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Abstract— The presence of roadworks greatly affects the
validity of prior maps used for navigation by autonomous
vehicles. This paper addresses the problem of quickly and
robustly assessing the gist of traffic scenes for whether road-
works might be present. Without explicitly modelling individual
roadwork indicators such as traffic cones, construction barriers
or traffic signs, our method instead only exploits the engineered
visual saliency of such objects. We draw inspiration from op-
ponent colour vision in humans to formulate a novel roadwork
scene signature based on an opponent spatial prior combined
with gradient information. Finally, we apply our roadwork
scene signature to the task of roadwork scene recognition,
within a classification framework based on soft assignment vec-
torization and RUSBoost. We evaluate our roadwork signature
on real life data from our autonomous vehicle.

I. INTRODUCTION

Roadworks visually demarcate the presence and extent

of road maintenance, construction and accident scenes. The

layout of a roadwork scene depends on the underlying cause

of the disruption, which in turn influences the objects used

to denote the scene. For example, highway maintenance is

typically denoted by traffic cones and traffic signs, while city

works are denoted by traffic signs, construction barriers and

traffic cones. Directly modelling a roadwork scene requires

a formulation for the relationships between these different

objects within the scene. A naive approach is to detect

individual objects in the scene and classify a scene based on

occurrences of roadwork objects. Such an approach is both

computationally expensive and requires training multiple

object detectors. Our more sophisticated model however,

describes the entire roadwork scene using a global signature

without explicitly modelling individual objects within the

scene. This approach is inspired by the relationship between

opponent colour vision and the design of roadwork objects.

Although roadworks are temporary, their frequency of oc-

currence is surprisingly high. In 2009/2010 alone, Transport

for London reported an estimated 370 000 roadworks [1],

a figure that is typical for most major cities. Roadworks

introduce new infrastructure on the road, thus dramatically

changing its layout and negatively affecting the accuracy

of prior maps [2] which have recently been exploited to

constrain tasks such as traffic light detection and mapping

[3], [4]. Such prior maps can no longer be trusted at

roadwork sites and autonomy should potentially be revoked

in a safe manner. There therefore exists a need for an

efficient mechanism to quickly recognise roadwork scenes in

order to update prior assumptions about the world and offer

manual control to the human driver (or alternative navigation

algorithm) as shown by Figure 1- this motivates our work.

!
"#
$%
&
'
(
)

*
+
,
)-
).
/
0
1

2
30
1
)4
5

!

"#$%&#'()*

+',-.'*/$(.*0#12'#3

Fig. 1. Our proposed autonomous vehicle interface: when roadworks
are detected (top), manual control is offered to the driver (bottom). The
roadworks shown here were successfully recognised using our roadwork
scene signature. Such a system has two important applications: offering
manual vehicle control when autonomy is limited and cuing the automatic
switch from a normal to a roadwork autonomous navigation algorithm.

The main contribution of this work is an elegant and

robust framework for roadwork scene recognition based on

an opponent colour roadwork scene signature. Following

a review of related works in the next section, we discuss

the opponent colour model in Section III. Our roadwork

scene signature is introduced in Section IV followed by an

evaluation in Section V. Finally, we conclude in Section VI.

II. RELATED WORKS

Colour information plays a vital role in object and scene

recognition, and many colour descriptors have been proposed

over the years (see [5] for a good overview). The Hue

Saturation Value (HSV) colour space has gained popularity

within the vision community where it has been applied to a

large corpus of problems such as face detection [6], traffic

sign recognition [7], and pedestrian detection [8].
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Scene recognition is often posed as a similar image

retrieval problem by the computer vision community. This

approach requires a representation of the image as a fixed-

size vector created from quantised descriptors. Bosch et.

al. apply probabilistic Latent Semantic Analysis (pLSA) to

a bag of words representation of each image to create a

descriptor. A multiway classifier is then trained on the topic

distribution of each image [9]. In similar work, Siagian and

Itti [10] use a multi-scale set of early-visual features to

represent an image as a low-dimensional signature vector.

