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Abstract— This paper offers a method to compute the control
inputs for an all-wheel drive vehicle that moves along a specified
path on rough terrain. The focus of this paper is on longitudinal
motion only, using a half-car model with no suspensions. For
a given path, we first compute the range of the admissible
speeds and accelerations at every point along the path, subject
to vehicle dynamics and constraints on the wheel/ground forces.
A feasible velocity profile along the path is then computed to
respect the admissible speeds and accelerations and satisfy given
boundary conditions. While the velocity profile represents the
accelerations of the center of mass, it remains to determine
the control inputs (torques) for the two independent wheels.
The challenge stems from the longitudinal model being an
indeterminate system, having two control inputs but only
one degree-of-freedom along the specified path. This inherent
indeterminacy is resolved by adding a virtual suspension to
the rigid vehicle model, which allows to explicitly compute the
two individual wheel torques. The method is demonstrated for
a vehicle moving at the time optimal speeds over a bump.
A dynamic simulation of the vehicle with a stiff suspension
shows that the two wheels maintain contact with the ground
at all times, despite moving at the ultimate speeds. It is also
shown that the all-wheel-drive model produces a larger set of
admissible speeds and accelerations, and hence results in faster
speeds and shorter motion times than the single drive (front or
rear) model.

I. INTRODUCTION

One advantage of electric vehicles is that they can be

actuated at the wheels by individual hub motors [4], thus

allowing individual control of each wheel (all-wheel-drive)

for better stability and performance [8]. The main challenge

in the control of hub motors is the determination of the con-

trol inputs to the individual wheels, while ensuring vehicle’s

stability at high speeds. Computing the individual control

inputs for specified velocity profiles along specified paths

over rough terrain for an all-wheel-drive longitudinal vehicle

model is the focus of this paper. We choose to follow the

time optimal velocity profile, which represents the ultimate

vehicle speeds that ensure vehicle stability.

The computation of the ultimate speeds that ensures ve-

hicle stability was treated earlier [10], [11]. It consists of

projecting the vehicle’s motion onto path coordinates and

computing the velocity and acceleration limits along the path.

The remaining challenge is to determine the individual wheel

torques that generate this velocity profile and ensure vehicle

stability. In the context of this paper, stability implies contact

between all wheels and ground at all times. Moving at speeds

that may cause the vehicle to be airborne is considered unsafe
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for autonomous vehicles and is therefore out of the scope of

this paper.

The all-wheel drive model makes the computation of the

individual wheel torques difficult since the vehicle model is

indeterminate (more control inputs than degrees-of-freedom).

We first solve this problem for a longitudinal vehicle model,

with two controlled wheels. If the vehicle is moving along

a specified path, its motion has only one DOF, whereas it

is driven by two control inputs. The system is therefore

indeterminate and over actuated.

A few solutions to the control of over actuated systems

have been developed [7]. One approach, used to control

lateral motion, closes the loop around each wheel to reg-

ulate some nominal state, such as speed [3], slip [2], [12]

and motor current [15]. A similar approach was used for

longitudinal motion of a half-car model [5], [6].

Another approach is Daisy Chaining, where the control

signal is first computed for one actuator (for a one degree-

of-freedom system), then the second actuator is used to

compensate for the remaining error between the actual and

desired acceleration [1]. While these approaches eliminate

the need to explicitly compute the nominal motor torques,

they cannot drive a vehicle along its performance envelope

because of the control authority needed by the closed loop

control. Another approach computes the control signals by

minimizing the error between the desired and the actual

acceleration produced by the wheel torques, using quadratic

programming and accounting for ground force and motor

constraints for [14] [9]. These approaches either do not

produce the desired acceleration [3], [2], [12], [15], [1] or

are computationally too intensive [14], [9].

This paper treats the control allocation problem for an all-

wheel-drive vehicle that is moving along a specified path at

a specified velocity profile. The speed profile is determined

to ensure that it does not violate any force and control

constraints. The wheel torques are computed by solving the

inverse dynamics problem for the indeterminate system. This

in turn is done by introducing a virtual suspension, which

effectively reduces the number of unknown forces and thus

allows a closed form solution for the actuator torques at each

time step. The computation of the wheel torques is direct and

hence computationally efficient. If the velocity profile used

as the reference input is time optimal, then this approach

would produce the time optimal wheel torques.

