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Signal Processing Lab, ACCESS Linnaeus Centre

KTH Royal Institute of Technology
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Abstract— The initialization of the state estimation in a
localization scenario based on ranging and dead reckoning is
studied. Specifically, we treat a cooperative localization setup
and consider the problem of recursively arriving at a uni-
modal state estimate with sufficiently low covariance such that
covariance based filters can be used to estimate an agent’s
state subsequently. The initialization of the position of an
anchor node will be a special case of this. A number of
simplifications/assumptions are made such that the estimation
problem can be seen as that of estimating the initial agent
state given a deterministic surrounding and dead reckoning.
This problem is solved by means of a particle filter and it is
described how continual states and covariance estimates are
derived from the solution. Finally, simulations are used to
illustrate the characteristics of the method and experimental
data are briefly presented.

I. Introduction

Cooperative localization is a highly desired ability in many

fields [1][2][3]. At its core is the problem of recursively

estimating the involved agents’ positions. Commonly, this

is done based on dead reckoning and ranging between

agents or to anchor nodes/beacons [4][3][2]. This localiza-

tion setup is illustrated in Fig. 1. Because of the relative

measurements, the errors of the state estimates of different

agents may be strongly correlated. Therefore, some joint

state estimation is preferable [5][6]. Due to the resulting

high state dimensionality, covariance-based filters (Kalman

filters and their derivatives) with relatively low complexity

are preferably used. Unfortunately, because of system non-

linearities and the periodicity of the orientation, when there

are large multi-modal uncertainties in the system, such as

during startup or when a new agent enters the localization

system, covariance-based filters may give erroneous results.

Therefore, some initialization procedure is necessary [7].

Most methods described in the literature use (iterative) least-

square solutions [2][8][9]. However, assuming that recursive

Bayesian covariance-based filtering is used after the initial-

ization, employing such techniques would appear somewhat

statistically incoherent. Further, the flexibility of varying the

cost functions for the suggested methods are low and they

do not provide state and covariance estimates throughout

the initialization. Therefore, in this article we propose a

Bayesian multihypothesis initialization method which recur-

sively arrive at a uni-modal estimate of the agents state,

such that a covariance-based filter can be used from there

on. The suggested method provide on-line state estimates
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Fig. 1: Illustration of the considered localization setup. Multiple agents are
localizing cooperatively in three dimensions by means of individual dead
reckoning and ranging to other agents or anchor nodes. In this article we
suggest a method for initializing the related localization estimation problem.

during the initialization and features the possibility to use

an arbitrary likelihood-function for the range measurements,

thereby providing the potential to make it statistically robust.

Further, the method does not assume any prior or subsequent

absolute heading information (e.g. from a magnetometer),

but may include it. The methods does not rely on any

cooperative feature and therefore it will work equally well for

the scenario of ranging relative anchor nodes/beacons only.

Also, the initialization of the position of an anchor node may

be seen as a special case (stationary agent without heading)

of the proposed method [10]. However, this special case is

not further investigated. The basis of the method and the

main contribution of this article is the formulation of the

initialization problem as that of estimating the starting state

rather than that of estimating the current state.

Reproducible research: A Matlab implementation of the

suggested method and code for reproducing the simulations

in this article are available at www.openshoe.org.

II. Localization setup

A number of agents perform dead reckoning. The state

xk of an agent is its position in three dimensions pk =

[xk, yk, zk] and heading in the horizontal plane θk, i.e. xk =

[pk, θk], where [ · , . . . ] is used to denote a column vector.

Accordingly, the state space (dead reckoning) model of an

agent is

xk = xk−1 + R(θk−1) (uk + wk) (1)

where k is a time index, uk = [dpk, dθk] = [dxk, dyk, dzk, dθℓ]

is the measured displacement in three dimensions and head-
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ing change in the horizontal plane in the agent frame,

R(θk) =





























cos(θk) − sin(θk) 0 0

sin(θk) cos(θk) 0 0

0 0 1 0

0 0 0 1





























is the rotation matrix from the agent frame to the navigation

coordinate frame, and wk is a (by assumption) white error

of uk with covariance Qk.

