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Abstract— This paper presents a novel feature descriptor-
based calibration pattern and a Matlab toolbox which uses the
specially designed pattern to easily calibrate both the intrin-
sics and extrinsics of a multiple-camera system. In contrast
to existing calibration patterns, in particular, the ubiquitous
chessboard, the proposed pattern contains many more features
of varying scales; such features can be easily and automatically
detected. The proposed toolbox supports the calibration of
a camera system which can comprise either normal pinhole
cameras or catadioptric cameras. The calibration only requires
that neighboring cameras observe parts of the calibration
pattern at the same time; the observed parts may not overlap
at all. No overlapping fields of view are assumed for the
camera system. We show that the toolbox can easily be used to
automatically calibrate camera systems.

I. INTRODUCTION

Multiple-camera systems have become increasingly preva-

lent in robotics and computer vision research. These systems

include stereo cameras, Point Grey’s Ladybug multi-camera

systems, and a large variety of customized camera systems.

Multiple-camera systems usually comprise normal pinhole

cameras, fish-eye cameras and catadioptric cameras. To make

such systems usable, both the intrinsics and extrinsics of the

cameras have to be calibrated accurately.

A. Related work

Recently, many efficient methods have been developed

for intrinsic calibration of many types of cameras. These

methods can be divided into two categories: calibration with

a special calibration object, and self-calibration. In this paper,

we focus on the former category which is usually much more

accurate than self-calibration. Many toolboxes are available

for this category of methods. Seminal work on calibrating a

pinhole camera can be found in [1]. Some popular calibration

toolboxes [2], [3] are inspired by this method. For generic

cameras, [4] proposes a toolbox to use a polynomial to

approximate rays corresponding to each image point. This

method generically applies to most camera models but does

not provide a closed-form solution for undistorting raw

images. In the toolbox proposed in [5], an unified projection

model is proposed for calibrating a catadioptric system, fish-

eye camera and camera-spherical mirror system. This model

is similar to [4] but parameterizes rays instead of using

an arbitrary polynomial, which makes undistortion much

simpler.

Some toolboxes are also available to calibrate simple

multiple-camera systems. [2] enables one to calibrate a

stereo camera. For calibration with a system of more than

Fig. 1. Top: The proposed calibration pattern. Bottom: Image components
with noise at different frequencies.

two cameras, these toolboxes [6], [7] can be used. These

calibration toolboxes make use of the overlapping fields of

view of the cameras; hence, these toolboxes can calibrate

both a stereo camera and a circular camera rig with all

cameras pointing inwards. However, these toolboxes are not

suitable for calibrating a system of cameras with either no

or minimal overlapping fields of view. Camera rigs with

cameras pointing outwards are increasingly popular in both

academia and industry; it is not easy to calibrate this system

using existing calibration toolboxes due to the minimal

overlapping fields of view. Hand-eye calibration algorithms

[8], [9] can be used to calibrate this system but requires

reconstructing visual odometry for each camera, and the

calibration is often not accurate due to visual odometry drift.

In addition to camera models, research has also focused

on development of easy-to-use calibration patterns. Early

research made use of cubes with either a chessboard pattern

or circular dots on their surfaces [2]. This pattern is not

convenient to use as a perfect cube is not trivial to build.

Current state-of-art calibration systems mainly make use of

calibration boards which are often planes with a chessboard

or circular dots printed on them. An automatic detector

for such patterns is readily available [10]. A comparison

of calibration accuracy between a chessboard and circular

dots can be found in [11]. [7] uses a similar but even

more simplified calibration object, a single point light, for

calibrating multiple-camera systems. One disadvantage of
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these patterns is that the entire pattern has to be visible in

each calibration image; this requirement excludes cameras

with minimal overlapping fields of view. In addition to

the chessboard and circular dots, other patterns have been

proposed. [12] uses a temporal coded pattern to calibrate

cameras. This method uses the Gray code to match world

points to image points, thus not requiring the entire pattern to

be in the image. The drawback of this method is the limited

flexibility; the calibration requires both a display projector

and a tripod for mounting a camera.