This approach is demonstrated for a half-car vehicle model

moving over rough terrain at the time optimal speeds. A

dynamic simulation of a similar vehicle model but having a

stiff suspensions shows that despite the ultimate speeds, the

two wheels maintain contact with the ground at all times. It
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is shown that the all-wheel-drive model produces a larger set

of admissible speeds and accelerations, and hence results in

faster speeds and shorter motion times than the single drive

(front or rear) model.

II. VEHICLE MODEL

This paper focuses on the planar vehicle shown in Figure

1. It consists of a rigid body of mass m and moment of

inertia I that is driven by two actuated mass-less wheels of

radius R. The forces acting on each wheel are the normal

force Fn in the direction of the normal n to the ground and

the traction force Ft in the direction of the tangent vector t at

the point of contact. The traction force Ft = T R is in effect

the driving force, produced by the wheel torque T .

The vehicle’s position is represented by the position (X ,Z)
of its center of mass and orientation θ in the the inertial

frame. The back and front contact points are r1 and r2,

respectively, relative to the center of mass, as shown in Figure

1.
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Fig. 1. A planar vehicle model

A. Kinematics

For a given terrain profile f (X) ∈ R and a given rear

contact point X1 ∈R, we need to compute the contact point,

X2 ∈R, of the front wheel. This in turn will yield the location

of the center of mass x and the vehicle orientation θ . This

is computed numerically by modeling the wheel center and

the contact points as a closed kinematic chain [11].

By following a specified path, the vehicle has one degree-

of-freedom, which can be represented by the arc length, s ∈
R, of the trajectory followed by the center of mass. The

vehicle’s linear and angular acceleration are thus expressed

in terms of the speed ṡ and acceleration s̈ along the path.

The acceleration ẍ ∈ R
2 can be expressed in terms of ṡ and

s̈ [11]:

ẍ = xss̈+ xssṡ2, (1)

where xs and xss are the 1st and 2nd derivatives of x with

respect to s. .

The angular acceleration may be similarly expressed as:

θ̈ = θss̈+θssṡ2, (2)

where θs and θss are the 1st and 2nd derivatives of θ ∈ R

with respect to s.

B. Vehicle Dynamics

The equations of motion of the longitudinal vehicle consist

of two force and one moment equations:

mẍ = Ft1t1 +Fn1n1 +Ft2t2 +Fn2n2 +mg (3)

Iθ̈ = |r1× (Ft1t1 +Fn1n1)+ r2× (Ft2t2 +Fn2n2)|,
where g ∈ R

2 is the gravity acceleration vector.

Substituting (1-2) in (3) yields:

m(xss̈+ xssṡ2) = Ft1t1 +Fn1n1 +Ft2t2 +Fn2n2 +mg (4)

I(θss̈+θssṡ2) = |r1× (Ft1t1 +Fn1n1)+ (5)

r2× (Ft2t2 +Fn2n2)|
Equations (4) and (6) are driven by the two applied

forces Ft1 and Ft2. Their selection would determine the

corresponding ṡ and s̈. The constraints on Ft1 and Ft2, derived

from the friction constraints, thus map to constraints on ṡ and

s̈.

The ground forces of a typical wheel i = 1,2 are bounded

by the friction constraints:

Fti ≤ μFni (6)

Fti ≥−μFni (7)

Note that the vehicle is driven by two control inputs while

its motion that maintains contact of the two wheels with

the ground, is only of one degree-of-freedom. This can be

seen by observing that by determining s(t), one determines ṡ
and s̈. It is therefore impossible to directly compute the two

control inputs for any given speed and acceleration along the

path.

Furthermore, in addition to Ft1 and Ft2, the equations of

motion are also functions of the two normal forces Fn1 and

Fn2, which are unknown. In addition, the equations of motion

are coupled since the right hand side of all three equations

is a function of a common ṡ and its derivative. The selection

of proper control inputs is therefore not trivial.