In addition to the dead reckoning, the agents perform

ranging. Given the position of a considered agent pℓ and

the position of another agent (who is already initialized) or

an anchor node pref
ℓ

at some time of ranging ℓ (a subset of

the k index), the range measurements are modeled by some

likelihood function

r̃ℓ ∼ V
(

r̃ | ‖pℓ − pref
ℓ ‖
)

where ∼ denotes that r̃ℓ is a sample from the distribution

V(·). Often a model with additive noise r̃ℓ = ‖pℓ − pref
ℓ
‖ +

vℓ, where vk ∼ V(r̃|0) can be seen, but in the suggested

initialization method any evaluable likelihood function will

suffice. See Section III-C for the usage of V(·). This gives

a large flexibility when it comes to tweaking the statistical

properties of the method to make it robust. Note that from

the initialization method’s perspective, there is no difference

between another agent and an anchor node.

III. Initialization

Based on initial range measurements {r̃0, r̃1, . . . } and dead

reckoning data {u1,u2, . . . } of an agent who has joined the

cooperative localization, our desire is to arrive at a uni-

modal estimate of xk with sufficiently low uncertainty such

that the mean x̂k and error covariance Pk estimates together

with covariance-based filtering can be used to carry on the

localization of the agent relative to the other agents in the

system. In addition, we wish to provide continual mean x̂k

and covariance Pk estimates throughout the initialization and

to determine suitable termination conditions for the initial-

ization. To indicate which range measurements an estimate

has been conditioned on, a second subscript ℓ, as in x̂k|ℓ is

added where appropriate.

The uncertainties in the state of an agent will initially be

high (infinite in the position domain before any range mea-

surement has taken place) such that some multihypothesis

filtering will be necessary during the initialization. To make

such a filtering feasible, some simplifications are necessary.

Therefore, the following assumptions are made:

1) Only ranging relative initialized agents or anchor nodes

will be considered. Potential range measurements rel-

ative to other agents under initialization are discarded.

2) The position errors of initialized agents and anchor

nodes are assumed small relative to the initialization

uncertainties and are, therefore, ignored.

3) The dead reckoning errors (relative errors) are assumed

small over the period of the initialization and are

therefore, from the perspective of the initialization

procedure, ignored.

Consequently, the initialization will be treated as a local

estimation problem in which only the state of the current

agent is estimated, treating the world around it and its dead

reckoning as deterministic. Note that the assumptions 1-

3 are often implicitly made for the initialization methods

described in the literature [2][8][9] so they are not unique to

the suggested solution.

Assumptions 1 and 2 serve the purpose of decoupling

the initialization estimation problem from the remaining

cooperative localization. However, assumption 3 may seem

unnecessary at first. The straight-forward solution to the

estimation problem is to run a particle filter recursively

estimating the agents position and heading given the two

first assumptions [11]. However, with no initial heading

information, the required number of particles will be large

and propagating the particles with dead reckoning will re-

quire evaluating cos(θk) and sin(θk) for each particle and

update. The computational cost of this may be prohibitive

and unnecessary if assumption 3 holds. Also, if multiple

dead reckoning systems are used per agent as in [3], running

a joint particle filter will not be feasible. Instead, as will

be explained, with the 3rd assumption, the initial state x0

may be estimated only requiring the trigonometric functions

to be evaluated when a particle is resampled. In other

words, the 3rd assumption makes it possible to apply the

multihypothesis estimation on the static x0 rather than on xk

which changes with time. Estimating x0 rather than xk allows

us to use a significantly lower number of hypotheses (also

referred to as particles). This is because we can transform

the dead reckoning to be relative an estimate x̂0, and this

transformation is invertible. Define the frame transformations

T (x̂k, x̂0) = R⊤(θ̂0) (x̂k − x̂0) = x̂0
k

T−1(x̂0
k , x̂0) = R(θ̂0) x̂0

k + x̂0 = x̂k.
(2)

between the frame relative an estimate x̂0 and the frame

relative of an initial state equal to zero denoted with the

superscript (·)0. Here (·)⊤ indicates the transpose operation.