In summary, the chessboard and circular-dot patterns are

widely recognized as the state-of-art for calibrating single

and stereo cameras, for their ease-of-use and high calibration

accuracy. However, for a system with multiple cameras point-

ing in different directions, it is difficult to use these toolboxes

to calibrate the extrinsics of the camera system. This is

because current automatic and semi-automatic chessboard

detectors require the chessboard to be entirely within the

field of view of the cameras. Therefore, if two cameras

have minimal overlapping fields of view, it is difficult to

use the chessboard for extrinsic calibration in contrast to

stereo camera calibration. To the best of our knowledge, there

are no published calibration toolboxes for easily calibrating

multiple-camera systems with minimal overlapping fields of

view.

B. Contributions

In this paper, we solve the calibration problem for a

multiple-camera system without assuming overlapping fields

of view. The basic motivation is to relax the requirement that

the calibration pattern be seen in its entirety by each camera;

ideally, the calibration board is automatically detected even

when the cameras observe different parts of the board. For

most multiple-camera systems, it is fairly common for a cam-

era pair to see different parts of a suitably-sized calibration

board at the same time. Based on this motivation, we design

a feature descriptor-based calibration pattern which is easy to

detect even when seen partially by a camera, and an extrinsic

calibration framework using this pattern.

This paper makes two novel contributions:

1) A new calibration pattern that encodes feature points

using feature extraction techniques. Our pattern con-

tains many detectable features on multiple scales as

illustrated in section II. The pattern can be recognized

and localized even if the pattern is partially seen in an

image.

2) A toolbox based on the proposed calibration pattern.

This toolbox can be used for both intrinsic and ex-

trinsic calibration of a multiple-camera system, as

illustrated in sections III and IV. Similarly to existing

calibration toolboxes, our toolbox can also be used for

intrinsic calibration of a single camera.

We note that our approach is similar to standard structure-

from-motion approaches; the main difference is that we use

points with known 3D coordinates.

II. CALIBRATION PATTERN

A. Feature Detection Revisited

Point-feature detection is a computer vision technique

widely and successfully applied to many areas such as sparse

reconstruction and object detection. A point feature typically

contains two components: a keypoint and a descriptor. We

look at the widely-used SIFT implementation [13] as a

example. A Difference of Gaussian filter (DoG) is used

to detect keypoints. This detection is executed on both the

original image and downsampled images; in short, keypoint

detection is done on different scales. For each keypoint, the

image gradient in the keypoint’s neighborhood is converted

to a histogram which is then used as the descriptor for

the corresponding feature point. SURF, a variant of SIFT,

is also a widely-used technique for feature detection and

descriptor extraction [14]. SURF replaces SIFT in many

applications due to the its computational efficiency. In the

proposed toolbox, we use SURF features.

B. Reverse Engineering

The basic idea behind the proposed calibration pattern is

to find and design a pattern that yields a high number of

detectable features. At the same time, the feature descriptors

should be highly discriminative so that we can easily obtain

unique feature point matches.

To facilitate feature detection, we use several noise images

to compose a calibration pattern in accordance with the

mechanism of SIFT/SURF. The DoG filter applied to a

noise image can yield points with high response. However,

a problem with high-frequency image noise is the blurring

effect. For a grayscale image, if the camera is located far

away, the noise image is perceived as a purely gray image.

The solution to this problem is to compose images with noise

from multiple scales. In our implementation, we generate

noise images of different sizes, and resize them such that

they have the same size. These images with noise on different

scales are then added up together. This procedure can be

interpreted as a reverse engineering of the scaling procedure

in SIFT/SURF detection. Thus, the resulting image contains

a high number of detectable features on different scales; such

features can be detected by a camera at varying distances.

The Matlab code in figure 2 generates a 600×800 calibration

pattern. Figure 1 shows a calibration pattern at the top, and

its components with noise on different scales at the bottom.