In scene classification literature, contextual information is

often captured by modelling spatial dependencies between

classified segmented regions of the image to aid scene

recognition [11]. Our method differs from previous work in

that spatial dependencies between regions in the image are

captured by an opponent colour spatial prior (see Figures 5

and 8). Furthermore, we extend the Bag-of-words approach

to implement soft assignment vectorization based on stand-

ard deviations from codebook centroids. This allows us to

capture the degree of similarity between features.

Other colour spaces have been used before: Bratkova et al.

present a practical opponent colour space, known as oRGB,

useful for graphics applications such as colour adjustment,

transformation, and transfer [12]. Ishizuka and Hirai segment

red road signs using the HSV colour space and later perform

traffic sign recognition based on opponent colour filters [13].

Other colour descriptors such as colour GIST [14] and colour

SIFT [5] have also been proposed before. The most relevant

related work is the Bag-of-colors (BOC) descriptor proposed

by Wengert et. al. [15] for improved image search. This

descriptor is based on the generation of a CIE Lab colour

dictionary (codebook) which is used to represent an image

as a normalised histogram colour signature.

Previous work on roadworks is limited to the automatic

generation of motorway roadwork maps for driver assistance

systems [16], and the detection and classification of motor-

way concrete and steel roadwork safely barriers to generate

maps [17]. In our previous work [2], we considered anticipa-

tion of roadworks by combining online city council location

priors with local observations to allow us to accurately map

roadwork layouts and discount inaccurate prior information.

In formulating our roadwork scene signature, we do not

detect individual objects in the scene but instead represent

the scene using our roadwork signature. To the best of

our knowledge, an opponent colour based roadwork scene

signature has not previously been proposed for roadwork

scene recognition in autonomous driving applications.

III. ROADWORK SCENES AND OPPONENT COLOUR

A. Roadwork Scenes

Roadwork objects are predominantly coloured red, green,

yellow or blue (or some closely related hue) as seen in Figure

2. Concretely, roadworks are purposely designed to be salient

to the human visual processing system, which perceives col-

Fig. 2. Typical roadwork scenes found in our datasets. The dominant
co-occurrances of red-green and blue-yellow hues in the roadwork scenes,
inspire our opponent colour formulation of a roadwork scene signature.
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Fig. 3. A simplified schematic of the Hering opponent-colour model
from [20]. The polarities indicate two possible modes of responses that
are physiologically opponent in nature. The three pairs B-Y, G-R, and W-
Bl are antagonistic (i.e. the concept of redish-green is foreign to the human
visual system, whereas yellowish-red is perceived as orange). Here, α,β, γ
are photosensitive biological retina materials aiding the formation of colour.

our in an opponent-like fashion. This observation underpins

our formulation of a roadwork scene signature.

B. The Opponent Colour Model

The perception of colour depends on three factors: the

illumination source, the material of the object being illu-

minated and the observer (human eye or camera) [18]. The

back of the human eye has a photoreceptive region, known

as the retina, containing rod and cone photoreceptors that

allow humans to perceive monochromatic and colour vision

respectively. Several visual processes have been proposed to

explain the perception of colour in humans. Colour vision,

while not studied in robotics, has widely been studied by the

neuroscience and psychology community. In general, there

exists two main theoretical accounts for the formation of

colour on the human visual cortex: the Young-Helmholtz

and the Hering theories [19]. The former model is a the-

ory of trichromatic colour vision based on three primary

colours (red, green, blue) and their combinations on the

eye’s cone photoreceptors to produce the full spectrum of

colours perceived by humans. In contrast, Hering’s theory

postulates opponent colour vision involving three types of

paired visual processes occurring in the visual cortex, such

that each process has two opponent members. These sensory

processes are antagonistic within each channel [20] and are

summarised graphically by Figure 3.

In this paper, we limit our discussion of the opponent

colour model to its effect on the design and manufacture of

roadwork objects and how this knowledge can be exploited

when formulating a roadwork scene signature. Figure 3

shows neuron colour responses of the visual cortex which

are grouped into three antagonistic processes: yellow-blue

(Y-B), red-green (R-G), and white-black(W-Bl) intensity.

