

�

Abstract² From exploring planets to cleaning homes, the

reach and versatility of robotics is vast. The integration of

actuation, sensing and control makes robotics systems

powerful, but complicates their simulation. This paper

introduces a versatile, scalable, yet powerful general-purpose

robot simulation framework called V-REP.

The paper discusses the utility of a portable and flexible

simulation framework that allows for direct incorporation of

various control techniques. This renders simulations and

simulation models more accessible to a general-public, by

reducing the simulation model deployment complexity. It also

increases productivity by offering built-in and ready-to-use

functionalities, as well as a multitude of programming

approaches.

This allows for a multitude of applications including rapid

algorithm development, system verification, rapid prototyping,

and deployment for cases such as safety/remote monitoring,

training and education, hardware control, and factory

automation simulation.

I. INTRODUCTION

The exponential increase in processing power of

computers (not to mention 3D graphics hardware) along

with the plethora of open software and hardware standards

has drastically changed the landscape in the field of (3D)

robotics simulation. Not only has this enabled more

complexity on the desktop, but conversely it has provided

the ability to run simulations (in real-time) with hardware

in-the-loop, or to have mobile/embedded systems controlled

from a simulation framework.

 While it is possible to assemble a simulator from the

various kinematics, physics and graphics libraries, the

architecture and control methodology are crucial to

determining how these elements interact and thus the

overall performance and accuracy of the system. A robust

systems approach advocates for a versatile, scalable and

fine-grained simulation strategy.

Practically, a general-purpose robot simulator has to

provide multitude tools and functionalities simultaneously,

while abstracting the underlying robotic systems and their

complexity since system specificities cannot be foreseen.

Additionally, one wants a flexible controller approach that

can be portable and easily coded (and maintained),

generalizable to various models, and scalable (i.e.

simulation entities should handle multiple models,

controllers or any other functionality).

1
 Corresponding author: marc@coppeliarobotics.com

Eric Rohmer is a lecturer at the State University of Campinas, Brasil

Surya Singh is a lecturer at the University of Queensland, Australia

Marc Freese is CEO of Coppelia Robotics, Switzerland.

There are currently several robot simulation platforms

available, for instance Open HRP [1], Gazebo [2] or Webots

[3]. While some offer competing functionality, many fail in

offering a large and complementary palette of programming

techniques, and their simulation models and controllers are

only partially portable: models, controllers and other

functionality are clearly distinct, and thus need separate

handling. For example, controller recompilation on a

different hardware or platform is often necessary, or the

simulation model and controller need to be carefully

matched since they represent at least two distinct files, and

when scaling is supported, it is done via relatively obscure

hard-wired mechanisms.

The Virtual Robot Experimentation Platform [4] (main

user interface shown in Fig. 1) ± or simply V-REP

simulator ± is the result of an effort trying to council all

requirements into a versatile and scalable simulation

framework. Next to offering the traditional approaches also

found in other simulators, V-REP adds several additional

approaches. Section II of this paper describes V-5(3¶V�

control architecture, in which the various possible controller

types are explained, in particular embedded scripts. That is,

they can be an integral part of a simulation model, thus

extremely portable and scalable. Section III discusses the

overall offered simulation functionality, and its integration

into simulation models, also for the sake of portability.

Finally, section IV examines three practical V-REP

simulation models and their implementation, as an

LOOXVWUDWLRQ�RI�WKLV�SDSHU¶V�FRQWHQW�

Figure 1. An example V-REP simulation scene showing the diversity of

robot types that may be simulated simultaneously

II. SIMULATION CONTROLLERS

If one wants to build complex simulation scenarios, then

there is almost no escape from a distributed control

framework. It simplifies the task by partitioning control

V-REP: a Versatile and Scalable Robot Simulation Framework

Eric Rohmer, Surya P. N. Singh and Marc Freese
1

2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS)
November 3-7, 2013. Tokyo, Japan

978-1-4673-6357-0/13/$31.00 ©2013 IEEE 1321

entities, it speeds-up simulation by distributing the CPU

load over several cores or several machines, and it allows a

simulation model be controlled by native code execution.