The corresponding covariances may be transformed accord-

ingly. With the zero-frame as a basis, the dead reckoning

may freely be transform to be relative to any estimate of

x0. Consequently, no intermediate (and potentially poor)

x̂0|ℓ estimates will have an irreversible effect on the dead

reckoning, and therefore, a low number of particles may

be used. Finally, in the resampling (see Section III-E) a

small ”forgetting factor“ may be added in the initialization,

ensuring that small errors in the dead reckoning or the

position of other agents or anchor nodes, i.e. assumptions

2-3, will not be a problem.

A. Filtering

During the initialization (as well as subsequently), the

dead reckoning (1) is used to propagate mean x̂k and co-

variance Pk estimates of xk for all k according to

x̂k= x̂k−1 + R(θ̂k−1)uk

Pk=F(θ̂k−1,dxk,dyk)Pk−1F⊤(θ̂k−1,dxk,dyk)+R(θ̂k−1)QkR⊤(θ̂k−1)
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where the system matrix is

F(θ̂k−1, dxk, dyk) =































1 0 0 − sin(θ̂k−1)dxk − cos(θ̂k−1)dyk

0 1 0 cos(θ̂k−1)dxk − sin(θ̂k−1)dyk

0 0 1 0

0 0 0 1































.

The dead reckoning is done relative to an initial state

estimate x̂0, and therefore, the estimates x̂k and Pk should

be continually updated as the initialization’s estimate of x0

is updated. Therefore, the covariance P0
k

of x̂0
k

is also tracked

during the initialization by

P0
k =F(θ̂0k−1,dxk,dyk)P0

k−1F⊤(θ̂0k−1,dxk,dyk)+R(θ̂0k−1)QkR⊤(θ̂0k−1).

Note that unless agents move, there is no dependence on

the heading in the system. Consequently, initialization in

the current setup requires motion of the initialized agent.

However, this will be detected by the terminating conditions

of the initialization (see Section III-D) and it will not

terminate until this is the case.

B. Initial state hypotheses

Before any range measurement relative to the considered

agent is given, the initial position (and heading) prior is

assumed to be uniform. However, some initial estimate x̂0|−1

is needed and it may be set identical to zero or some other

agent’s state. At the first range measurement, the posterior

will be identical with the likelihood function. Since this

likelihood function has a simple geometry, it can be deter-

ministically sampled to start the multihypothesis estimation.

The initial sampling is done based on a number of base

hypotheses. From the nature of the application, e.g. reason-

ably flat environment, or some exteroceptive sensor such as a

barometer, a set of initial height hypotheses h(i) with weights

w
(i)

h
are assumed given. (Uniform hypotheses of the elevation

of the agent’s position relative pref
0

could be used instead.)

The first ranging r̃0 gives a set of true range hypotheses r( j)

with weights V(r( j)|r̃0) = w
( j)
r . Hypotheses of the bearing

χ(n) relative to pref
0

are assumed uniformly distributed (over

[0, 2π)). The initial heading hypotheses θ(m) are uniformly

distributed with either uniform weights w
(m)

θ
or weights ac-

cording to some prior or external information source such as

a magnetometer or similar. From these base hypotheses and

the geometry of the setup, initial state hypotheses/particles

are given by

x
(i, j,n,m)

0
= x̄ref

ℓ − r̄(i, j,n) − r(m)

where

x̄ref
ℓ = [pref

ℓ0
, 0]

r̄(i, j,n) = [r̄(i, j) cos(χ(n)), r̄(i, j) sin(χ(n)), zref
ℓ −ẑ0

ℓ−h( j), 0]

r(m) = [H(θ(m)) T (x̂ℓ, x̂0|0), −θ(m)]

where the horizontal projection of the range hypothesis is

r̄(i, j) = (|(r(i))2 − (zref
ℓ
− ẑℓ − h( j))2|)1/2 and

H(θ(m)) =





















cos(θ(m)) − sin(θ(m)) 0 0

sin(θ(m)) cos(θ(m)) 0 0

0 0 1 0





















. (3)
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Fig. 2: Illustration of the geometry in the horizontal plane of the initial
state hypothesis sampling. The bearing, height, and range hypotheses give
vectors r̄(i, j,m) which in turn give the relative positions of the agent relative
pref
ℓ

. The heading hypotheses and the dead reckoning give the vectors r(m)

between the agent position and the initial position hypotheses x(i).