Our approach to solving for the optimal control inputs

consists of the following steps:

• determine the boundary of the set of feasible speeds

and accelerations using the rigid body model (no sus-

pension)

• compute the time optimal velocity profile (or any fea-

sible velocity profile) along the path

• compute the two control inputs using a virtual suspen-

sion model, as discussed next.

III. THE SET OF FEASIBLE SPEEDS AND

ACCELERATIONS

The set of feasible speeds and accelerations (FSA) is a

convex polygon in the s̈− ṡ2 plane, as shown schematically in

Figure 2. It is formed by the intersection of four half planes,

each satisfying two of the four inequality constraints (6)- (7)

and the equations of motion (4) (6) [11]. The boundary of

each half plane is determined by considering the equality part

of the respective inequality constraints [11]. During motion,

2863



the vehicle’s speeds and accelerations must stay within FSA
to ensure vehicle stability.

The right most point in this polygon indicates the maxi-

mum speed along the path, below which some acceleration

exists so that none of the friction constraints (6)- (7) are

violated. Plotting the maximum speed along the path forms

the velocity limit curve, below which the time optimal

velocity profile is computed [10].

The time optimal velocity profile along the path, com-

puted using a previously developed algorithm [10], switches

between the maximum acceleration and deceleration so as

to avoid crossing the velocity limit curve. The details of this

algorithm are beyond the scope of this paper.

s

s2
FSA

Fig. 2. The Feasible range of Speed and Acceleration (FSA).

IV. THE SUSPENSION MODEL

The one degree-of-freedom motion along the specified

path couples the equations of motion of the rigid body model

since all three equations are driven by the same acceleration

and speed. The system is therefore indeterminate since it

is driven by two control inputs (the front and rear traction

forces), of which only one can be determined from the

equations of motion.

To resolve this inherent indeterminacy, we add a virtual

suspension system that in effect adds two degrees-of-freedom

to the system. Adding degrees-of-freedom to the system

relaxes the coupling between the three equations of motion,

which allows us to solve for the two traction forces required

to move the system at the given speed and acceleration along

the path.

The vehicle with the suspension is shown in Figure 5. The

suspension consists of a linear spring that is free to move

along the y body axis. The rear and front springs have a

non-compressed length d0, spring constant k, and compressed

lengths d1 and d2, respectively. The force applied by a typical

spring is thus:

Pz = (d0−d)k; d < d0. (8)

Note that the force applied by the spring is state dependent

since d is a function of the vehicle orientation θ . This and

the assumption of mass-less wheels allows us to compute

an expression that relates the normal force Fn to the traction

force Ft .

Fn

Py

Px

Py

Px

a b c

Ground forces Suspension forces Axle forces

Ft

Ft

Fn

e1

e2

Fig. 3. suspension focus

Figure 3 shows the forces acting on a typical wheel: the

ground forces consist of the normal and traction forces Fn
and Ft ; the suspension applies on the vehicle the forces Pz
and Px; consequently, the forces applied on the axle are Fn,

Ft , Pz and Px. Since the wheels are assumed mass-less, the

axle forces must satisfy equilibrium:

Pz +Fnn · e2 +Ftt · e2 = 0 (9)

Px +Fnn · e1 +Ftt · e1 = 0, (10)

where e1 and e2 are the unit vectors in the the suspension

coordinates, as shown in Figure 3.

We thus obtained two equations (9-10) in 3 unknowns:

Px,Fn,Ft (Pz is state dependent and hence known). Since we

wish to compute the traction force Ft , we first solve for Fn
using (9), then substitute it back into the equations of motion

(3).

Substituting (8) in (9) and solving for Fn yields:

Fn =−aFt +bPz. (11)

where

a =
t · e2

n · e2
(12)

b =
1

n · e2
. (13)

For a given Pz, equation (11) expresses Fn as a linear

function of Ft . This implies that the ground force F ∈ R
2

must lie on a straight line that crosses the friction cone,

as shown schematically in Figure 4. In effect, this line

represents a constraint on the ground force. In contrast, the

ground force of the rigid model can span the entire region of

the friction cone. The reduction of the ground force to a line

enables the direct solution of the inverse dynamics problem.