C. Feature Matching

Feature detection and feature matching between two im-

ages are two standard steps in a modern 3D vision pipeline.

In our calibration approach, we employ a similar step to

match features between each image and the known cal-

ibration pattern image. First, features detected from each

image and the pattern image are matched according to the

descriptor similarity. We use the well-known distance ratio

check proposed in [13]. For a set of at least 2 candidate

matches for each query feature, the best match is accepted

only if its descriptor distance is smaller than 0.6 times the
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N = 600; M = 800;

pattern = 0; count = 0;

m = 4;

while m < M

n = round(N / M * m);

noise = rand(n, m);

noise = imresize(noise, [N, M]);

pattern = pattern + noise;

count = count + 1;

m = m * 2;

end

pattern = pattern ./ count;

pattern = histeq(pattern);

imshow(pattern);

Fig. 2. Matlab code for pattern generation.

descriptor distance between the query feature and its second

best match.

Next, a fundamental matrix for radial distortion is esti-

mated by RANSAC between the image points and pattern

points to find inlier point correspondences. Note that this

fundamental matrix is not the same matrix used in traditional

epipolar geometry. The traditional matrix requires that point

correspondences have image coordinates corresponding to

rectified images. Details about this fundamental matrix can

be found in [15]. We provide some simple explanation about

the fundamental matrix here. Denote pd as a distorted image

point, pu as its corresponding undistorted point and pc as the

corresponding point on the calibration pattern. If the image

only has radial distortion and e is the distortion center, we

can write:

pd = e+ λ(pu − e) (1)

where λ is a distortion coefficient corresponding to pu. In

addition, since pu can be obtained by a perspective transform

from pc, there exists a homography H such that pu = Hpc.

Substituting this into the above equation, we obtain:

pd = e+ λ(Hpc − e) (2)

Left-multiplying the equation by [e]×, we get:

[e]×p
d = λ[e]×Hpc (3)

Left-multiplying the equation again by pd
⊤

, we get:

0 = pd
⊤

[e]×Hpc (4)

F ≡ [e]×H is the fundamental matrix for radial distor-

tion, and e can be interpreted as the principal point. This

fundamental matrix is well-suited to both the pinhole and

unified projection models, and is used to remove false

feature matches in our proposed calibration approach. In

the case that the images perfectly agree with the pinhole

camera model (zero lens distortion), it suffices to estimate a

homography. This case could be detected by automatic model

selection methods like the GRIC criterion[16]. However,

since this is a very special case, for the current version, we

leave it to the user to specify this mode.

III. SINGLE-CAMERA CALIBRATION

A single-camera calibration estimates the camera intrinsics

and the poses of the calibration pattern with respect to

the camera’s coordinate system. This data from the single-

camera calibration is used by the multiple-camera extrinsic

calibration.

A. Camera Model

Consider a point (u, v, γ)⊤ on an image plane with focal

length equal to γ and principal point (0, 0)⊤. It corresponds

to a ray with direction (u, v, f(u, v))⊤ which goes through

the origin of the camera’s coordinate system. This ray

definition unifies the various projection models via different

definitions of f(u, v). For the pinhole projection model,

f(u, v) ≡ γ (5)

For the unified projection model with its lens distortion

parameter ξ = 1,

f(u, v) =
γ

2
− 1

2γ
ρ2 (6)

where ρ =
√
u2 + v2. Details about equation 6 can be

found in [5]. For the Taylor projection model, f(u, v) is

parameterized as a general polynomial with one variable ρ,

as proposed in [4]:

f(u, v) = a0 + · · ·+ anρ
n (7)

Equation 7 does not have a closed-form inverse transform.