There are however simulation requirements that should not

be forgotten in pursuit of that goal.

One of the most important and often neglected aspect is

the flexibility, portability and scalability of the simulation

model: how easy is it to adjust its control code(s)? How

many files have to be distributed in order to run the same

simulation model on another machine? Will it require

recompilation on other platforms? How many versions of

the same controller are in circulation? Can various versions

operate side-by-side? Can a simulation model easily be

instantiated several times, without losing functionality?

Other simulation control requirements are linked to the

simulation loop. Some elements, especially the low-level

controls such as real-time motion level controllers, require

synchronization with the simulation loop. (i.e. executed at

the same moment at each simulation pass).

The importance of providing synchronous/asynchronous,

external/embedded, native/non-native distributed control

techniques in robotics simulations is discussed hereafter.

A. Overview of Common Techniques

The execution of the control code of a simulation or a

simulation model is handled using the following three

techniques:

x The control code is executed on another machine.

This could represent a distinct machine or a robot,

connected to the simulator machine via a specific

network (e.g. socket, serial port, etc.). The main

advantage of this approach is the originality of the

controller (the control code can be native and

running on the original hardware). Another

advantage is the reduced computing load on the

simulation machine. On the other hand, this

approach imposes serious limitations in regards to

synchronization with the simulation loop, and the

communication delay/lag dictated by the network.

x The control code is executed on the same

machine, but in another process (or another

thread) than the simulation loop. Here also, we

can benefit from a reduced, or rather balanced load

on the CPU cores, but this comes accompanied with

a lack of synchronization with the simulation loop.

And most of the time, it comes in pair with a

communication lag or thread switching delay (many

resources require locking before access, or some

algorithms aren't reentrant). This control technique

is often implemented via external executables or

plug-ins loaded by the simulator.

x The control code is executed on the same

machine and in the same thread as the simulation

loop. The main advantage of this approach is the

inherent synchronization with the simulation loop,

and the absence of any execution, communication or

thread switching lag or delay. This however is only

made possible with an increased load on the

simulation loop CPU core. This control technique is

often implemented via plug-ins loaded by the

simulator.

The most common implementations of the above

techniques (i.e., using external executables or plug-ins)

have as a direct consequence poor portability and poor

scaling of simulation models: indeed, since the control code

is not attached to its respective simulation model, it will

have to be distributed/compiled/installed separately. This

increases compatibility problems across platforms, as well

as conflict/dependency issues with other libraries.

Flexibility is also reduced, since one would have to

recompile and reload an executable/plug-in for each small

code modification. Model duplication, as in a multi-robot

simulation scenario, will have to be supported via hard-

wired mechanisms that launch new control instances for

each simulation model instance.

B. V-REP Implementation

V-REP allows the user to choose among various

programming techniques simultaneously (Table 1) and even

symbiotically (Fig. 2):

x Embedded scripts. This represents the most

powerful and distinctive feature of V-REP. The

main simulation loop is a simple Lua [5] script

�FDOOHG� ³main script´��� SDUW� RI� D� JLYHQ� VLPXODWLRQ�

scene, that handles general functionality (e.g. it will

call distinct functions to handle kinematics or

dynamics, for instance). The main script is also in

charge of calling child scripts in a cascaded way

(with respect to the scene hierarchy). A child script,

unlike the main script, is attached to a specific

object in the simulation scene, and handles a

particular part of the simulation. It is an integral

part of its scene object, and will be duplicated and

serialized, together with it. As such, it represents a

perfectly portable and scalable control element:

there is one single file containing the model

definition together with its control or functionality,

there is no compatibility issue across platforms, no

need for explicit compilation, no conflict among

several versions of the same model, model

instantiation is implicit, etc. Child scripts can be

executed in a threaded and non-threaded fashion.