Substituting the normal forces (11) into the equations of

motion (3) yields:

Ft1(t1−a1n1)+Ft2(t2−a2n2) =

mẍ−b1n1P1z−b2n2P2z−mg (14)

|r1× (Ft1(t1−a1n1))+ r2× (Ft2(t2−a2n2))|=
Iθ̈ −|r1×b1n1P1z− r2×b2n2P2z| (15)

where ai,bi, i= 1,2 are defined in (12,13) for a typical wheel.
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Fig. 4. The friction cone and the ground force constraint

Substituting Pz1,Pz2, which are state dependent and hence

known, in (14-15), yields three equations in the two un-

knowns Ft1 and Ft2. We use only two of the three equations

of motion, usually in X and θ , to solve for Ft1 and Ft2 for any

given acceleration at a given state. The remaining equation

of motion represents the under actuated state.
The two traction forces Ft1,Ft2 are bounded by the upper

and lower bounds shown in Figure 4. The extreme points,

Fmin,Fmax ∈ R
2 for a typical wheel can be determined ana-

lytically using (11) and the equality part of (7) for the lower

bound, and (11) and the equality part of (6) for Fmin and

Fmax, respectively:

Fmin =

[
Fnmin
Ftmin

]
=

[
bPz

1−μa

− μbPz
1−μa

]
(16)

Fmax =

[
Fnmax
Ftmax

]
=

[
bPz

1+μa
μbPz
1+μa

]
(17)

Note that this derivation applies to an actual suspension,

except that we ignored the dumper since it is not needed for

the virtual suspension model discussed next.

x

y

X

Y

d1

d2

Fig. 5. A planar vehicle model with suspension

V. THE VIRTUAL SUSPENSION MODEL

The virtual suspension model uses equations (14,15),

except that the vehicle motion is determined by the rigid

body model (1,2). Even though the ”rigid suspension” has

a constant length, we assume that the longitudinal force Pz
is continuous, similarly to the real suspension model. This

allows us to compute the traction forces Ft1,Ft2 at a given

time step, using the forces Pz1,Pz2 from a previous time step.

Once Ft1,Ft2 are computed, Pz1,Pz2 are updated for the next

time step.

VI. EXAMPLES

The following examples demonstrate our approach to

control allocation for a longitudinal vehicle model moving

over bumpy terrain. The vehicle parameters, shown in Table

I, are of a small dune buggy [13].

A. Example 1: A single bump

Figure 6 shows the bump produced by the exponential

function:

Z = 0.2e−2(x−3)2
(18)

for x = [0,6].
Figure 7 shows the velocity limit curve and the time

optimal velocity profile over the bump. The limit curve

exhibits two drops, each occurring when one of the wheels

passes over the bump. The drop in the velocity profile is

caused by the convex nature of the bump, which forces the

vehicle to slow down in order to maintain contact with the

ground [11]. Also shown in Figure 7 is the time optimal

speed profile from rest to rest. It starts with the maximum

acceleration, then it slows down to avoid the first drop, then

accelerated and slows down again to avoid the second drop,

after which is accelerates and decelerates to the final point.

Fig. 6. The bump

mass 589 [kg]

Moment of inertia 780 [kgm2]
height of c.g. 0.515 [m]
length 2 [m]
wheel radius 0.3 [m]
coefficient of friction 0.7

TABLE I

VEHICLE DATA

0
1
2
3
4
5
6
7
8

0 1 2 3 4 5 6

Time optimal velocity profile

V[m/s]

x[m]

Velocity limit

Fig. 7. The time optimal velocity profile over the bump of the all-wheel-
drive vehicle