These responses are linked to three photosensitive biological
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Fig. 4. Axes of the CIE Lab colour space are blue-yellow and red-green
(both chromatic), and black-white (achromatic) occurring antagonistically.
The red-green pattern is best highlighted by channel a, with the opponent
colour intensities at opposite extremes. Similarly, the blue-yellow pattern is
best highlighted by channel b. The intensity channel is also shown.

materials found in the eyes (denoted by α,β, γ). Hurvich and

Jameson [20] showed that each opponent colour channel can

be derived according to:

Cy−b = k1(β + γ − 2α)
Cr−g = k2(α+ γ − 2β)

Cw−bl = k3(α+ γ + β)− k4(α+ β + γ)
(1)

where Cx−y represents an opponent colour channel and

each ki is a physiological constant.

In practice, the opponent colour model implies that certain

combinations of colours cannot be perceived together. For

example, blueish-green or yellowish-red describe well known

colours cyan and orange. The concept of blueish-yellow or

redish-green is however foreign to the human perception

system. In Figure 2, we observe red-green roadwork barriers,

blue traffic signs, and bright orange traffic cones and barriers.

Roadworks are therefore designed to be easily perceived by

the opponent colour process of the human visual cortex.

For our application, we seek an equivalent computer

vision colour model that interprets red-green and blue-yellow

antagonistically, and therefore perceives roadworks the same

way a human does. In computer vision, the CIE Lab colour

space is an opponent space that models perceptually uniform

human vision by approximating the logarithmic response

functions of the eye. As in human vision, the CIE Lab

colour space has an achromatic channel (intensity) and

two chromatic red-green and blue-yellow colour channels.

Perceptual uniformity implies that changes to any of the

Lab components induces similar changes in the perceived

colour. Converting from classic RGB to CIE Lab involves a

nonlinear transform. This opponent colour model is therefore

useful for pattern recognition because it naturally segments

patterns into perceptually meaningful opposing colour chan-

nels. This effect is illustrated by the righthand Figure 4

where the red-green and yellow-blue patterns are highlighted

by the opponent colour transformation. This automatic pixel

labelling characteristic is computationally efficient and a nat-

ural property of the colour model. Importantly, the CIE Lab

colour space is consistent with the Hering colour model used

to explain human vision and each channel encodes exactly

two colours in an opposing fashion. Next, we formulate a

roadwork scene signature inspired by these two properties.

IV. ROADWORK SCENE SIGNATURE

A roadwork scene signature is a compact image repres-

entation useful for characterising a road scene. We formulate

this as a global signature based on the opponent colour model

described in the previous section.

A. Opponent Based spatial Prior

In Section III, we showed the relationship between vision

in humans and the design of roadwork objects. Furthermore,

we discussed why the CIE Lab opponent colour space is

a good approximation of human opponent vision for the

task of roadwork scene recognition. A good roadwork scene

signature should be discriminative and robust to scene clutter,

which motivates the first step of the signature creation

process: transforming the image to CIE Lab colour space.

This transformation allows us to exploit the automatic pixel

labelling properties of the opponent colour space in order to

implicitly derive a spatial prior for the location of roadwork

objects in a given image. Only the chromatic CIE Lab

image channels (a and b) are considered in this formulation.

Figure 4 shows that, for each of the chromatic channels, the

opponent colours are at opposite intensity extremes (yellow

is positive and blue is negative, similarly red is positive and

green is negative). The peak gradient information is therefore

concentrated at the opponent extreme regions where an

image keypoint detector peaks. We exploit this for efficiently

extracting descriptors only at relevant image locations. This

computationally efficient spatial prior allows us to avoid na-

ively detecting individual objects in a given scene (see Figure

5). Our formulation differs from traditional approaches where

many keypoints are used and often densely sampled.