The corresponding particle weights are w
(i, j,m)

|0 =

w
(i)

h
w

( j)
r w

(m)

θ
Σ−1 where Σ is a normalizing factor such

that the weights sum up to 1. An illustration of the

geometry giving the initial hypotheses is shown in Fig. 2.

Note that the absolute value in r̄(i, j) is necessary to avoid

potential problems for small r(i). Since the origin of the

particles/hypothesis in terms of the base hypotheses does

not matter, from here on, they and their weights will be

indexed by a single index as in x
(i)

0
= [p

(i)

0
, θ

(i)

0
] and w

(i)

|0 .

Note that, since the initial bearing and heading hypotheses

are fixed, their corresponding cos(·) and sin(·) values can be

precalculated.

C. Ranging updates

To condition a particle x
(i)

0
(and subsequently x̂ℓ|ℓ−1 and

Pℓ|ℓ−1) with respect to a range measurement r̃ℓ where ℓ > 0, it

is reweighted with the corresponding likelihood of observing

the range measurement. The predicted range according to

hypothesis x
(i)

0
is

r̂
(i)

ℓ
=
∥

∥

∥H(θ
(i)

0
) T (x̂ℓ|ℓ−1, x̂0|ℓ−1) + p

(i)

0
− pref

ℓ

∥

∥

∥ . (4)

Accordingly, the hypothesis weight conditioned on a range

measurement r̃ℓ is

w
(i)

|ℓ = w
(i)

|ℓ−1
· V(r̃ℓ |r̂(i)

ℓ
) · Σ−1 (5)

where again Σ is a normalizing factor such that the condi-

tioned weights sum up to 1. Suitably, the likelihood function

is taken to be Cauchy-distributed

V( r̃|r̂(i)

ℓ
) =
σ

π















1

(r̃ − r̂
(i)

ℓ
)2 + σ2















where σ is the scale parameter of the distribution. This

heavy tailed distribution will make the initialization robust

to measurement outliers and is inexpensive to evaluate.

With the conditioned weights, the conditional mean posi-

tion may be calculated by the weighted sample mean

p̂0|ℓ =
∑

i

w
(i)

|ℓ p
(i)

0
. (6)
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Unfortunately, due to the periodicity of the heading, the

conditional mean cannot be used for the heading. However,

since the quality of the estimate is only crucial when the

initialization terminates, assumably providing a low variance

estimate, the simple vector sum algorithm with weighted

components may be used,

θ̂0|ℓ = atan2













∑

i

w
(i)

|ℓ sin(θ(i)),
∑

i

w
(i)

|ℓ cos(θ(i))













. (7)

For properties of the vector sum algorithm and more refined

methods, see [12][13]. Together (6) and (7) give x̂0|ℓ =

[p̂0|ℓ, θ̂0|ℓ].

Similar to the conditional mean, the conditional covariance

may be calculated by the weighted sample covariance. How-

ever, again, care has to be taken to handle the periodicity of

the heading. Define the sample deviation from the mean by

e
(i)

0|ℓ = (p̂0|ℓ − p
(i)

0
,mod(θ̂0|ℓ − θ(i) + π, 2π) − π)

where mod(·, a) is the modulus-a division with the sign equal

to the divisor. Then the sample covariance is

P0|ℓ =
∑

i

w
(i)

|ℓ e
(i)

0|ℓ(e
(i)

0|ℓ)
⊤. (8)

With the conditional mean x̂0|ℓ, the current state estimates

relative x̂0|ℓ is given by

x̂ℓ|ℓ = T−1(T (x̂ℓ|ℓ−1, x̂0|ℓ−1), x̂0|ℓ). (9)

The corresponding covariance is

Pℓ|ℓ = F(θ̂0|ℓ, x̂
0
ℓ , ŷ

0
ℓ )P

0
ℓF
⊤(θ̂0|ℓ, x̂

0
ℓ , ŷ

0
ℓ ) + P0|ℓ, (10)

i.e. when the covariance in the navigation frame is evaluated,

the complete dead reckoning is treated as one step.

