
Integrated Perception, Mapping, and Footstep Planning
for Humanoid Navigation Among 3D Obstacles

Daniel Maier Christian Lutz Maren Bennewitz

Abstract— In this paper, we present an integrated navigation
system that allows humanoid robots to autonomously navigate
in unknown, cluttered environments. From the data of an on-
board consumer-grade depth camera, our system estimates the
robot’s pose to compensate for drift of odometry and maintains
a heightmap representation of the environment. Based on this
model, our system iteratively computes sequences of safe actions
including footsteps and whole-body motions, leading the robot
to target locations. Hereby, the planner chooses from a set
of actions that consists of planar footsteps, step-over actions,
as well as parameterized step-onto and step-down actions. To
efficiently check for collisions during planning, we developed a
new approach that takes into account the shape of the robot
and the obstacles. As we demonstrate in experiments with
a Nao humanoid, our system leads to robust navigation in
cluttered environments and the robot is able to traverse highly
challenging passages.

I. INTRODUCTION

The human-like design and locomotion allows humanoid
robots to step over or onto obstacles, to reach destinations
only accessible by stairs or narrow passages, and to navi-
gate through cluttered environments without colliding with
objects. These abilities would make humanoid robots ideal
assistants to humans, for instance in housekeeping or disaster
management. However, there is a number of reasons, why
up to today, we do not see such robots in practical appli-
cations. First, there are financial reasons. Humanoid robots
are complex pieces of hardware and manufactured in small
numbers, resulting in high prices. Second, many researchers
apply navigation algorithms that represent a humanoid using
a circular shape [1, 2, 3]. This model does not respect all
the navigation capabilities of humanoid robots and therefore
more appropriate approaches are necessary for navigation
in cluttered and multi-level scenarios. Third, while some
researchers focus on planning locomotion for humanoid
robots, they often neglect sensing. Instead, they assume a
known model of the world [4, 5], or they use external sensing
systems [2, 6, 7]. Onboard sensing is, however, essential for
autonomous navigation in unknown or only partially known
environments. Finally, a seamless combination of individual
system components including environment modeling, pose
estimation, and gait generation is required for humanoids
to carry out complex tasks. For all these individual aspects,
promising approaches have been presented. Yet, an integrated
system that combines the best solutions for all the subtasks,
has not been demonstrated. Recently, Nishiwaki et al. [8]

All authors are with the Humanoid Robots Lab, University of Freiburg,
Germany. This work has been supported by the German Research Founda-
tion (DFG) within the SFB/TR-8, within the Research Training Group 1103,
and within the Cluster of Excellence EXC1086.

Fig. 1. Left: A Nao humanoid autonomously traversing a cluttered scene.
Right: The corresponding heightmap representation of the environment that
the robot generates during navigation based on data from its head-mounted
depth camera. The heightmap is used for planning safe footsteps.

presented an impressive system that combines environment
mapping, footstep planning, and gait control. However, for
localization the system relies solely on odometry and colli-
sion checking is performed only on foot level, i.e., neglecting
the body of the humanoid.

In this paper, we present an integrated navigation frame-
work that combines pose estimation, mapping, and motion
planning for autonomous navigation in unknown 3D environ-
ments. Our system relies only on the robot’s onboard sensors,
i.e., its joint encoders, an inertial measurement unit (IMU),
and a head-mounted depth camera. The environment is
represented as an accurate heightmap that is constructed
by integrating multiple measurements over time while the
humanoid navigates. Our approach performs efficient whole-
body collision checking and applies traversability analysis to
determine safe footprints. To robustly navigate in challenging
scenes containing obstacles on the ground and narrow pas-
sages, our anytime planner computes a sequence of actions
that consists of planar footsteps, step-over actions, as well
as parameterized step-onto and step-down actions.

As we demonstrate in practical experiments with a Nao
humanoid, our system leads to robust navigation in cluttered,
multi-level scenes containing objects of various shapes and
sizes. The left image of Fig. 1 shows our Nao stepping
over a slat and the right image shows the corresponding
heightmap constructed by integrating multiple depth camera
measurements while navigating. One can see that the map
closely resembles the scenario on the left and our system
allows the robot to autonomously traverse the cluttered scene
by planning a sequence of safe actions. Preliminary results
of this work have been published in [9, 10].

