
 

 

Abstract— This paper proposes a new method to estimate the 

3D motion of a vehicle based on car-like structured motion 

model using an omnidirectional camera and a laser 

rangefinder. In recent years, motion estimation using vision 

sensor has improved by assuming planar motion in most 

conventional research to reduce requirement parameters and 

computational cost. However, for real applications in 

environment of outdoor terrain, the motion does not satisfy this 

condition. In contrast, our proposed method uses one 

corresponding image point and motion orientation to estimate 

the vehicle motion in 3D. In order to reduce requirement 

parameters for speedup computational systems, the vehicle 

moves under car-like structured motion model assumption. The 

system consists of a camera and a laser rangefinder mounted 

on the vehicle. The laser rangefinder is used to estimate motion 

orientation and absolute translation of the vehicle. An 

omnidirectional image-based one-point correspondence is used 

for combining with motion orientation and absolute translation 

to estimate rotation components of yaw, pitch angles and three 

translation components of Tx, Ty, and Tz. Real experiments in 

sloping terrain demonstrate the accuracy of vehicle localization 

estimation using the proposed method. The error at the end of 

travel position of our method, one-point RANSAC are 1.1%, 

5.1%, respectively.  

 
Index Terms— 3D motion estimation, fusion multiple 

sensors, laser range finder, omnidirectional camera, one-point 

correspondence.  

I. INTRODUCTION 

Motion estimation, path planning and mapping are 

important areas of research with various applications in 
autonomous vehicles, intelligent transport systems, security 

and surveillance, process control, remote sensing, robotics, 

and aerospace. Despite considerable researches during the 

last few years, there are now many investigations to improve 

accuracy and reduce computational cost as well as makes 

reliability of estimative results in long travelling distances 

under different kinds of complex terrain. 

In recent years, many methods have been developed for 

vehicle navigation, including visual odometry [1], which can 

be divided into several categories. The first group of 

methods uses only vision systems, e.g., monocular camera, 
stereo cameras, and catadioptric cameras. The second group 
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uses other electromagnetic devices without vision, e.g., 

Global Positioning System (GPS), Inertial Measurement 

Unit (IMU), wheel odometers, and laser rangefinder (LRF). 

The third method group combines electromagnetic devices 

and vision systems. 

This paper proposes a new method to integrate the vision 
and LRF devices for 3D motion and localization estimation 
during vehicle motion. The nonholonomic system 
constraints of car-like structure motion, epipolar geometry 
are used to restrict the motion model, which minimizes the 
motion parameters, and reduce computational time. The 
model requires only one-point correspondence and motion 
orientation, absolute translation for solving problem.  

This paper consists of seven sections. Section 2 
summarizes related works and proposes the scheme method. 
Next, section 3 describes the epipolar geometry constraint. 
The motion model will be analyzed in section 4. In the next 
step, section 5 presents motion estimation. Section 6 
presents the experiments. Finally, conclusions for future 
work are drawn in section 7. 

II. RELATED WORK AND METHOD PROPOSAL  

In recent years, in the localization and mapping field, the 
combination of vision systems and other electromagnetic 
devices has been considered as a solution for the 
accumulated error problem. Related works are separated into 
several categories. In the first group, the early research on 
vision-based odometry used a single perspective camera [2, 
3]. Other authors proposed methods using a binocular 
camera [4, 5]. Because of field of view limitations, some 
author groups proposed methods using an omnidirectional 
camera. Typical omnidirectional vision-based odometry 
systems are presented in [6-10]. The basic principles of these 
approaches are feature correspondence and epipolar 
geometry constraints. The difficult problem of feature 
matching is most applicable to the high outliers. Therefore, 
the results often have large errors. The final trajectory is 
acceptable if the vehicle moves in an indoor environment, 
over a short distance, or in a special outdoor terrain. The 
trajectory will diverge comparing with ground truth when 
the vehicle moves over a large distance or in a complex 
outdoor terrain. This is also the challenge of incremental 
methods of visual odometry, simultaneous localization and 
mapping (SLAM). Moreover, the scale of trajectories is 
ambiguous if only a monocular vision system is used. In the 
second group, multiple magnetic sensors are integrated in 
the system [11-14]. On the other work, [15]  proposed the 
method using rotation multiple 2D laser rangefinders system 
for constructing maps of large-scale areas with almost planar 
motion assumption under the fairly flat road. The GPS 
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receiver devices are used for global positioning, and IMU or 
wheel odometers are used for local position estimation. 
These methods often yield an acceptable result on a large-
scale. However, the final trajectories often drift, and GPS is 
not always correct in an urban scene. This is also the 
challenge of localization and navigation without vision 
systems.   