D. Initialization termination

Once a uni-modal distribution of x
(i)

0
with sufficiently small

covariance has been attained as a result of ranging updates

and resampling, the initialization should be terminated and

the states of the agent estimated jointly with the remain-

der of initialized agents in the system. The uni-modality

comes together with a small covariance for any reasonable

choice of ranging likelihood function. The small covariance

requirement may be assessed by the size of the diagonal

entries of P0|ℓ. Consequently, the terminating conditions for

the initialization is

diag(P0|ℓ) < γcov

where γcov is the bounds on the allowable variances and the

’less-than’ relations are applied to each component of the

vectors. If this holds, the initialization may be terminated and

subsequent range measurement handled by any covariance-

based filter of choice.

E. Resampling

After a few ranging updates, most initial particles will

have a negligible weight. Unless an excessive number of

particles are to be used, this sample impoverishment has to

be mitigated by resampling. Ideally we would like to sample

new particles from the posterior distribution. Unfortunately,

the posterior distribution is only available as a particle

cloud. However, since a static quantity x0 is estimated, a

simple Gaussian proposal function suffice, and we employ

the following resampling strategy. If the weight of a particle

is below some threshold

w
(i)

|ℓ < γ
1

N

where N is the number of particles, draw a new ith sample

x
(i)

0
∼ N(x̂0|ℓ, α

2 P0|ℓ) (11)

from the Gaussian distribution N(x̂0|ℓ, α
2 P0|ℓ) and make

the assignment w
(i)

|ℓ = 1/N. The threshold γ will be a

system parameter which will determine the trade-off be-

tween particle diversity and particle impoverishment. Most

naturally we would use α = 1. However, if α > 1 this

will add a forgetting factor to the initialization. This can be

used to make the initialization robust to errors in the dead

reckoning during the initialization at the cost of a potentially

prolonged initialization. The resampling (11) is implemented

by drawing a sample n from a standard Gaussian distribution

and making the assignment

x
(i)

0
= x̂0|ℓ + αL0|ℓ · n (12)

where P0|ℓ = L0|ℓL
⊤
0|ℓ is the Cholesky factorization of P0|ℓ.

F. Computational cost

Since there is no dynamic in the estimated initial state x0,

the computational cost associated with the initialization only

comes from the ranging updates and the resampling and there

is no dependence on the number of agents or anchor nodes

(apart from that each agent need to be initialized). For each

range update and particle, the predicted range r̂
(i)

ℓ
needs to be

calculated by (4). The cost is 7 multiplications (mul) and 8

additions and subtractions (add) and a square-root operation.

The cost of the reweighting (5) (with a Cauchy distributed

likelihood function) with a separate renormalization step is

approximately 2 mul, 3 add, and one division (div) operation

per particle. Calculating the mean position (6) and mean

heading (7) will cost 5 mul and 5 add per particle. Calcu-

lating the sample deviation e
(i)

0|ℓ costs 6 add plus a modulus

division. In turn, calculating the sample covariance requires

14 mul and 10 add per sample. The computational cost for

calculating the transformations (2) and the covariances (10)

will be marginal.

Assuming that samples are drawn from a pre-generated

list of samples from a standard Gaussian distribution and

thereby do not carry any cost, the computational cost of the

resampling (12) is 40 multiplications and 40 additions per

resampled particle. In addition, cos(θ(i)) and sin(θ(i)) need

to be evaluated and stored for later use for each resampled
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TABLE I: Total number of operations required per particle for performing
the ranging update and resampling in the initialization procedure.

add mul div other

ranging update 32 32 1
√·, mod(·, 2π)

resampling 40 40 - cos(·), sin(·)
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Fig. 3: Illustration of the simulated trajectories and ranging measurements.
The initially lower agent is initialized relative to the upper agent.

particle. The Cholesky factorization of the 4 × 4 matrix P0|ℓ
only needs to be evaluated once, making the cost marginal.

The total number and type of required operations per particle

is summarized in Table I.

