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Abstract² From exploring planets to cleaning homes, the 

reach and versatility of robotics is vast. The integration of 

actuation, sensing and control makes robotics systems 

powerful, but complicates their simulation. This paper 

introduces a versatile, scalable, yet powerful general-purpose 

robot simulation framework called V-REP. 

The paper discusses the utility of a portable and flexible 

simulation framework that allows for direct incorporation of 

various control techniques. This renders simulations and 

simulation models more accessible to a general-public, by 

reducing the simulation model deployment complexity. It also 

increases productivity by offering built-in and ready-to-use 

functionalities, as well as a multitude of programming 

approaches. 

This allows for a multitude of applications including rapid 

algorithm development, system verification, rapid prototyping, 

and deployment for cases such as safety/remote monitoring, 

training and education, hardware control, and factory 

automation simulation. 

 

I. INTRODUCTION 

The exponential increase in processing power of 

computers (not to mention 3D graphics hardware) along 

with the plethora of open software and hardware standards 

has drastically changed the landscape in the field of (3D) 

robotics simulation. Not only has this enabled more 

complexity on the desktop, but conversely it has provided 

the ability to run simulations (in real-time) with hardware 

in-the-loop, or to have mobile/embedded systems controlled 

from a simulation framework. 

 While it is possible to assemble a simulator from the 

various kinematics, physics and graphics libraries, the 

architecture and control methodology are crucial to 

determining how these elements interact and thus the 

overall performance and accuracy of the system. A robust 

systems approach advocates for a versatile, scalable and 

fine-grained simulation strategy.  

Practically, a general-purpose robot simulator has to 

provide multitude tools and functionalities simultaneously, 

while abstracting the underlying robotic systems and their 

complexity since system specificities cannot be foreseen. 

Additionally, one wants a flexible controller approach that 

can be portable and easily coded (and maintained), 

generalizable to various models, and scalable (i.e. 

simulation entities should handle multiple models, 

controllers or any other functionality).  
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There are currently several robot simulation platforms 

available, for instance Open HRP [1], Gazebo [2] or Webots 

[3]. While some offer competing functionality, many fail in 

offering a large and complementary palette of programming 

techniques, and their simulation models and controllers are 

only partially portable: models, controllers and other 

functionality are clearly distinct, and thus need separate 

handling. For example, controller recompilation on a 

different hardware or platform is often necessary, or the 

simulation model and controller need to be carefully 

matched since they represent at least two distinct files, and 

when scaling is supported, it is done via relatively obscure 

hard-wired mechanisms.  

The Virtual Robot Experimentation Platform [4] (main 

user interface shown in Fig. 1) ± or simply V-REP 

simulator ± is the result of an effort trying to council all 

requirements into a versatile and scalable simulation 

framework. Next to offering the traditional approaches also 

found in other simulators, V-REP adds several additional 

approaches. Section II of this paper describes V-5(3¶V�

control architecture, in which the various possible controller 

types are explained, in particular embedded scripts. That is, 

they can be an integral part of a simulation model, thus 

extremely portable and scalable. Section III discusses the 

overall offered simulation functionality, and its integration 

into simulation models, also for the sake of portability. 

Finally, section IV examines three practical V-REP 

simulation models and their implementation, as an 

LOOXVWUDWLRQ�RI�WKLV�SDSHU¶V�FRQWHQW� 

 

 

Figure 1.  An example V-REP simulation scene showing the diversity of 

robot types that may be simulated simultaneously 

II. SIMULATION CONTROLLERS 

If one wants to build complex simulation scenarios, then 

there is almost no escape from a distributed control 

framework. It simplifies the task by partitioning control 
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entities, it speeds-up simulation by distributing the CPU 

load over several cores or several machines, and it allows a 

simulation model be controlled by native code execution. 

There are however simulation requirements that should not 

be forgotten in pursuit of that goal. 

One of the most important and often neglected aspect is 

the flexibility, portability and scalability of the simulation 

model: how easy is it to adjust its control code(s)? How 

many files have to be distributed in order to run the same 

simulation model on another machine? Will it require 

recompilation on other platforms? How many versions of 

the same controller are in circulation? Can various versions 

operate side-by-side? Can a simulation model easily be 

instantiated several times, without losing functionality? 