B. Image Descriptor Extraction

Following the opponent based spatial prior described in

the previous section, we extract a descriptor at each detected

image keypoint. For a given colour channel and detected

keypoint, a 128 bit SURF descriptor [21] is extracted as

shown in Figure 6. We choose the SURF descriptor for

its speed and robustness [21]. Other descriptors such as

RGB histograms, SIFT [22], colour moments or moment

invariants are also valid possible candidates for our proposed

framework, however a comparison of different descriptors is

beyond the intended message of this paper, and we refer the

reader to [5] for a good comparison.

Our proposed descriptor differs from the Bag-of-Colors

model [15] even though both methods exploit the CIE Lab

colour space. Firstly, SURF keypoints are only detected at

points most likely to contain roadworks due to our initial

spatial prior. In contrast, the Bag-of-colors approach creates

a colour descriptor by considering every pixel in the image

to increment a kc-dimensional vector, where kc is the col-

our codebook length. Secondly, in addition to colour, our

descriptor also captures texture information.
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Fig. 5. Results from our opponent based spatial prior showing the automatic
labelling of pixels in the a and b CIE Lab colour channels. The intensity
scale is shown at the bottom of the figure. Notice how the blue traffic signs
are well segmented in the b (blue-yellow) channel. Similarly, the barriers
and traffic cones are well segmented by the a (red-green) channel.
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Fig. 6. Our image descriptor comprises of a 128 bit SURF descriptor [21]
computed at each keypoint in the image for both opponent chromatic colour
channels. The circles denote the scale and orientation of a descriptor.

C. Codebook Generation and Vectorization

For a given image, the number of extracted descriptors

depends on the number of detected keypoints. This number

varies with each image, thus a method to represent every im-

age as a single vector is required. To achieve this, a codebook

is generated and each image is vector quantised against this

codebook in order to derive a single vector representation.

Our codebook generation and vectorization procedure is an

improved version of the Bag-of-Words approach for scene

recognition [23] and is summarised by Figure 7. Codebook

generation proceeds as follows:

1) Collect training images containing road scenes (road-

work and non-roadwork)

2) Create a codebook: for all training images extract

!"!# !$ !%!& !'

Fig. 7. Soft assignment vectorization for a codebook C = {ci}
6

i=1

with six visual word centroids . Three descriptors (shown as crosses)
were detected in the image. The histogram on the right shows the final
vectorized image representation. Descriptors closest to the centroid receive
higher weighting in the vectorized histogram representation (Equation 3).
In this way, we capture the distribution of the descriptors with respect to the
nearest neighbour centroid. This exploits the perceptual uniformity (colour
differencing) property of CIE Lab.

image descriptors according to Section IV-B. K-means

cluster these to create a codebook vocabulary, choosing

k based on precision recall performance on a holdout

dataset. Each cluster centroid, ci then represents a

visual word in this codebook.

Given a codebook, we can now vectorize a new image by

quantising it against the codebook. The Bag-of-Words model

represents each image as a histogram vector of length C.

Using a hard assignment rule, each histogram bin is updated

by one when a detected descriptor is closest to its associated

visual word. Thus, given descriptor x and nearest neighbour

NN(x) = ci the ith histogram bin hi is updated according

to:

hi = hi + 1 if NN(x) = ci. (2)

In our work, we adopt a soft assignment approach instead.

We update the histogram bin by the inverse standard devi-

ation from the closest visual word according to:

hi = hi+

�

�

1

| m |

�

m

(xm − cim)
2
+ ε

�

−1

if NN(x) = ci

(3)

where m = {1, 2, . . . , k} indexes the elements of a visual

word (or descriptor) and ε is a small number ensuring that the

denominator is nonzero if the descriptor and codebook visual

word match exactly. This soft assignment approach captures

the degree of similarity between a descriptor and its closest

visual word and indirectly models the feature distribution.

We can adopt this approach because the perceptually uniform

CIE Lab colour model represents a non linear transforma-

tion into a new space that is better able to predict visual

colour difference between two points using the Euclidean

distance metric [24]. Furthermore, van Gemert et. al showed

that explicitly modelling visual word assignment decreases

classification ambiguity when compared to the traditional

hard assignment model [25]. Many soft assignment schemes

exist, however our approach is inspired by work done by

Jegou et. al. [26] to aggregate local descriptors into a single

image representation for image search: a difference between
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no spacial prior with opponent prior

Fig. 8. Visual words for roadwork scenes found in our datasets. The SURF
threshold remains constant throughout. Significantly fewer visual words are
extracted by incorporating the opponent colour model (right). These are also
extracted in regions most likely to contain roadwork objects.

a descriptor and visual word is calculated then dimensionality

reduction is done to represent the image using a single vector.