Figures 8 and 9 show (in blue) the ground forces Ft1 and

Ft2 along the path (18). Also shown (in red) are the upper

and lower bounds Ftmax (17) and Ftmin (16) for each wheel.
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The traction forces follow the upper or lower boundaries

most of the time, as expected of a time optimal trajectory,

except when one of the wheels is close to separating from

the ground. This occurs at points where the velocity profile

approaches the velocity limit curve, causing the upper and

lower bounds to approach zero. That the traction forces do

not exceed the upper and lower bounds, verifies the dynamic

feasibility of the velocity profile. The normal forces Fn1 and
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Fig. 8. The rear tangent force (in blue) and the upper and lower bounds
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Fig. 9. The front tangent force (in blue) and the upper and lower bounds

Fn2, shown in Figures 10,11 are computed by substituting

Ft1,Ft2 and Pz1,Pz2 in (11) for each wheel, separately.
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Fig. 10. The normal forces of the rear wheel over the bump

B. Dynamic Simulations

The results of Example 1 were verified by a dynamic

simulation of a half vehicle with the parameters shown in

Table I and a very stiff spring/damper suspension with a

spring constant of 29kN/mm and a damping ratio of 0.9.

The stiff suspension ensures that the center of mass closely

follows the trajectory of the rigid body model. The input to

the simulation was the traction forces shown in Figures 8 and
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F
n

2
 [

N
]

Fig. 11. The normal forces of the front wheel over the bump

9, computed off-line using the virtual suspension model. The

suspension forces, Pz1,Pz2, were computed from the actual

spring length and its derivative, measured from the vehicle’s

states:

Pz = (d0−d)k+ cḋ; d < d0. (19)

The normal forces Fn1,Fn2 were then computed from 11.

The accelerations ẋ, ż and θ̇ were then computed from the

equations of motion (3).

The resulting velocity profile is shown in Figure 12. It

almost coincides with the optimal velocity profile used to

compute the traction forces. Figures 13,14, show the normal

rear and front forces, Fn1 and Fn2, respectively. They too

are very close to the respective normal forces computed

for the rigid body model and shown in Figures 10,11. The

simulation results verify that a) the optimal velocity profile is

dynamically feasible, b) the wheel torques, allocated by the

proposed procedure, do yield the original linear and angular

accelerations that when integrated, produce the original ve-

locity profile, and c) the vehicle moves closely to its stability

limits (the normal forces are close to zero), as expected from

moving along the time optimal velocity profile.
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v
 [

m
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s
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Fig. 12. The optimal and simulated velocity profiles

C. Example 2: Comparison between all-wheel and single-
wheel drive

Example 1 was repeated with a front-wheel and rear-wheel

drive vehicles of identical parameters. The time optimal

velocity profiles for this example are shown in Figures 15,16.

The optimal traversal time for the front wheel drive vehicle

was 2.49s, and for the rear-wheel drive vehicle was 2.38,
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Fig. 13. Simulated normal forces of the rear wheel
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Fig. 14. Simulated normal forces of the front wheel
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Fig. 15. The time optimal velocity profile over the bump of the rear wheel
drive vehicle
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Fig. 16. The time optimal velocity profile over the bump of the front wheel
drive vehicle

compared to 2.17s for the all-wheel-drive vehicle. This shows

one advantage of the all wheel drive vehicle over a single

drive vehicle.

VII. CONCLUSIONS

This paper presents a novel approach to computing the

individual wheel torques of a planar all wheel drive vehicle

that is moving along a specified path at a specified velocity

profile. The inverse dynamics problem (computing the wheel

torques for a given trajectory) of the indeterminate, or over

actuated, system was solved by adding a virtual suspension

to the vehicle model. This in effect reduces the number of

unknown ground forces, thus allowing for a direct computa-

tion of the traction forces at every time step along the path.

The end result is driving torques for both wheels that drive

the vehicle along the specified trajectory (path and speed).

The approach is demonstrated for a planar vehicle moving

over rough terrain at the time optimal speeds. The advantage

of the all-wheel-drive vehicle was demonstrated by achieving

faster velocity profiles than those feasible for the equivalent

front and rear wheel drive vehicles. Dynamic simulations

verified the proposed approach for control allocation.
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