Other simulation control requirements are linked to the 

simulation loop. Some elements, especially the low-level 

controls such as real-time motion level controllers, require 

synchronization with the simulation loop. (i.e. executed at 

the same moment at each simulation pass).  

The importance of providing synchronous/asynchronous, 

external/embedded, native/non-native distributed control 

techniques in robotics simulations is discussed hereafter. 

A. Overview of Common Techniques 

The execution of the control code of a simulation or a 

simulation model is handled using the following three 

techniques: 

x The control code is executed on another machine. 

This could represent a distinct machine or a robot, 

connected to the simulator machine via a specific 

network (e.g. socket, serial port, etc.). The main 

advantage of this approach is the originality of the 

controller (the control code can be native and 

running on the original hardware). Another 

advantage is the reduced computing load on the 

simulation machine. On the other hand, this 

approach imposes serious limitations in regards to 

synchronization with the simulation loop, and the 

communication delay/lag dictated by the network. 

x The control code is executed on the same 

machine, but in another process (or another 

thread) than the simulation loop. Here also, we 

can benefit from a reduced, or rather balanced load 

on the CPU cores, but this comes accompanied with 

a lack of synchronization with the simulation loop. 

And most of the time, it comes in pair with a 

communication lag or thread switching delay (many 

resources require locking before access, or some 

algorithms aren't reentrant). This control technique 

is often implemented via external executables or 

plug-ins loaded by the simulator. 

x The control code is executed on the same 

machine and in the same thread as the simulation 

loop. The main advantage of this approach is the 

inherent synchronization with the simulation loop, 

and the absence of any execution, communication or 

thread switching lag or delay. This however is only 

made possible with an increased load on the 

simulation loop CPU core. This control technique is 

often implemented via plug-ins loaded by the 

simulator. 

The most common implementations of the above 

techniques (i.e., using external executables or plug-ins) 

have as a direct consequence poor portability and poor 

scaling of simulation models: indeed, since the control code 

is not attached to its respective simulation model, it will 

have to be distributed/compiled/installed separately. This 

increases compatibility problems across platforms, as well 

as conflict/dependency issues with other libraries. 

Flexibility is also reduced, since one would have to 

recompile and reload an executable/plug-in for each small 

code modification. Model duplication, as in a multi-robot 

simulation scenario, will have to be supported via hard-

wired mechanisms that launch new control instances for 

each simulation model instance. 

B. V-REP Implementation 

V-REP allows the user to choose among various 

programming techniques simultaneously (Table 1) and even 

symbiotically (Fig. 2): 

x Embedded scripts. This represents the most 

powerful and distinctive feature of V-REP. The 

main simulation loop is a simple Lua [5] script 

�FDOOHG� ³main script´��� SDUW� RI� D� JLYHQ� VLPXODWLRQ�

scene, that handles general functionality (e.g. it will 

call distinct functions to handle kinematics or 

dynamics, for instance). The main script is also in 

charge of calling child scripts in a cascaded way 

(with respect to the scene hierarchy). A child script, 

unlike the main script, is attached to a specific 

object in the simulation scene, and handles a 

particular part of the simulation. It is an integral 

part of its scene object, and will be duplicated and 

serialized, together with it. As such, it represents a 

perfectly portable and scalable control element: 

there is one single file containing the model 

definition together with its control or functionality, 

there is no compatibility issue across platforms, no 

need for explicit compilation,  no conflict among 

several versions of the same model, model 

instantiation is implicit, etc. Child scripts can be 

executed in a threaded and non-threaded fashion. 

The threaded version of child scripts still keeps the 

advantages of the technique described in point 3 of 

section II, A: indeed, V-5(3¶V� WKUHDG� VFKHGXOHU�

handles threads in a way that makes them behave 

and appear as coroutines, which allow to precisely 

control the time at which the thread execution is 

switched back and forth, effectively allowing for an 

excellent synchronization with the main script or 

other child scripts. Additionally, each thread can 

programmatically request being set into a free-

running mode (i.e. allowing them to temporarily 
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behave as real threads). Embedded scripts can also 

EH� VHHQ� DV� D� ³JOXH� FRPSRQHQW´�� WKDW� ELQGV� WKH�

various supported programming techniques around 

V-REP: child scripts can register ROS 

publishers/subscribers, they can open and handle 

communication lines (e.g. socket or serial port), 

launch executables, load/unload plug-ins, or start 

remote API server services (see point 4 hereafter). 