The key advantage of our formulation is that the opponent

colour based spatial prior directs our descriptor extraction

algorithm to regions in the image most likely to contain

roadworks because hues not encoded by the opponent colour

channels are suppressed. This phenomenon is demonstrated

by Figure 8 which shows visual words detected with and

without our spatial prior. Our roadwork signature, h therefore

comprises of fewer but relevant visual words resulting in a

compact vectorized image representation.

D. Training and Validation

The codebook generation and vectorization scheme de-

scribed in Section IV-C results in a roadwork scene signature

Source Description # Pos e.g. # Neg e.g.

Train Geograph Codebook 536 1002
Geograph Classifier 1032 2042

Test

Town Dataset 1 57 89
Residential Dataset 2 60 139
Motorway Dataset 3 71 28

City Dataset 4 1443 2075
Motorway + city Dataset 5 1195 704

TABLE I

A SUMMARY OF THE DATASETS USED FOR TRAINING AND EVALUATION

(feature vector) for a given image. Given a set of training

images (containing non-roadwork and roadwork scenes) we

extract roadwork scene signatures for all images and use

these input features to train a classifier for roadwork scene

recognition. Our classifier choice is influenced by the fact

that, although roadworks are common [1], they are finite

and occupy limited sections of the road. This results in

a skewed number of examples for roadwork versus non-

roadwork classes. The RUSBoost algorithm [27] handles

class imbalance by combining random under sampling (RUS)

with AdaBoost [28] resulting in an improved model of the

minority class by removing majority class examples. We

therefore train a RUSBoost classifier using tree learners and

500 rounds within a five-fold cross validation scheme.

V. EXPERIMENTAL RESULTS

Our roadwork scene signature was evaluated on data col-

lected over several months using an autonomous vehicle. The

training data was sourced online from the Geograph Project

database1 for Britain and Ireland [29] containing images

submitted by the public. Table I describes our datasets.

To evaluate the effectiveness of our spatial prior, we

compare the number of SURF keypoints extracted in 100

images with and without the opponent spatial prior. From

Figure 9, it is clear that the number of SURF keypoints is

significantly reduced when using our opponent colour spatial

prior formulation without compromising on accuracy, since

features are extracted only at relevant locations (see Figure

8 for examples). Furthermore, Figure 10 shows that, for our

opponent colour based formulation, the number of SURF

keypoints is in general smaller for images not containing

roadworks which confirms our intuition about the visual

saliency of roadworks in images. In other words, roadworks

are designed to be detected by the human visual system

which operates in an opponent like fashion (see Section III

for a discussion). To understand this further, we computed the

Bayes optimal threshold for minimising the misclassification

error based on the number of SURF keypoints detected in a

given image. A misclassification rate of 30% was achieved

with a simple feature count threshold classifier.

An important design consideration for our roadwork scene

signature is how to select an appropriate codebook size, k.

Care should be taken not to overfit the data whilst ensuring

that a representative and discriminative number of visual

1Creative Commons License
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Fig. 9. The number of SURF keypoints detected without using the
opponent colour spatial prior is significantly higher than when the transform
is applied. Although our roadwork scene descriptor uses fewer keypoints,
the descriptors extracted at these keypoints are the most relevant ones, as
illustrated by Figure 8. Accuracy is therefore not compromised.
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Fig. 10. In general, fewer keypoints are detected for negative examples
which demonstrates the visual saliency of roadworks i.e. our descriptor
focuses on roadwork objects highlighted by our spatial prior, while sup-
pressing non-opponent noise.

words is used. We experimentally determined the value of k

by computing the precision and recall on a holdout dataset

for various values of k, and found k = 100 to give the best

performance. Our codebook size is indeed very small, which

is again a property of the spatial prior discussed in Section

IV-A and demonstrated by Figure 5.

