretch reflex is an
important neural mechanism from a clinical perspective and
is commonly used to test for neurological pathology. The arm
was modeled as 2 rigid bodies, a fixed upper arm (including
shoulder) and forearm (including hand), connected by a
rotational joint at the elbow, Fig. 1. The skeletal bones were
scaled to the participant-specific dimensions by using the
marker data collected during experiments. Musculoskeletal
mass and inertia properties were approximated from partic-
ipant proportions and anthropometric data [1]. The elbow

joint was actuated by means of massless wires, representing
the bicep and tricep muscles. Insertion points and muscle
line-of-action were chosen carefully based on anatomical
literature. MU activations (eq. (2)) were used to calculate MU
twitch forces, and a summation of all MU twitches at a time
instant gave the total muscle force. Activation to twitch force
was computed using the Hill-type muscle model equation
F(t) = a(t) f (l) f (v)Fmax, which relates muscle force F(t)
to the instantaneous activation level a(t), muscle length f (l),
velocity f (v) and maximum tetanic force Fmax. In this study,
Fmax was a distribution over NB+NT MUs for each muscle.
Additionally, we recall that the dynamic behavior of each
MU was affected by the time to maximum force, T max eq.
(2). The relation between the MU maximum force and time
to maximum force was modeled according to the distribution:

Fmaxi =
[
p f log(N− i)+ r f

]
FmaxSF (4)

T maxi =
[
ept Fmaxi + rt

]
T maxSF (5)

where, Fmaxi and T maxi are the maximum force and time
to peak force of the ith MU, respectively. FmaxSF and
T maxSF are scaling factors that determine the parameters
of individual MUs. p f , pt , r f and rt are constants that
determine the shape of the distribution (defined in Table II-
A). Eq. (4) and (5) model MUs similar to that found in
physiological muscle, and are often referred to as S (Slow),
FF (Fast Fatigue) and FR (Fatigue Resistant) muscle fibres in
biomechanical studies. Additionally, resistance from synovial
fluid (viscous fluid between moving bony surfaces), was
modeled as a resistive torque, τ−, proportional to the joint
velocity, q̇; τ− = q̇τSF , where, the scaling factor τSF was to
be determined in the identification process.

III. EXPERIMENTS
Two experiments were designed to independently identify

steady-state and dynamic parameters of the NMS model. The
methodology employed in these experiments were similar to
those used by Schouten et al. [4] to study proprioceptive
feedback in the human shoulder. Participant joint position
data were collected using a motion capture system (Motion-
Analysis Co., USA) by attaching 8 markers to the shoulder,
upper arm, forearm and wrist. 3 wireless Electromyographs
(EMG) were attached to the skin by palpitating the mid-
point of the biceps muscle, and the lateral and medial heads
of the triceps muscle. For the first experiment, we also used
a bi-directional force sensor (Imada Z2-1 J, Range ±500N,
Resolution 0.001N), that was firmly attached to the wrist by
means of a cushioning band and a rigid metal strap. The
sensor was mounted on a heavy pedestal such that it could
not be moved by the participant during the trial. Marker
positions, EMG signals and force sensor data were recorded
at time-matched instances at 200Hz.

In experiment 1, “Graded Recruitment” (GR), the par-
ticipant was asked to position the forearm horizontally
while keeping the upper arm vertical. The force sensor
was positioned such that sensor axis was directly below
the participant’s wrist. The wrist band and metal strap
were attached such that a downward or upward force could
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Component No. of
Components

Fixed Parameters/Behavior Biological/Identification
Search Range

Model Identified Values

Bicep MN 120 EL =Vm =−70mV
τm = 10ms, Vth =−55mV

rc = 348.5

117pF ≤CB ≤ 580 pF 156pF ≤CB ≤ 541pF
Tricep MN 240 117pF ≤CT ≤ 580pF 61pF ≤CT ≤ 535pF

Interneurons 50
EL =Vm =−70mV, τm = 10ms

Vth =−55mV, C = 160pF
- -

Bicep MU Maximum
Twitch Force

120 p f =−0.2232,r f = 1.28
Eq. (4)

3.25N ≤ FmaxB ≤ 44.76N 6.71N ≤ FmaxB ≤ 23.07N

Tricep MU Maximum
Twitch Force

240 3.25N ≤ FmaxT ≤ 44.76N 4.22N ≤ FmaxT ≤ 18.18N

Bicep MU Time to
Maximum Force

120
ptb =−0.4,rtb = 0.04

Eq. (5)
32ms ≤ T maxB ≤ 132ms 41ms ≤ T maxB ≤ 112ms

Tricep MU Time to
Maximum Force

240
ptt =−1.45,rtt = 0.04

Eq. (5)
32ms ≤ T maxT ≤ 132ms 41ms ≤ T maxB ≤ 115ms

Synovial (resistive) torque - - -0.3 ≤ τSF ≤ -0.01 τSF =-0.1114
Identified Synaptic Parameters: wBB+ = 53.04,σBB+ = 3.32 wT T+ = 25.31,σT T+ = 8.25 wBI+ = 148.91,σBI+ = 103.31 wIT− =−43.37,σIT− = 13.08