In the proposed toolbox, we use the unified projection

model in [5] to model a varying range of cameras which

include but are not limited to normal, wide-angle, fish-eye

and catadioptric types. This model uses the same intrinsic

parameters that the pinhole projection model uses: the focal

length (γ1, γ2), aspect ratio s, principal point (u0, v0), and

radial and tangent lens distortion parameters (k1, k2, k3, k4).
The model uses one additional parameter ξ to model the

omnidirectional camera effect.

B. Initialization

The unified projection model of [5] assumes the catadiop-

tric coefficient ξ = 1 for initialization, and then, refines the

estimated intrinsics and extrinsics. The initialization is very

simple and can generate a good initial guess for all param-

eters. The limitation of the initialization is that it requires

a known projection of a straight line on the pattern. Such

a projection is easy to obtain for a chessboard but difficult

for our proposed pattern. Fortunately, the initialization can

be solved by substituting the unified projection model into

the initialization of the Taylor projection model of [4].

In the initialization, we assume the two focal lengths

(γ1, γ2) to be the same, the principal point to have the same

coordinates as the image center, and zero lens distortion. For

each detected feature point, we compute the corresponding

u and v by subtracting the image center coordinates from

the feature point’s coordinates.

For a feature point with homogeneous image coordinates

pc = [x, y, 1]⊤, denote its corresponding 3D point as
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[x, y, 0, 1]⊤. The projection equation relating this 3D point

to its corresponding camera ray [u, v, f(u, v)]⊤ is:

µ





u

v

f(u, v)



 =
[

r1 r2 r3 t
]









x

y

0
1









(8)

=
[

r1 r2 t
]

pc (9)

Left-multiplying the equation by [u, v, f(u, v)]⊤×, we have:

0 = [u, v, f(u, v)]⊤×
[

r1 r2 t
]

pc (10)

Denote the rotation ri = [r1i, r2i, r3i]
⊤ and the translation

t = [t1, t2, t3]
⊤. The third row of equation 10 is independent

of f(u, v) and is a linear equation with respect to the

unknowns r11, r21, r12, r22, t1, t2:

u(r21x+ r22y + t2)− v(r11x+ r12y + t1) = 0 (11)

For each image pair, we can substitute the feature point corre-

spondences into this equation and stack them as a linear sys-

tem. Solving this system, we obtain r11, r21, r12, r22, t1, t2
up to a unknown scale. r31, r32 and the scale can be deter-

mined by exploiting the unit and perpendicularity constraints

of r1 and r2. Note that multiple solutions exist at this

stage; we reject the incorrect solutions after estimating the

remaining unknowns γ and t3.

Solving γ and t3 requires using the first and second row

in equation 10:

v(r31x+ r32y + t3)− f(u, v)(r21x+ r22y + t2) = 0 (12)

f(u, v)(r11x+ r12y + t1)− u(r31x+ r32y + t3) = 0 (13)

For the pinhole projection model, f(u, v) is replaced

by γ. Substituting r11, r21, r12, r22, t1, t2, we obtain linear

equations with respect to γ and t3. The two unknowns

are then solved by forming a linear system using detected

multiple correspondences.

For the unified projection model, equation 6 is substituted

into f(u, v). We regard γ, 1

γ
and t3 as three unknowns and

solve them by forming a linear system similar to the above.

Since we ignore a constraint by treating γ and 1

γ
as two

unknowns, the estimates are less accurate. This is not an issue

for the initialization since the estimate is further refined.

The initialization returns multiple solutions for the intrin-

sics and extrinsics; the correct solution can be selected by

checking the reprojection error.

The toolbox initializes γ and the extrinsics for each input

image, and selects the median of all values for γ as the initial

estimate for γ.

C. Refinement

Based on the initial estimate, the toolbox then refines

all intrinsic and extrinsic parameters using the Levenberg-

Marquardt algorithm to minimize the sum of all reprojection

errors. Further details about the optimization can be found

in [4] and [5].

Fig. 3. A example of a pose graph for the calibration scenario of four
cameras. Big dots denote camera vertices and small dots denote feature
point vertices.