II. RELATED WORK

Autonomous biped navigation has been studied intensively
in the last few years. For instance, Chestnutt et al. [6]
investigated footstep planning among flat obstacles using A*.

2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS)
November 3-7, 2013. Tokyo, Japan

978-1-4673-6357-0/13/$31.00 ©2013 IEEE 2658



Hornung et al. [4] have reasoned about the impact of dif-
ferent heuristics applied to anytime footstep planning. These
approaches check for collisions only by considering rectan-
gular footprints of the robot and do not consider volumetric
obstacles. Furthermore, they neglect onboard sensing.

Perrin et al. [7] also investigated footstep planning and
evolved it further to account for the 3D shape of the
humanoid and the obstacles. They perform collision checks
for the legs of the robot by precomputing swept volume
approximations of the swing leg trajectories. Perrin et al. [11]
further suggested to simplify the collision check for near
real-time performance by approximating the robot’s shape
with a combination of three boxes. While navigating, both
approaches either rely on an external motion capture sys-
tem [7] to localize the robot and the obstacles, or assume
known, simulated environments [11].

Other authors combine footstep planning and sensing in
one system to allow for more autonomous navigation. For
instance, Cupec et al. [12] identify obstacles in camera
images to plan footsteps around them. In their approach, the
authors impose constraints on the shape and appearance of
obstacles and the floor. Michel et al. [13] presented a method
to track objects in monocular images. This enabled a HRP-2
robot to accurately localize itself relative to a staircase and
plan footsteps to climb it. However, the approach requires a
detailed a priori model of the object. Thus, both techniques
are not generally applicable for collision-free navigation in
unknown environments with arbitrary objects.

More general approaches try to construct a representation
of the free and occupied space in the environment while
navigating. For example, Gutmann et al. [3, 14] maintain a
labeled heightmap and a 3D occupancy grid based on data
from an onboard stereo camera. The mapping system relies
solely on odometry. The map representation is classified into
floor, stairs, borders, tunnels, or obstacles and is used for
planning discrete actions to a target location. For collision
checking, the required space of each action is approximated
by cylinders. The coarse resolution of the map and the
approximative collision checks do not allow to plan actions
such as to step over objects.

Nishiwaki et al. [8] utilize a tilting laser scanner mounted
on a humanoid robot for environment mapping. While nav-
igating, their robot takes 3D scans of the area in front.
The laser point clouds are binned into cells of a heightmap
which is used for judging the quality of possible footprint
locations and planning a sequence of safe stepping positions.
Because this approach also relies solely on odometry for
pose estimation, old data is deleted from the map to reduce
artifacts resulting from accumulated errors. Furthermore,
collision checks are only performed for the footprints, i.e.,
they disregard the body of the humanoid.

In our previous work [1], we presented an efficient naviga-
tion system for humanoid robots. It utilizes a consumer-level
depth camera for pose estimation in a given 3D model of the
environment and for mapping of unknown objects. For plan-
ning paths, the approach projects the 3D map onto the ground
plane and checks for collisions with a circular approximation

of the robot’s shape. Accordingly, actions such as stepping
over or onto objects cannot be considered. In the current
work, we lift these limitations and, furthermore, construct
accurate heightmaps on which planning is performed.

Recently, simultaneous localization and mapping (SLAM)
systems that operate on RGB-D camera data have been pre-
sented [15, 16]. These approaches are concerned with global
consistency of the constructed maps and are computationally
demanding. In the presented work, we do not intend to
solve similar problems but focus on maintaining a locally
consistent and accurate map that can be used for 3D footstep
planning and whole-body collision checking. Newcombe
et al. [17] presented Kinect Fusion, an approach for dense
surface modeling and pose tracking with RGB-D cameras.
While in general the system provides very impressive results,
it relies on the presence of sufficient variation in depth.
In preliminary experiments, we observed that the system is
not robust enough in typical robot navigation scenarios with
more sparse clutter on a dominant floor plane.