Embedded scripts include also callback scripts, used 

as low-level customized joint controllers for 

instance. The functionality of embedded scripts can 

be extended by the user via two mechanisms: with 

Lua extension libraries, or with custom Lua 

functions registered through a plug-in. 

x Add-ons. In a similar way as embedded scripts, 

add-on are supported in V-REP via Lua scripts. 

They can be used as stand-alone functions 

(convenient for writing importers/exporters), or as 

regularly executed code (convenient as a 

lightweight simulator customization method). 

x Plug-ins. Plug-ins are used in V-REP as a convenient 

simulator customization tool. They can register 

custom Lua commands, allowing the execution of 

fast callback functions from within an embedded 

script. They can also extend the functionality of a 

particular simulation model or object. Often they 

also implement specific importers/exporters, or 

offer an interface to a specific hardware. The 

remote API interface as well as the ROS interface 

(see next items) are implemented via plug-ins. 

 

TABLE I.  COMPARISON OF THE FIVE PROGRAMMING TECHNIQUES 

SUPPORTED IN V-REP 

 

x Remote API clients. The remote API interface in 

V-REP allows interacting with V-REP or a 

simulation, from an external entity via socket 

communication. It is composed by remote API 

server services and remote API clients. The client 

side can be embedded as a small footprint code 

(C/C++, Python, Java, Matlab & Urbi) in virtually 

any hardware including real robots, and allows 

remote function calling, as well as fast data 

streaming back and forth. On the client side, 

functions are called almost as regular functions, 

with two exceptions however: remote API functions 

accept an additional argument which is the 

operation mode, and return a same error code. The 

operation mode allows calling functions as blocking 

(will wait until the server replies), or non-blocking 

(will read streamed commands from a buffer, or 

start/stop a streaming service on the server side). 

The ease of use of the remote API, its availability on 

all platforms, and its small footprint, makes it an 

interesting alternative to the ROS interface (see 

next item). 

x ROS [6] nodes. V-REP implements a ROS node 

with a plug-in which allows ROS to call V-REP 

commands via ROS services, or stream data via 

ROS publishers/subscribers. Publishers/subscribers 

can be enabled with a service call, and also directly 

enabled from within V-REP, via an embedded script 

command. 

 

 

Figure 2.  V-REP control architecture. Greyed items are control entities. (1) 

C/C++ API calls, (2) cascaded child script execution, (3) Lua API calls, (4) 

custom Lua API callbacks, (5) V-REP event callbacks, (6) remote API 

function calls, (7) ROS transit, (8) custom communication (socket, serial, 

pipes, etc.) 
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III. SIMULATION FUNCTIONALITY 

V-REP is designed around a versatile architecture. 

There is no main or central functionality in V-REP. Rather, 

V-REP possesses various relatively independent 

functionalities, that can be enabled or disabled as required, 

also on a model-base. 

Imagine a simulation scenario where an industrial robot 

has to pick-up boxes and move them to another location; V-

REP computes the dynamics for grasping and holding the 

boxes and performs a kinematic simulation for the other 

parts of the cycle when dynamic effects are negligible. This 

approach makes it possible to calculate the industrial robot's 

movement quickly and precisely, which would not be the 

case had it been simulated entirely using complex dynamics 

libraries. This type of hybrid simulation is justified in this 

situation, if the robot is stiff and fixed and not otherwise 

influenced by its environment. 

In addition to adaptively enabling various of its 

functionalities in a selective manner, V-REP can also use 

them in a symbiotic manner, having one cooperate with 

another.  In the case of a humanoid robot, for example, V-

REP can handle leg movements by (a) first calculating 

inverse kinematics for each leg (i.e., from a desired foot 

position and orientation, all leg joint positions are 

calculated); and then (b) assigning the calculated joint 

positions to be used as target joint positions by the dynamics 

module. This allows specifying the humanoid motion in a 

very versatile way, since each foot would simply have to be 

assigned to follow a 6-dimensional path: the rest of 

calculations are automatically taken care of. 

Functionality is related to specific scene objects, or to 

specific calculation modules, both of them are described 

hereafter. 