IV. Simulations

To illustrate the Bayesian recursive initialization as de-

scribed in the previous section, we simulate a basic scenario.

Two agents move along the trajectories and perform the

ranging shown in Fig. 3. The ranging errors are assumed

Cauchy-distributed with scale σ = 1 [m]. The lower agent

is initialized relative the upper agent. A realization of the

resulting recursive state estimates, with α = 1, is seen in

Fig. 4. The related particle clouds (particles with weights

w(i) > 1/N) in the horizontal plane and histograms of their

headings are seen in Fig. 7. After the first ranging, the

particles are evenly distributed in a torus. After the second

ranging, only a few rings of particles remain. Following

subsequent ranging, the particle clouds become more and

more uni-modal and the mean x̂0|ℓ and the most likely particle

are seen to approach the true initial position. Finally, the

covariance is low enough that the subsequent estimation can

be performed by a covariance-based filter.

For clarity, in Fig. 7, an excessive number of particles

are used (N = 9216). However, the initialization results are

largely unchanged for down to a few hundred particles. The

position root-mean-square-error (RMSE) as a function of the

sample index for different number of particles is shown in

Fig. 5. The RMSEs have been calculated over 100 realiza-

tions with random seedings of the sampling. The number of

particles is varied by changing the granularity of the base

hypotheses of the heading and the bearing. The displayed

numbers of particles (36864, 9216, 2304, 576, 114) corre-

spond to the granularities (5.625◦, 11.25◦, 22.5◦, 45◦, 90◦).

The initial range hypotheses are (r̃0 − 1, r̃0, r̃0 + 1) and the

height hypotheses are (−0.5, 0, 0.5) with uniform weights.

It is observed that the performance of the initialization is

largely unchanged for granularities equal to or below 45◦.
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Fig. 4: Plot of the recursively estimated agent states. The black dotted line
indicate the true trajectory. Initially the state estimate of the lower (red)
agent being initialized make large jumps. However, already after a 3 range
updates the state estimate is reasonable and after an additional 3 updates,
the agreement with the true trajectory is good.
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Fig. 5: Position RMSE for 100 realizations during the initialization for
different number of particles. As can be seen, only a few hundred particles
is required to get an acceptable performance for the simulated scenario.

The behavior displayed around 45◦ and above should come

as no surprise since clearly a granularity of 45◦−90◦ is very

coarse. However, note that the traveled distance is approx.

150 [m] so the final RMSE of 7 [m] for the 90◦ case is still

acceptable.

V. Experimental data

The recursive Bayesian initialization has been imple-

mented as a part of the positioning system described in [3].

Fig. 6 shows the initialization (jagged trajectory segment)

and subsequent covariance-based position estimation of one

agent (red dashed line) relative to another agent (blue solid

line) equipped with OpenShoe dead reckoning units [14] and

with synthetic range measurements provided by the Ubisense

real-time localization system installed in the R1 reactor hall.

The trajectories roughly correspond to the true trajectories.

Overall, the suggested initialization method has shown stable

results over the development of the localization system.

VI. Conclusion

In this article, we have suggested a method for initializing

the state estimation in a (cooperative) localization scenario

based on dead reckoning and ranging. This is done by

recursively estimating the initial state of an agent by a

particle filter while treating its surrounding and its dead

reckoning as deterministic. Estimating the initial state rather

than the the current state has been shown to give an easier
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Fig. 6: Result of recursive initialization of one agent (red dashed line)
relative to another agent (blue solid line) overlayed on a floor-plan. The
estimated trajectories roughly correspond to the true trajectories.

estimation problem requiring less particles and giving a

lower computational cost. The effectiveness of the method

has been demonstrated with simulations and a real system

implementation.
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Fig. 7: The plots show the particle clouds in the horizontal plane (particles
with weights w(i) > 1/N) and the weighted histograms of particle headings
after conditioning by the respective range measurements. The red plus-signs
indicate the true initial position x0, the black crosses indicate the recursive
estimates x̂0|ℓ, and the green diamonds indicate the most likely particle. The
black ellipses indicate the one-sigma confidence ellipse given by P0|ℓ.
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