The threaded version of child scripts still keeps the

advantages of the technique described in point 3 of

section II, A: indeed, V-5(3¶V� WKUHDG� VFKHGXOHU�

handles threads in a way that makes them behave

and appear as coroutines, which allow to precisely

control the time at which the thread execution is

switched back and forth, effectively allowing for an

excellent synchronization with the main script or

other child scripts. Additionally, each thread can

programmatically request being set into a free-

running mode (i.e. allowing them to temporarily

1322

behave as real threads). Embedded scripts can also

EH� VHHQ� DV� D� ³JOXH� FRPSRQHQW´�� WKDW� ELQGV� WKH�

various supported programming techniques around

V-REP: child scripts can register ROS

publishers/subscribers, they can open and handle

communication lines (e.g. socket or serial port),

launch executables, load/unload plug-ins, or start

remote API server services (see point 4 hereafter).

Embedded scripts include also callback scripts, used

as low-level customized joint controllers for

instance. The functionality of embedded scripts can

be extended by the user via two mechanisms: with

Lua extension libraries, or with custom Lua

functions registered through a plug-in.

x Add-ons. In a similar way as embedded scripts,

add-on are supported in V-REP via Lua scripts.

They can be used as stand-alone functions

(convenient for writing importers/exporters), or as

regularly executed code (convenient as a

lightweight simulator customization method).

x Plug-ins. Plug-ins are used in V-REP as a convenient

simulator customization tool. They can register

custom Lua commands, allowing the execution of

fast callback functions from within an embedded

script. They can also extend the functionality of a

particular simulation model or object. Often they

also implement specific importers/exporters, or

offer an interface to a specific hardware. The

remote API interface as well as the ROS interface

(see next items) are implemented via plug-ins.

TABLE I. COMPARISON OF THE FIVE PROGRAMMING TECHNIQUES

SUPPORTED IN V-REP

x Remote API clients. The remote API interface in

V-REP allows interacting with V-REP or a

simulation, from an external entity via socket

communication. It is composed by remote API

server services and remote API clients. The client

side can be embedded as a small footprint code

(C/C++, Python, Java, Matlab & Urbi) in virtually

any hardware including real robots, and allows

remote function calling, as well as fast data

streaming back and forth. On the client side,

functions are called almost as regular functions,

with two exceptions however: remote API functions

accept an additional argument which is the

operation mode, and return a same error code. The

operation mode allows calling functions as blocking

(will wait until the server replies), or non-blocking

(will read streamed commands from a buffer, or

start/stop a streaming service on the server side).

The ease of use of the remote API, its availability on

all platforms, and its small footprint, makes it an

interesting alternative to the ROS interface (see

next item).

x ROS [6] nodes. V-REP implements a ROS node

with a plug-in which allows ROS to call V-REP

commands via ROS services, or stream data via

ROS publishers/subscribers. Publishers/subscribers

can be enabled with a service call, and also directly

enabled from within V-REP, via an embedded script

command.

Figure 2. V-REP control architecture. Greyed items are control entities. (1)

C/C++ API calls, (2) cascaded child script execution, (3) Lua API calls, (4)

custom Lua API callbacks, (5) V-REP event callbacks, (6) remote API

function calls, (7) ROS transit, (8) custom communication (socket, serial,

pipes, etc.)

1323

III. SIMULATION FUNCTIONALITY

V-REP is designed around a versatile architecture.

There is no main or central functionality in V-REP. Rather,

V-REP possesses various relatively independent

functionalities, that can be enabled or disabled as required,

also on a model-base.

Imagine a simulation scenario where an industrial robot

has to pick-up boxes and move them to another location; V-

REP computes the dynamics for grasping and holding the

boxes and performs a kinematic simulation for the other

parts of the cycle when dynamic effects are negligible. This

approach makes it possible to calculate the industrial robot's

movement quickly and precisely, which would not be the

case had it been simulated entirely using complex dynamics

libraries. This type of hybrid simulation is justified in this

situation, if the robot is stiff and fixed and not otherwise

influenced by its environment.