A. Scene Objects 

A V-REP simulation scene, or simulation model 

contains several scene objects or elemental objects that are 

assembled in a tree-like hierarchy. The following scene 

objects are supported in V-REP: 

x Joints: joints are elements that link two or more 

scene objects together with one to three degrees of 

freedom (prismatic, revolute, screw-like, or 

spherical). They can operate in various modes (e.g. 

force/torque mode, inverse kinematics mode, etc.) 

x Shapes: shapes are triangular meshes, used for 

rigid body simulation and visualization. They can 

be optimized for fast dynamic collision response 

calculation, as a grouping of primitive or convex 

shapes. Other scene objects or calculation modules 

heavily rely on shapes for their calculations 

(proximity sensors, the dynamics module, or the 

mesh-mesh distance calculation module for 

example). 

x Proximity sensors (Fig. 3): they perform an exact 

minimum distance calculation to the part of a shape 

contained in a configurable detection volume [7], as 

opposed to simply performing detection based on 

rays. This results in a more continuous operation 

and thus allows for more realistic simulation. 

x Vision sensors: vision sensors allow to extract 

complex image information from a simulation scene 

(colors, object sizes, depth maps, etc.). A built-in 

filtering and image processing function enables the 

composition of blocks of filter elements. Vision 

sensors make use of hardware acceleration for the 

raw image acquisition (OpenGL). 

x Force sensors: they represent rigid links between 

shapes, that can record applied forces and torques, 

and that can conditionally break apart when a given 

threshold is overshot. 

x Graphs: graphs can record a large variety of 

predefined or custom data streams. Data streams 

can then be displayed directly (time graph of a 

given data type), or combined with each other to 

display X/Y graphs, or 3D curves. 

x Cameras: they allow scene visualization when 

associated with a viewport. 

x Lights: lights illuminate a scene or individual scene 

objects, and directly influence cameras or vision 

sensors. 

x Paths: they allow complex movement definitions in 

space (succession of freely combinable translations, 

rotations and/or pauses), and are used for guiding a 

welding robot's torch along a predefined trajectory, 

or for allowing conveyor belt movements for 

example. 

x Dummies: a dummy is a reference frame, that can 

be used for various tasks, and is mainly used in 

conjunction with other scene objects, and as such, 

FDQ�EH�VHHQ�DV�D�³KHOSHU�´ 

x Mills: they represent customizable convex volumes 

that can be used to simulate surface cutting 

operations on shapes (e.g., milling, laser cutting, 

etc.). 

  

Figure 3.  Proximity sensor in V-REP 
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A. Calculation Modules 

Scene objects are rarely used on their own, they rather 

operate on (or in conjunction with) other scene objects (e.g. 

a proximity sensor will detect shapes). In addition, V-REP 

offers several calculation modules that can directly operate 

on one or several scene objects. Following are the main 

calculation modules: 

x Kinematics module: allows kinematics calculations 

(forward/inverse) for any type of mechanism 

(branched, closed, redundant, containing nested 

loops, etc.). The module is based on calculation of 

the damped least squares pseudoinverse [8]. It 

supports conditional, damped/undamped, and 

weighted resolution. 

x Dynamics module: allows handling rigid body 

dynamics calculation and interaction (collision 

response, grasping, etc.) via the Bullet Physics 

Library [9] and the Open Dynamics Engine [10]. 

Dynamics-based simulations still being in its infant 

shoes and often based on approximations, it is 

important to not only rely on one single physics 

engine, in order to validate results. At the time of 

writing, a third, high fidelity physics support via 

Vortex Dynamics [11] is in preparation. 

x Collision detection module: allows fast 

interference checking between any shape or 

collection of shapes. This module is fully 

independent from the collision response calculation 

algorithm of the dynamics module. It uses data 

structures based on a binary tree of oriented 

bounding boxes [12] for accelerations. Additional 

optimization is achieved with a temporal coherency 

caching technique. 

x Mesh-mesh distance calculation module: allows 

fast minimum distance calculations between any 

shape (convex, concave, open, closed, etc.) or 

collection of shapes. The module uses the same data 

structures as the collision detection module. 

Additional optimization is also achieved with a 

temporal coherency caching technique. 

x Path/motion planning module: handles holonomic 

path planning tasks and non-holonomic path 

planning tasks (for car-like vehicles) via an 

approach derived from the Rapidly-exploring 

Random Tree (RRT) algorithm [13]. Path planning 

tasks of kinematic chains are also supported.  
 