be exerted on sensor by extending or flexing the elbow,
respectively. Over a course of 11 conditions, the participant
was asked exert forces from -50N (pushing downwards) to
+50N (pulling upwards) in steps of 10N. Conditions were
presented in randomized order. During each condition the
participant could see a display of the current force being
exerted on the force sensor. Once the prescribed force level
was achieved, the participant was asked to maintain it for 10
seconds. In experiment 2, “Co-contracted Reflex” (CR), we
followed a 3 arm position (extended, horizontal, flexed) ×
3 co-contraction level (low, medium, high) design. At each
of these combinations, we applied a sudden perturbation to
the wrist by dropping a 0.5kg weight from eye height, to
elicit the stretch reflex. At the beginning of the condition, the
participant was asked to rotate the arm at the elbow to one of
the positions. Participant was then asked to close his eyes and
co-contract the biceps and triceps to the required level. The
perturbation was then applied randomly in the next 5-20s to
avoid prediction of impact. In addition, we recorded a third
experiment which was used for validation purposes. In this
experiment, “Loaded Reflex” (LR), we loaded the wrist with
1, 2, 3, 4 and 5kg weights and tested the reflex in a manner
similar to the CR experiment. Before data collection, the
participant was familiarized with the protocol and Maximum
Voluntary Contraction (MVC) data were recorded for the
post-processing stage.

A. Neuromusculoskeletal reference values

Musculoskeletal inverse kinematics and inverse dynamics
were calculated using the sDIMS software [1]. Muscle ten-
sions were computed by solving an optimization problem by
quadratic programming. The constraints for this optimization
come from the muscle forces estimated from EMG record-
ings, terms to minimize overall muscle force, and terms to
ensure continuity of estimated values. The details of the
musculoskeletal inverse dynamics algorithm can be found
in [1]. External contact forces such as that exerted upon the
force sensor in the GR experiment, or, the impact force of the
falling weight in the CR experiment were applied to the wrist

joint of the MS model. For the GR experiment, exerted force
could be directly obtained from the force sensor readings.
For the CR experiment, we estimated impact force using the
recorded weight of the object and post-hoc analysis of the
velocity profile. The output of the musculoskeletal analysis
of the experimental data, and recorded EMG data, were used
as reference for parameter identification. The references for
the GR and CR experiments were:

xGR =
[

q τ FB FT aB aT
]T (6)

xCR =
[

q(t) τ(t) FB(t) FT (t) aB(t) aT (t)
]T (7)

where, q was the joint angle, τ the joint torque, FB, FT the
bicep and tricep muscle forces, and aB, aT the corresponding
muscle activations. Note that these were average values of
the parameters over the duration of each GR condition (10s).
The reference in eq. (6) was calculated for each of the 11 GR
recruitment conditions. Note that for the CR experiment (6),
the calculated reference vectors were for the 9 combinations
of arm position and co-contraction level with, t=0-125ms.
The reference period was chosen to be 25ms before, to
100ms after, the applied perturbation.

IV. PARAMETER IDENTIFICATION

We decomposed the identification process of the unknown
model parameters into two stages; Steady-State, and, Dy-
namic. Steady-state parameters were identified by solving
the least-squares objective function:

min
11

∑
k=1
||W (xGR− x̂GR)||2 (8)

with, x̂GR = [q̂ τ̂ F̂B F̂T âB âT ]
T

fGR = [CB SF CT SF FmaxB SF FmaxT SF ]

where, k = 1..11 refers to the conditions of the GR exper-
iment. xGR was the vector of reference values from eq. (6)
and x̂GR the steady state estimates from the forward dynamics
simulation. W was a diagonal matrix of normalizing factors
that adjusted the variables to the same order of magnitude.
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These normalizing factors were determined post-hoc as the
mean of the reference values xGR. fGR refers to the steady-
state parameters to be identified. Eq. (8) was solved using
the Limited memory BFGS-B algorithm coupled with a
backtracking line search, subject to the bounds for free
parameters fGR specified in Table II-A. Dynamic parameters
were identified similarly. To account for a trajectory of
reference values (eq. (7)), we modified the problem as
follows:

min
9

∑
k=1
||W

125

∑
t=0

(xCR(t)− x̂CR(t))||2 (9)

with, x̂CR = [q̂(t) τ̂(t) F̂B(t) F̂T (t) âB(t) âT (t)]T

fCR =
[T maxB SF T maxT SF τSF wBB+ ..

σBB+ wT T+ σT T+ wBI+ ..
σBI+ wIT− σIT−]

where, k = 1..9, refers to the 3× 3 conditions of the CR
experiment. Here, the objective function (9) minimizes the
error between forward dynamics estimate, x̂CR and the refer-
ence xCR, for t=0 to 125ms (impact at 25ms), with the free
model parameters fCR subject to the bounds in Table II-A.