Other methods, combining the two groups of 
methodologies mentioned above, have been considered as a 
solution to overcome these disadvantages. Some author 
groups, as in [16-19] have proposed a method using a vision 
system and other electromagnetic devices. The proposed 
method combines CCD camera with laser sensors for 
reconstruction scene and used other kind of sensors for 
motion estimation in [20]. The results are significantly 
improved. However, the vehicle motion in most 
conventional research is assumed planar. This is not always 
true in the real world. When the vehicle moves along slope 
road, the trajectory and position is inaccurate.  

Based on the above analysis, a method combining an 
omnidirectional camera and LRF device is proposed. The 
advantage of the omnidirectional camera is the large field of 
view, since the 3600 view produces rich information of a 
surrounding scene. Even when the vehicle rotates with a 
large angle, landmarks are still tracked. Using information 
from the LRF device, the absolute trajectories and 
orientation of motion can be rapidly computed.  

The overview of this proposed method for 3D motion 
estimation is shown in Fig. 1. There are two kinds of 
information to be determined including translation 
components [TX, TY, TZ]T and rotation components of pitch 

(E), yaw (.), and roll (J). In order to estimate rotation angles, 
some authors have proposed using feature point-based 
methods for calculating geometry constraints [3, 4, 7]. 
Others have proposed using appearance-based methods [8, 
21]. Whereas, the paper [13] proposed method for 

integrating magnetic devices. In this paper, at the first 
position of vehicle, the motion orientation is determined. 
Successive laser scans is used to estimate the absolute 
translational and motion orientation of the vehicle by using 
the Iterative Closest Point (ICP) method [22]. 
Correspondence points are extracted from successive 
sequence images by using the scale invariant feature 
transform (SIFT) method [23]. Essential matrixes between 
consecutive images are computed based on epipolar 
geometry properties to estimate the vehicle motion. Laser 
scans and omnidirectional images are simultaneously 
collected as synchronized for processing. 

III. CAMERA POSES CONSTRAINT  

The visual odometry system is composed of consecutive 
image pair constraints. Those constraints are analyzed 
directly from the epipolar constraint using the essential 
matrix. Fig. 2 shows a 3D point P with respect to two 
correspondence reprojection rays of r and r' from the focal 
point of the hyperboloid mirror to P. The rays of r and r’ are 
observed from two camera poses, whose relative constraint 
can be described as follows: 

   0'  Err T  (1) 

where the essential matrix E is defined as E=[T]uR. The 

matrix [T]u is a skewed symmetric matrix of translation 
vector T=[TX,TY,TZ]T. Rotation matrix R=RYRZRX, where RY, 

RZ, RX are pitch E , yaw D, and roll J rotation matrix, 
respectively. 
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The attention should be paid about the joint rotation 
matrix. The multiplication of matrix according to X, Y, Z is 
not commutative in algebra. The designer also can impose 
these orders, for example, Z-Y-X, Y-Z-X, X-Y-Z… Here, 
the Y-Z-X system is select because of its convention using in 
this experiments system setup. Three rotational and three 
translational components of the camera in sequential camera 
positions can be estimated by solving (1). Several methods 

 

 
 

Fig. 1. The method proposed for vehicle motion estimation  

 

 
Fig.2. Epipolar geometry 

 (3) 
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have been applied to solve this problem. Among them, the 
eight-point [24], five-point algorithms [2] were represented 
and is applied to the perspective camera. Recently, one-point 
RANSAC [7] has been considered as a typical algorithm to 
reduce the number of point correspondence using the car-
like structure motion model. The limitations of this method 
are planar motion assumption and ambiguity translation due 
to the constant velocity assumption. This hypothesis is not 
always true in reality. This paper solves 3D motion problem 
using one-point image correspondence from camera, and 
motion orientation, translation from laser rangefinder.  

IV. MOTION MODEL ANALYSIS  

The proposed method integrates camera and LRF device 
to estimate the 3D movement as pseudo 5DOF. The special 
constraint on geometry will reduce the number of unknown 
variables in rotation matrix and translation vector. Here, it is 
assumed that the turning and sloping of the road are only 
affected by pitch and yaw of rotation parts. The roll angle of 
rotation changes very small and it can be ignored. The 
rotation matrix is rewritten in the more simple form when 

the roll angle is not change (roll angle J=0). Therefore, 
vehicle motion only depends on two rotation components 
yaw and pitch.  Assumption vehicle motion in 3D satisfies 
car-like structured motion constraint. Therefore, this prosed 
method combines the epipolar geometry constraint and car-
like structured to minimize the number of parameters, and 
reduce the computational costs. The relative motion follows 
a circular course that causes by the car-like structure 
motion[25]. The car-like structure motion is described by 
Ackermann steering motion mode. The center of circular 
motion is known as the instantaneous center of rotation 
(ICR). Therefore, vehicle motion in 3D can be approximated 
by discrete successive motion in a car-like structure model. 
Fig. 4 describes the system configuration.  The vehicle 

coordinate (OXYZ) is set at the middle of the rear axle. The 
camera coordinate is (OcXcYcZc). The camera located on the 
roof of the vehicle is also important to transform the camera 
coordinates to the vehicle coordinates. The disparity between 
the vehicle coordinate and the camera coordinate is solved 
using the method in [7]. The LRF device was mounted at the 
front of the vehicle. The laser rangefinder coordinate is 
(OLXLYLZL). The disparity with the laser rangefinder portion 
of the vehicle coordinates is also solved.  