For versatility the above modules are implemented in a 

general way, without making any assumptions on the 

underlying simulation scenes or models. The purpose of 

having them integrated in V-REP, instead of relying on 

external libraries is somewhat similar to the purpose of 

having embedded scripts, as described in section II, B: a 

vast majority of simulations or simulation models do not 

require any specific or high-end tool. They instead require a 

good set of basic tools. If those are integrated to the 

simulator, and their task definitions directly attached to 

simulation models, then models become extremely portable: 

distribution of a simulation model to a different machine or 

platform is done via a single model file; there is no need to 

distribute, recompile, install or reload a plug-in. In a similar 

way, this makes models very scalable too: duplicated models 

are automatically functional, without the need to modify any 

source code. The duplication process can even happen 

during simulation. 

The traditional approach of extending functionality via a 

plug-in, in order to support a specific simulation model is of 

course also supported in V-REP. 

IV. A CASE STUDY 

Sometimes there is no escape from using a controller 

that is separate from its simulation entity, typically when 

GHDOLQJ� ZLWK� D� URERW¶V� PDLQ� FRQWUROOHU�� WKDW� FDQ� WDNH� YHU\�

complex proportions. Or when the controller needs to run 

natively. But other times, is it really necessary to implement 

a plug-in for each small sensor, new feature or small 

function? Following three examples illustrate nicely the 

versatility and portability of simulation models offered in V-

REP. 

A. Simulation Model of a Laser Scanner 

Fig. 4 shows a laser scanner simulation model in V-

REP. The model is composed by a body or casing, a revolute 

joint, and a ray-type proximity sensor mounted on the joint. 

A non-threaded child script is attached to the sensor casing, 

and is in charge to move the joint by a given angle, read the 

proximity sensor, generate a line primitive in the scene (and 

an auxiliary point primitive where a detection occurred), 

then move to the next angular position. Since the child 

script runs non-threaded, it will have to process as many 

joint angle positions as the joint would have moved within 

one simulation step. 

The model can be dragged and dropped into a scene, 

and will be immediately operational during simulation. The 

whole model fits into a single file directly usable on other 

platforms too, and compatible with current as well as future 

V-REP versions. The model can be duplicated as often as 

required, and its control code modified at will. 

 

Figure 4.  Laser scanner and hexapod model in V-REP 
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In a similar way, other such models can easily be 

created, be it a drawing pen, a paint nozzle, a gripper, a 

blob detection camera, or a whole robot.  

B. Simulation Model of a Parallel Manipulator 

Fig. 5 shows a parallel manipulator model controlled in 

forward kinematics from an external application that 

connects via the remote API to it. In order to correctly 

handle all the loop closure constraints, the model is handled 

via V-5(3¶V� NLQHPDWLFV� PRGXOH�� 6LQFH� DOO� UHODWHG�

kinematics task definitions are attached to the model, this 

model is self-contained too, and immediately duplicable and 

operational on other platforms too. Even physical scaling of 

the model, which is another feature that V-REP supports, 

will automatically adjust all kinematic tasks (among 

others), and keep kinematic resolution consistent - without 

the need to adjust any code. 

C. Simulation Model of a Smart Human 

Fig. 6 illustrates a simulation model of a human, 

performing path planning tasks between its current position 

and a desired target position. While the path planning task 

in itself is computed by V-5(3¶V� SDWK� SODQQing module, a 

child script attached to the model will trigger path planning 

calculations, actuate legs and arms, and correctly move the 

model along the calculated path. Here also, the model is 

fully self-contained and fully portable. 

V. CONCLUSION 

V-REP is introduced as a versatile and scalable 

simulation framework. By offering a multitude of different 

programming techniques for its controllers, and by allowing 

to embed controllers and functionalities in simulation 

models, it eases the programmers task and reduces the 

deployment complexity for the users. 

 

 

 
Figure 5.  Delta Arm manipulator model in V-REP 

 
Figure 6.  Path planning human model in V-REP 

 

Currently V-REP has grown to a robust and widely used 

robot simulator and controller, present in the academic as 

well as industrial field. It performs tasks ranging from 

system verification, algorithm optimization, simulation of 

complex assembly chains in factory automation 

applications, to robot task planner and controller. 
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