A. Forward Dynamics Simulation and Identification

For fixed nominal control inputs (stimulation), we calcu-
lated neural spikes and subsequent muscle activation as de-
tailed in Section II-A. From this activation, muscle tensions
were calculated as detailed in Section II-B. Muscle tensions
were transformed into equivalent joint torques and the re-
sulting joint accelerations computed using the Runge-Kutta
RK4 method. Two types of external forces were applied to
the wrist joint of the model. For comparison with the GR
experiment we applied a constant force equivalent to that
exerted by the arm on the force sensor. For comparison with
the CR experiment, we used the same impact force profile
of the falling object, as that used in the inverse dynamics
computation. Dynamics were computed every 0.5ms, with all
trials lasting 6s. The identification process was implemented
using the Python programming language, the Scipy Mini-
mization Toolbox, and the MPI parallel processing environ-
ment. For steady-state parameter identification, we computed
the cost (eq. (8)) for 1000 random combinations for the
parameters in fGR within the bounds defined in Table II-A.
For fGR combinations with the 10 lowest costs, we applied
the L-BFGS-B minimization algorithm. Each minimization
run took about 1 hour on a 18 × 3.1GHz workstation.
Fig. 2-a shows the goodness of fit between the identified
steady-state model results and the reference values. Dynamic
parameter identification followed the same process as above
for the parameters in fCR. The complete identified model
parameters are listed in the rightmost column of Table II-A.

V. SIMULATION OF STRETCH REFLEX
Robustness of the identified model was tested by compar-

ing it to the results obtained from the “Loaded Reflex” (LR)
experiment. Note that the LR experiment was not used in the
parameter identification process. LR data were processed in

Fig. 2. (a) Steady-State Parameter Identification Results: Fit of forward
dynamics model steady-state results, with the data from GR experiments. (b)
Dynamic Parameter Identification Results: Fit of forward dynamics model
dynamic results, with the data from CR experiment, for the condition [Arm
Horizontal-Low Co-contraction]. Vertical dash-dot line indicates start of
perturbation.

a similar manner to that of GR and CR experiments. For the
complete model identified in Section IV-A we defined control
inputs such that joint angles roughly matched those recorded
during the LR experiment. We then applied identical loading
force and perturbation to the forward dynamics model as
that in the LR experiment. Fig. 3 shows the comparison for
one condition (5kg loading) between LR reference values,
and the estimated forward dynamics of the identified model.
We observed that the forward dynamics simulation of the
identified model was able to reproduce the LR experimental
results. The differences between model and observed results
were (median ± variance): 11.1 ± 2.8N for muscle forces,
0.04 ± 0.03 radians for joint angle, 0.16 ± 0.08Nm for joint
torque and 0.03 ± 0.005 for muscle activations.
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VI. DISCUSSION

This study proposes a model of the physiological stretch
reflex arising from the interaction between a realistic spik-
ing neural network and a musculoskeletal model. Although
detailed modeling of neural control mechanisms add to the
complexity of the overall system, it is likely that the ben-
efits from such architectures will outweigh the drawbacks.
This view is especially supported by looking at the state-
of-the-art in complex machines that can provide human
support/augmentation such as neuroprostheses and exoskele-
tons. From a human movement modeling perspective, the
bio-mimetic model architecture and parameter identification
from experimental data constrained within biological bounds,
resulted in a identified model that could predict reflex char-
acteristics beyond its training dataset, Fig. 3. We note that
for a different posture the synaptic weights identified here
may no longer be valid (for example, if we tested the tricep
reflex instead of the bicep). Additionally, we are limited to an
agonist-antagonist architecture which ignores possible effects
from other interacting muscles (for example, the brachialis
muscle in the upper arm). In this particular case (elbow
flexion/extension), the role of the brachialis is minimal as it is
mostly used for elbow torsion and multi-jointed movements.
However, interacting muscles (and their corresponding neural
pools) will have to be taken into account if we wish to
model more elaborate movements. In the human CNS, this
is organized by complex circuits of upper motor neurons and
higher brain centers, which selective change the synaptic
weights and pathways by inhibiting some while preferring
others. One way to account for this is by extending our
current architecture and implementing switching commands
that mimic the higher control centers of the human CNS,
for example like those used in [8], [7]. A limitation in our
approach was that the overall response of the NMS model
was significantly nonlinear and included muscular and re-
flexive components. Separating these influences can be quite
difficult as neural dynamics are difficult to directly observe.
Studies have proposed methods to overcome this limitation
by linearizing the system and simplifying the reflex gains [4].
Under certain physiological conditions this linearization can
be an appropriate strategy, however, effective identification
techniques of nonlinear muscular and reflexive components
for NMS models remains an open challenge.
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