IV. EXTRINSIC CALIBRATION

In this section, we assume that the cameras are rigidly

mounted to a rigid body. During the image capture process,

we move the calibration pattern around the camera system.

The single-camera calibration provides estimates of the poses

of the calibration pattern. If the cameras are synchronized

such that they capture images of the pattern at the same time,

the relative poses of the pattern with respect to each camera

are known. Thus, the initial camera poses can be extracted

from these relative poses. The toolbox optimizes the initial

camera poses using a bundle-adjustment-like method.

A. Initialization

We create a pose graph to denote the calibration scenario.

Each camera is denoted by a camera vertex cami in the

graph. Meanwhile, each pose of the pattern is also denoted

by a pattern vertex pati. If cami takes a photo of the pattern

at pose patj , then cami and patj are connected by an image

edge denoted by imgi,j . Each edge uniquely maps to one

image. Note that this graph is a bipartite graph and each

edge links one camera vertex and one pattern vertex. Figure

3 provides a simple illustration of such a graph.

Vertices in the pose graph can be used to store the poses

of the cameras and the pattern in a global coordinate system.

Edges can be used to store the relative pose transform

between the camera pose vertex and pattern pose vertex. For

each image of the pattern at pose patj taken by cami, we

have the relative pose of patj with respect to cami computed

from the single-camera calibration.

Assuming that the global coordinate system is aligned

with cam1, the poses of all vertices connected to cam1 can

be obtained by following the image edges from cam1. In

practice, if two cameras see the pattern at the same time in

their images, then the two cameras are connected via two

image edges to one pattern vertex.

Our toolbox implementation first builds a pose graph based

on the results of single-camera calibration performed for all

cameras. Next, a spanning tree with cam1 as its root is

extracted using breadth-first search. Vertex poses are then

computed by traversing the spanning tree from cam1 and
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following the image edges. In the end, we have initial pose

estimates for all vertices in the global coordinate system.

B. Refinement

Denote the pose in the global frame of vertex i (either a

camera vertex or a pattern vertex) in the graph as Hi. On an

edge imgi,j connecting cami and patj , the relative transform

from patj to cami can be denoted as Hi,j = H−1

i Hj . For

a calibration pattern point pc, its reprojection error in each

image that the point is seen in is:

ereproj(p
c, Hi,j , Ii) = ‖π(pc, Hi,j , Ci)− pd‖2 (14)

where π is the image projection function corresponding

to either the pinhole or unified projection model and Ci
denotes the intrinsics of cami. p

d is the distorted image point

corresponding with pc.

The initial calibration estimate is refined to minimize

the sum of all reprojection errors. The refinement can be

over either all vertex poses or over both vertex poses and

intrinsics. The optimization problem with only vertex poses

is defined as:

argmin
Hi,i>1

∑

imgi,j

∑

k

ereproj(p
c
k, H

−1

i Hj , Ci) (15)

while the optimization problem with both vertex poses and

intrinsics is:

argmin
Hi,C1,Ci,i>1

∑

imgi,j

∑

k

ereproj(p
c
k, H

−1

i Hj , Ci) (16)

The optimization is over Hi with i > 1, since H1 ≡ I4×4 is

the reference frame. The toolbox executes the optimization

using the Levenberg-Marquardt algorithm.

V. EXPERIMENTS

We carry out two experiments with our proposed calibra-

tion pattern and toolbox. In the first experiment, we use

a stereo camera and compare the calibration results from

our toolbox and those from the OpenCV-based chessboard

calibration. In the second experiment, we use our toolbox to

calibrate a four-camera system. The latter camera system is

a challenging case, especially for existing multiple-camera

calibration methods.

A. Calibration of a stereo camera

For the case of a stereo camera, a chessboard is typically

used for extrinsic calibration. The two cameras tend to have

a large overlapping field of view, and the entire chessboard

has to be in both cameras’ fields of view. We test our toolbox

with a custom-built stereo camera comprising two mvBlue-

FOX cameras with hardware synchronization. Figure 4 shows

a sample stereo image pair used for each calibration. Note

that in contrast to the chessboard calibration, our proposed

calibration pattern does not have to be entirely within the

field of view. The calibration results are shown in tableI.