In addition to adaptively enabling various of its

functionalities in a selective manner, V-REP can also use

them in a symbiotic manner, having one cooperate with

another. In the case of a humanoid robot, for example, V-

REP can handle leg movements by (a) first calculating

inverse kinematics for each leg (i.e., from a desired foot

position and orientation, all leg joint positions are

calculated); and then (b) assigning the calculated joint

positions to be used as target joint positions by the dynamics

module. This allows specifying the humanoid motion in a

very versatile way, since each foot would simply have to be

assigned to follow a 6-dimensional path: the rest of

calculations are automatically taken care of.

Functionality is related to specific scene objects, or to

specific calculation modules, both of them are described

hereafter.

A. Scene Objects

A V-REP simulation scene, or simulation model

contains several scene objects or elemental objects that are

assembled in a tree-like hierarchy. The following scene

objects are supported in V-REP:

x Joints: joints are elements that link two or more

scene objects together with one to three degrees of

freedom (prismatic, revolute, screw-like, or

spherical). They can operate in various modes (e.g.

force/torque mode, inverse kinematics mode, etc.)

x Shapes: shapes are triangular meshes, used for

rigid body simulation and visualization. They can

be optimized for fast dynamic collision response

calculation, as a grouping of primitive or convex

shapes. Other scene objects or calculation modules

heavily rely on shapes for their calculations

(proximity sensors, the dynamics module, or the

mesh-mesh distance calculation module for

example).

x Proximity sensors (Fig. 3): they perform an exact

minimum distance calculation to the part of a shape

contained in a configurable detection volume [7], as

opposed to simply performing detection based on

rays. This results in a more continuous operation

and thus allows for more realistic simulation.

x Vision sensors: vision sensors allow to extract

complex image information from a simulation scene

(colors, object sizes, depth maps, etc.). A built-in

filtering and image processing function enables the

composition of blocks of filter elements. Vision

sensors make use of hardware acceleration for the

raw image acquisition (OpenGL).

x Force sensors: they represent rigid links between

shapes, that can record applied forces and torques,

and that can conditionally break apart when a given

threshold is overshot.

x Graphs: graphs can record a large variety of

predefined or custom data streams. Data streams

can then be displayed directly (time graph of a

given data type), or combined with each other to

display X/Y graphs, or 3D curves.

x Cameras: they allow scene visualization when

associated with a viewport.

x Lights: lights illuminate a scene or individual scene

objects, and directly influence cameras or vision

sensors.

x Paths: they allow complex movement definitions in

space (succession of freely combinable translations,

rotations and/or pauses), and are used for guiding a

welding robot's torch along a predefined trajectory,

or for allowing conveyor belt movements for

example.

x Dummies: a dummy is a reference frame, that can

be used for various tasks, and is mainly used in

conjunction with other scene objects, and as such,

FDQ�EH�VHHQ�DV�D�³KHOSHU�´

x Mills: they represent customizable convex volumes

that can be used to simulate surface cutting

operations on shapes (e.g., milling, laser cutting,

etc.).

Figure 3. Proximity sensor in V-REP

1324

A. Calculation Modules

Scene objects are rarely used on their own, they rather

operate on (or in conjunction with) other scene objects (e.g.

a proximity sensor will detect shapes). In addition, V-REP

offers several calculation modules that can directly operate

on one or several scene objects. Following are the main

calculation modules:

x Kinematics module: allows kinematics calculations

(forward/inverse) for any type of mechanism

(branched, closed, redundant, containing nested

loops, etc.). The module is based on calculation of

the damped least squares pseudoinverse [8]. It

supports conditional, damped/undamped, and

weighted resolution.

x Dynamics module: allows handling rigid body

dynamics calculation and interaction (collision

response, grasping, etc.) via the Bullet Physics

Library [9] and the Open Dynamics Engine [10].