Continuous 3D motion of vehicle is approximated by 
successive discrete movement on beveled sloping surface 
without roll, which implies a car-like structure motion. Fig. 
5 describes circular 3D motion constrain based on the car-
like structure motion and analyses the geometry constraint to 
determine the translation (TX, TY, TZ) dependence on rotation 

yaw D, pitch E angles and absolute translation U. In order to 
account for the circular motion model, there are several 
special motion statuses. When the vehicle moves straight 
forward only, the yaw angle is zero and the ICR point will 
be infinity. When the vehicle turns left or right in a planar of 
road surface, pitch angle is zero. In order to descripts of 
relative rotation components, the Tait–Bryan angles [26] 
correspond the three rotations with different axis Y-Z-X is 
use, see also Fig. 3 and Fig. 5. The coordinate OXYZ is 

translated to origin O' for easy intuition. The pitch E and 

yaw D angles are respective rotation XOZ around Y-axis, and 
then rotation XOY around Z- axis. The yellow arc represents 
for the vehicle motion trajectory. Taking into account 
geometric triangular constraints and trigonometric 
transforms, three absolute translation components of 
movement in 3D can be determined as described by the 
equation constraints below.  

First, the translation on OXdirection Tx: 
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Fig. 4. Intuition configuration systems 

 
Fig. 3. Pitch, yaw rotation  

 
Fig. 5.  Circular motion constrain based on car-like structure geometry,  
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Substituting (6) into (4), the result is 
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Second, translation on OY direction: 
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Third, translation on OZ direction: 
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The result is substitution (6) into (9) 
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V. MOTION ESTIMATION  

The motion estimation is equivalent five components-
transformation solution, with roll angle is ignored. To find 
the solution, substituting TX, TY, TZ into translation 

expression give the result (11), J=0 is substituted into (3) 
giving the result (12).  
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The expression essential matrix E=[T]xR is substituted 
into (1) to solve the problem. Now, equation (1) is only 

dependent on three unknown variables of E, D, U. As 

mentioned above, D and U are estimated using LRF 
information. Therefore, the final solution requires one 
corresponding image point. In addition, the problem can be 
also solved by two corresponding image points without LRF 
in scale motion.  

A. Computing rotation angle and absolute translation U 

The LRF measures distances from the laser device center 
to scan points on landmarks. Two laser scans are collected 
from two successive device positions. They provide the 
distance capture on the horizontal cross-section of the same 
world landmarks. The solution of the laser scans matching 
problem implies rigid-body transformation of the device, 
which is represented by rotation and translation. The ICP 
algorithm [22] is used for laser scans matching to estimate 
rotation angle and absolution translation. They are 

approximated for yaw angle D  as directional motion and 

module translation U of vehicle motion. This work assumes 
the transformation of the LRF with respect to camera 
transformation. 

B. Computing E angle   

Since D angle and module U are known, the corresponding 
rays of r and r' from the two image sequence are require to 

solve (1) computing E angle. To solve this problem, 

corresponding points between images in the omnidirectional 
successive sequence image are extracted by the SIFT method 
[23]. Then the method in [27] is used to construct the 
reflection ray from the center of the mirror to a point in 3D 
space, see also Fig. 2. The refection ray r is computed based 
on the image point.  

r=[su, sv, sf-2c]T   where 

2 2 2
2
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 (13) 

 (u, v) is the image coordinate, a and b are parameters of the 

mirror, c2=a
2+b

2, and f is the focal length of the camera. The 

parameters a, b and f are computed based on intrinsic camera 
information that is extracted by the toolbox for calibration 

omnidirectional camera [28].  

Now, one variable E is determined using one 
correspondence image point. To deal with outliers, 
RANSAC has been established as the standard method for 
outlier removal. The histogram method [7] has also been 
considered for this paper. In RANSAC theoretical, it is 
unnecessary to try all possible samples to find the best 
corresponding points to estimate the relative transformation. 
The iterative number of RANSAC depends on the number of 
corresponding points [24], which are required to estimate 
vehicle motion. The number of iterations is computed by 
following  
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where w is percentage of choosing inliers in data points of 

any selection that is the quotient of inliers number and all 

corresponding points. Therefore, (1-w)n is the probability for 

n all points are inliers. The probability p to insure at least 

one random selected corresponding point is successful, 

which does not include an outlier. For example, an inliers 

ratio w=0.5 and a success solution probability p=0.99, the 

number of iteration of eight-point, five-point, and  one-point 
RANSAC are 1177, 147 and 7, respectively. Therefore, it is 

extremely importance to minimize parameters for motion 

estimation to reduce computational cost of outliers filter.  