The descriptor-based pattern provides many more features

with significantly fewer images compared to the chessboard

pattern. We observe that the two calibration results are very

similar. The reprojection error for our proposed pattern is

Fig. 4. Sample images used to calibrate the stereo camera. The top row
shows a chessboard used by the chessboard calibration while the bottom
row shows our calibration pattern used by our calibration toolbox.
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Fig. 5. 3D plot of stereo camera and calibration pattern poses generated
by our toolbox.

TABLE I

COMPARISON OF RESULTS FROM OUR METHOD AND OPENCV-BASED

CHESSBOARD CALIBRATION FOR A STEREO CAMERA.

Object Descriptor-based pattern 5× 8 chessboard

Image size 480 × 752 480 × 752
# images 10× 2 30× 2
# features

(L/R)
3073 / 2942 1200 / 1200

Focal
length (L)

(720, 718) (720, 722)

Focal
length (R)

(709, 706) (709, 710)

Principal
point (L)

(383, 249) (392, 250)

Principal
point (R)

(387, 242) (389, 249)

Rotation
vector

[0.001,−0.010, 0.011] [0.004,−0.009, 0.011]

Translation
vector (unit)

[−1.00,−0.012, 0.005] [−1.00,−0.011, 0.012]

Reprojection
error

0.4 px 0.2 px
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Fig. 6. A four-camera system with an approximate 90◦ relative rotation
between each pair of neighboring cameras.

higher than that for the chessboard; SURF feature detection

is slightly less accurate than sub-pixel chessboard corner

detection in terms of feature location. For features on a

coarser scale, the higher corresponding error of the estimated

feature coordinates may increase the overall reprojection

error. We visualize the results of our toolbox calibration in

figure 5.

B. Calibration of a four-camera system

In the second experiment, we validate our toolbox on

a four-camera system; neighboring cameras have minimal

overlapping fields of view. One camera is a mvBlueFOX

camera while the rest are Point Grey Firefly MV cameras.

This system is shown in figure 6. Existing camera calibration

toolboxes are difficult to use when it comes to calibrating

such systems. 15 image pairs are taken for each pair of

neighboring cameras; two examples are shown in figure

7. Due to the non-overlapping field of view, neighboring

cameras only see a small part of the board close to the

board’s border. Thus, some images do not have sufficient

features for matching, and are automatically discarded by the

toolbox. In addition, to ensure accurate intrinsic calibration,

we take 5 images for each camera with the pattern occupying

a large part of each image. Figure 8 plots the 3D poses of

both cameras and patterns. The average reprojection error

over all images and corresponding to the estimated intrinsics

and extrinsics is 0.7 pixels.

VI. CONCLUSIONS

We have proposed a calibration technique using a feature

descriptor-based calibration pattern. This technique can be

used for calibrating multiple-camera systems. We show our

calibration to work successfully with two multiple-camera

systems: a normal stereo camera with a large overlapping

field of view, and a four-camera system with minimal over-

lapping fields of view. A toolbox based on our proposed

method is available online at https://sites.google.

com/site/prclibo/toolbox.

One limitation of our calibration technique is that large

calibration patterns are required for certain multiple-camera

systems. One example is a two-camera system in which one

camera looks forward, and another camera looks to the right,

Fig. 7. Sample images used to calibrate the four-camera rig. Each row
corresponds to an image pair from a different pair of neighboring cameras.
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Fig. 8. Two viewpoints of a 3D plot of camera and calibration pattern
poses generated by our toolbox for the 4-camera system.
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and the baseline between the two cameras is a few meters.

In this case, we require the width of the calibration pattern

to be at least a few meters. This limitation is inherent in the

fact that neighboring cameras must be able to observe some

part of the calibration pattern.
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