Dynamics-based simulations still being in its infant

shoes and often based on approximations, it is

important to not only rely on one single physics

engine, in order to validate results. At the time of

writing, a third, high fidelity physics support via

Vortex Dynamics [11] is in preparation.

x Collision detection module: allows fast

interference checking between any shape or

collection of shapes. This module is fully

independent from the collision response calculation

algorithm of the dynamics module. It uses data

structures based on a binary tree of oriented

bounding boxes [12] for accelerations. Additional

optimization is achieved with a temporal coherency

caching technique.

x Mesh-mesh distance calculation module: allows

fast minimum distance calculations between any

shape (convex, concave, open, closed, etc.) or

collection of shapes. The module uses the same data

structures as the collision detection module.

Additional optimization is also achieved with a

temporal coherency caching technique.

x Path/motion planning module: handles holonomic

path planning tasks and non-holonomic path

planning tasks (for car-like vehicles) via an

approach derived from the Rapidly-exploring

Random Tree (RRT) algorithm [13]. Path planning

tasks of kinematic chains are also supported.

For versatility the above modules are implemented in a

general way, without making any assumptions on the

underlying simulation scenes or models. The purpose of

having them integrated in V-REP, instead of relying on

external libraries is somewhat similar to the purpose of

having embedded scripts, as described in section II, B: a

vast majority of simulations or simulation models do not

require any specific or high-end tool. They instead require a

good set of basic tools. If those are integrated to the

simulator, and their task definitions directly attached to

simulation models, then models become extremely portable:

distribution of a simulation model to a different machine or

platform is done via a single model file; there is no need to

distribute, recompile, install or reload a plug-in. In a similar

way, this makes models very scalable too: duplicated models

are automatically functional, without the need to modify any

source code. The duplication process can even happen

during simulation.

The traditional approach of extending functionality via a

plug-in, in order to support a specific simulation model is of

course also supported in V-REP.

IV. A CASE STUDY

Sometimes there is no escape from using a controller

that is separate from its simulation entity, typically when

GHDOLQJ� ZLWK� D� URERW¶V� PDLQ� FRQWUROOHU�� WKDW� FDQ� WDNH� YHU\�

complex proportions. Or when the controller needs to run

natively. But other times, is it really necessary to implement

a plug-in for each small sensor, new feature or small

function? Following three examples illustrate nicely the

versatility and portability of simulation models offered in V-

REP.

A. Simulation Model of a Laser Scanner

Fig. 4 shows a laser scanner simulation model in V-

REP. The model is composed by a body or casing, a revolute

joint, and a ray-type proximity sensor mounted on the joint.

A non-threaded child script is attached to the sensor casing,

and is in charge to move the joint by a given angle, read the

proximity sensor, generate a line primitive in the scene (and

an auxiliary point primitive where a detection occurred),

then move to the next angular position. Since the child

script runs non-threaded, it will have to process as many

joint angle positions as the joint would have moved within

one simulation step.

The model can be dragged and dropped into a scene,

and will be immediately operational during simulation. The

whole model fits into a single file directly usable on other

platforms too, and compatible with current as well as future

V-REP versions. The model can be duplicated as often as

required, and its control code modified at will.

Figure 4. Laser scanner and hexapod model in V-REP

1325

In a similar way, other such models can easily be

created, be it a drawing pen, a paint nozzle, a gripper, a

blob detection camera, or a whole robot.

B. Simulation Model of a Parallel Manipulator

Fig. 5 shows a parallel manipulator model controlled in

forward kinematics from an external application that

connects via the remote API to it. In order to correctly

handle all the loop closure constraints, the model is handled

via V-5(3¶V� NLQHPDWLFV� PRGXOH�� 6LQFH� DOO� UHODWHG�

kinematics task definitions are attached to the model, this

model is self-contained too, and immediately duplicable and

operational on other platforms too. Even physical scaling of

the model, which is another feature that V-REP supports,

will automatically adjust all kinematic tasks (among

others), and keep kinematic resolution consistent - without

the need to adjust any code.