In order to test the effectiveness of our roadwork scene

signature, we apply it to the complex task of roadwork

scene recognition. We also deliberately trained and tested

on completely different datasets (online sourced training

set and test set from autonomous vehicle) in order to

test the generalisation and robustness of our system. For

the test datasets collected by our autonomous vehicle, we

compute Receiver Operation Characteristics (ROC curves)

to illustrate the performance of our classifier with varying

RUSBooost discrimination threshold (see Figure 12 left).

The ROC curves show good performance illustrating the

discriminative property of our roadwork scene signature.

Figure 1 shows examples of successful roadwork detections

across all datasets using our roadwork scene signature and

the proposed associated user interface in our autonomous

vehicle. We also tested our system using a naive SURF

descriptor on grey level images keeping all other experiment

parameters the same. Figure 12 (right) shows the results

demonstrating significantly reduced performance in terms

of the ROC curves. This illustrates the significance of our

opponent colour vision spatial prior.

Fig. 11. Some examples of traffic cone and keep right sign detector outputs.
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Fig. 12. LEFT: ROC curves showing the TPR and FPR achieved for
the datasets described in Table I. Each curve represents a different dataset
collected using our autonomous vehicle. Good performance is achieved
across all datasets using our roadwork scene signature. RIGHT: Recognition
performance is significantly reduced without using our opponent colour
spatial prior (keeping all other experiment parameters the same).

To the best of our knowledge, there is no similar roadwork

scene recognition work to compare against, however we

implement a naive alternative to our method based on object

recognition for comparison. To do this, we train traffic

cone and keep right sign classifiers (see Figure 11) using

dictionary template matching features [30] trained within a

GentleBoost framework [31]. An image is then classified

based on the presence of roadwork objects in the scene.

For this comparison, we assume that the occurrence of

traffic cones in a given scene is conditionally independ-

ent of the presence of keep right traffic signs given the

class label. Each image is therefore represented by Naive

Bayes: p(C|f1, f2) =
1

Z
p(C)p(f1, f2|C), where the features,

f1 and f2 denote the presence of traffic cones and keep

right signs respectively, Z is the normalisation constant,

and classes C are roadwork and non-roadwork. We use

a maximum likelihood estimate of the parameters. Results

of our comparison are shown in Figure 13 demonstrating

that our roadwork scene signature outperforms the object

detection approach. The reasons for this are twofold: firstly,

the presence of multiple traffic cones (or keep right signs)

does not necessarily imply a roadwork scene since keep right

signs are not unique to roadwork scenes and traffic cones

can appear for a number of reasons such as marking off

where children are playing or advance warning of hazards.

Secondly, a roadwork scene recognition system based on

individual detectors is sensitive to detector performance.

Contrastingly, our proposed roadwork scene signature does

not require the detection of individual roadwork objects in

the scene and is hence faster to train, apply to an image and

has the added advantage of being more accurate.
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Fig. 13. A comparison showing ROC performance using our roadwork
scene signature compared to roadwork object detection within a Naive Bayes
scene recognition framework. Our method outperforms the naive approach
and has the added advantage of not explicitly modelling individual roadwork
objects in the scene.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we demonstrate that roadworks are purposely

engineered to be salient to the human opponent colour based

visual system. We use this fact to formulate a spatial prior

for the location of roadwork objects in a given image, based

on the CIE Lab opponent colour space (to approximate

human vision). We then derive a unique roadwork scene

signature, a global image representation that captures the gist

of roadwork scenes without explicitly modelling individual

objects. We demonstrate the usefulness of this roadwork

signature for the task of roadwork scene recognition for an

autonomous vehicle. Our system is evaluated on real data

from an autonomous vehicle and is shown to perform well

across multiple datasets containing varied types of roadwork

images. Future work includes adding a temporal dimension

to our framework and testing our system on video sequences.

We will use this roadwork scene signature as a prior indicator

when mapping out drivable regions at roadwork sites.
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