VI. EXPERIMENTS 

In this section, experiments are presented to describe the 
effectiveness of the proposed method. Images and laser 
measurements are acquired by a hyperbolic omnidirectional 
camera and LRF device mounted on a vehicle as shown in 
Fig. 6. The experiments also compare with the global motion 
trajectory and final error of this method and the one-point 
RANSAC method proposed by [7]. In order to estimate the 
motion in absolute distance (definite measurement unit), the 
absolute translation from LRF is also used in one-point 
method. Both methods also assume the motion under car-
like structure motion model. The vehicle moved in the 
campus with large slope terrain. The maximum slope of the 
road is about 30 degree, the maximum of road curvature is 
about 100 degrees, and the disparate elevation is about 3.4 
meters. The travel distance is 645 meters, which consists of 
929 frame images and laser scans. The maximum speed is 20 
km/h. It is not necessary to maintain a constant speed. The 
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road on Google map is considered as the ground truth 
trajectory for comparison. 

Fig. 7 (a) plots the top view of estimative result on aerial 
image from Google map. The ground truth is indicated by a 
dashed yellow line. The blue, green, and red curves are 

motion trajectories based on the proposed method, the one-
point method, and the GPS receiver, respectively. The one-
point RANSAC method estimates the motion under flat 
surface of the road assumption. Therefore, a large error 
result when the vehicle moves on a large sloping road, see 
also Fig. 7 (b, c), and Table I.  

 Table I shows comparing the errors given by our 
proposed method as well one-point RANSAC and GPS data.  
The criteria for comparison are the starting position based on 
Google map and an average of GPS measures. The start 
position is located at (35.544427o, 129.256436o, 69.8m), and 
the end travel is located at (35.544232o, 129.256438o, 
68.5m). Information at the start location is used for all 
methods.  

 Fig. 8 shows the changes of yaw, pitch angle over 
successive frames. The yaw angle depends on the steering 
wheel. The large pitch angle at several positions depends on 
large slope of road surface. Experimental results also 
indicate that GPS has not accumulative global error. 
However, the partial error is quite large. In contrast, the 
vision and laser rangefinder can deal with partial errors. 
However, the method is also contracted with the traditional 
problem that is accumulated global error. The error at the 
end of travel from GPS receiver, proposed method, and one-
point RANSAC are 0.7%, 1.1%, and 5.1%, respectively.  

 Fig. 9 presents trajectory of about 3,982 meters distance 
of travel. In this experiment, vehicle moved in long distance 
under difference terrain condition. Therefore, the LRF 

 
Fig. 6. Vehicle equipped with multiple devices 

 
(a) 

 
(b) 

 
(c) 

Fig. 7. Plot trajectory comparing results: (a) top view on Google map, 
(b) side view and real scenes, (c) 3D view.  

 
Fig. 9. Travelling localization estimation in long-distance  

 
Fig. 8. Plot the value of yaw, pitch, roll rotation angle 
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maybe out of range, if it happens, the previous translation 
magnitude will be used for current frame due to vehicle 
velocity kept constant in very short time interval. The 

rotation angle D will be computed by image edge matching- 
based rotation estimation method in [10]. 

VII.  CONCLUSION  

This paper proposed a new approach to estimate motion 
estimation in 3D using fusion multiple devices. The 
proposed method improves over the planar motion 
assumption in most conventional research on 3D vehicle 
movement estimation. This method utilizes the motion 
model of a car-like structure. The constraints in each 
successive frame minimize to one-point image 
correspondence from a camera to reduce computational time. 
Absolute translation and rotation are computed from a LRF 
device. The proposed method is simpler than the 
conventional method, which requires at least five-point of 
correspondence with ambiguous translation. Moreover, this 
method is also accurate under more sloping road structures 
in outdoor environments. The robustness and rapidity of this 
approach indicate its suitability for real systems. Future 
work will focus on reducing processing time for online 
application systems and deal with accumulation error in 
order to yield more accurate localization results by 
combining with GPS receiver.  
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TABLE I.  ERROR AT THE END OF TRAVEL LOCATION 

 Latitude Longitude 
Elevation 

(m) 

Error  

(m) 

GPS receiver  35.544212 129.256425 68.9 4.7 

Our method 35.544182 129.256446 68.4 7.3 

1-point RANSAC 35.544369 129.256273 - 32.8 
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