C. Simulation Model of a Smart Human

Fig. 6 illustrates a simulation model of a human,

performing path planning tasks between its current position

and a desired target position. While the path planning task

in itself is computed by V-5(3¶V� SDWK� SODQQing module, a

child script attached to the model will trigger path planning

calculations, actuate legs and arms, and correctly move the

model along the calculated path. Here also, the model is

fully self-contained and fully portable.

V. CONCLUSION

V-REP is introduced as a versatile and scalable

simulation framework. By offering a multitude of different

programming techniques for its controllers, and by allowing

to embed controllers and functionalities in simulation

models, it eases the programmers task and reduces the

deployment complexity for the users.

Figure 5. Delta Arm manipulator model in V-REP

Figure 6. Path planning human model in V-REP

Currently V-REP has grown to a robust and widely used

robot simulator and controller, present in the academic as

well as industrial field. It performs tasks ranging from

system verification, algorithm optimization, simulation of

complex assembly chains in factory automation

applications, to robot task planner and controller.

ACKNOWLEDGMENT

Eric Rohmer thanks the Sao Paulo Research Foundation

FAPESP for its financial support.

REFERENCES

[1])��.DQHKLUR��+��+LUXNDZD��DQG�6��.DMLWD��³2SHQ�+53��2SHQ�

$UFKLWHFWXUH�+XPDQRLG�5RERWLFV�3ODWIRUP�´�Int. J. of Robotics

Research, vol 23, pp. 155-165, 2004

[2] N��.RHQLJ��DQG�$��+RZDUG��³Design and use paradigms for Gazebo, an

open-source multi-robot simulator,´�LQ�3URF�RI�Int. Conf. on Intelligent

Robots and Systems, pp. 2149-2154, Sendai, Japan, Sept.-Oct. 2004

[3] O. Michel��³Webots: professional mobile robot simulation�´�Int. J. Adv.

Robot. Syst., vol. 1, pp. 39-42, 2004

[4] V-REP simulator : http://www.coppeliarobotics.com

[5] Lua: http://www.lua.org

[6] M. Quigley, B. Gerkeyy, K. Conleyy, J. Fausty, T. Footey, J. Leibsz, E.

%HUJHU\�� 5�� :KHHOHU\�� DQG� $�� 1J�� ³526�� DQ� RSHQ-source Robot

2SHUDWLQJ� 6\VWHP�´� in Proc of IEEE Int. Conf. of Robotics and

Automation, Kobe, Japan, May 2009

[7] 0��)UHHVH��)��2]DNL��DQG�1��0DWVXKLUD��³&ROOLVLRQ�'HWHFWLRQ��'LVWDQFH�

Calculation and Proximity Sensor Simulation using Oriented Bounding

Box TreeV�´�4
th

 International Conference on Advanced Mechatronics,

pp. 13-18, Asahikawa, Japan, Oct. 2004

[8] &�� :�� :DPSOHU�� ³0DQLSXODWRU� ,QYHUVH� .LQHPDWLF� VROXWLRQV� EDVHG� RQ�

9HFWRU�)RUPXODWLRQV� DQG� 'DPSHG� /HDVW� 6TXDUHV� 0HWKRGV�´� in IEEE

Trans. Syst., Man, Cybern., vol. 16, pp. 93-101, 1986

[9] Bullet physics library : http://www.bulletphysics.org

[10] Open dynamics engine: http://www.ode.org

[11] Vortex Dynamics: http://www.vxsim.com

[12] S. Gottschalk, M. C. Lin, and D. Manocha��³OBB-tree : a hierarchical

structure for rapid interference detection�´�ACM SIGGRAPH, pp. 171-

180, New Orleans, USA, Oct. 1996

[13] -��-��.XIIQHU�-U���³557-Connect: an Efficient Approach to Single-Query

3DWK� 3ODQQLQJ�´� in Proc of IEEE Int. Conf. of Robotics and

Automation, San Fransisco, USA, Apr. 2000

1326