III. POSE ESTIMATION

Many approaches to biped navigation rely only on odo-
metric information to obtain the pose of the robot [3, 8, 18].
However, odometry is prone to drift over time and abrupt
errors due to slipping of the robot’s feet. To increase the
accuracy of the pose estimation, we hence combine odometry
with depth measurements.

Our approach computes a transformation T t
corr that corrects

the current odometry estimate T t
odom at time t such that

it is consistent with the previous estimate with respect to
the sensor readings from the depth camera. Here, T t

odom
defines the 6D transformation from a fixed origin to the
current pose (x, y, z, ϕ, ψ, θ) of the depth sensor consisting
of the 3D position and the roll, pitch, and yaw angles. To
estimate T t

odom, the system maintains the 6D transform to
the current stance foot and assumes it to be fixed while the
swing foot moves. Using forward kinematics, the poses of
all the robot’s joints and links, including the depth camera,
can easily be computed. The transform to the stance foot
is updated from forward kinematics, whenever the swing
foot becomes the new stance foot. In this way, our ap-
proach is also able to estimate the robot’s pose even if the
height changes, e.g., when the robot steps onto objects. To
compensate for small errors in the joint encoder readings
or slightly inclined terrain, our system uses the pitch and
roll measurements from an onboard IMU. Consequently, the
algorithm rotates the pose estimate around the current stance
foot such that the reference frame of the IMU as computed by
forward kinematics aligns with the readings from the IMU.
The IMU is typically installed in the humanoid’s chest.

As stated, estimating the pose T t
odom in this way is sensible

to accumulating errors. Hence, we use a depth camera to
improve the estimate by seeking a transform

T t
corr = arg min

T ′

∑
i

∥∥T t−1
corr T

t−1
odomqi − T ′T t

odompi

∥∥2 , (1)

where qi ↔ pi are corresponding points in two consecutive
point clouds from the depth camera at time t− 1 and t. The

2659



corrected pose estimate is given by the concatenation of the
transforms T t

corr T
t
odom.

Since there are no exact correspondences in real sensor
data, we estimate the transform between two point clouds by
using the Generalized-ICP (GICP) algorithm [19]. Thereby,
the GICP is initialized with the odometry estimate. Since
the ground plane typically dominates the scene and thus also
the alignment process, we filter out points belonging to the
ground plane prior to applying GICP.

IV. ENVIRONMENT REPRESENTATION

To represent the environment and plan collision-free mo-
tions, our system maintains a high-resolution heightmap that
is learned from depth camera data. Each cell c of the map
stores a height value hc and a variance σ2

c . The variance
represents the uncertainty about the height of each cell
resulting from small pose estimation errors and sensor noise.
Hence, we interpret N (hc(t), σ

2
c (t)) as the belief about the

height of c at time t. To update the map, the points from
the current point cloud are binned into the cells of the
heightmap. Let zc be the maximum over the z-coordinates
of all observed points falling into a cell c. Our approach then
updates the belief about the height of c from N (hc(t), σ

2
c (t))

and the observation zc using a Kalman filter, assuming a state
model with no underlying dynamics [20]. Hence, we assign

hc(t+ 1) =
1

σ2
c (t) + σ2

z

(
σ2
z hc(t) + σ2

c (t) zc
)
, (2)

σ2
c (t+ 1) =

1

σ2
c (t) + σ2

z

σ2
z σ

2
c (t), (3)

where σ2
z represents the uncertainty of the observation. Due

to the employed depth camera as sensor, σ2
z is best modeled

proportional to the quadratic distance from the sensor to the
observed point [21].

V. FOOTSTEP PLANNING FOR 3D ENVIRONMENTS

A. State Representation and Transition

In our planning system, a state s = (x̂, ŷ, θ̂, f) is expressed
by a location (x̂, ŷ), an orientation θ̂, and f ∈ {left, right}
indicating whether the left or right foot is the stance foot.
The height zs of a state s is determined uniquely from the
heightmap as the average over the height values covered by
the robot’s footprint at s, and hence not part of the state space
for planning. Further, the state space is discretized over x̂,
ŷ, and θ̂ and represented by a sparse graph.

For planning motions, we consider a set of discrete ac-
tions A. For an action a ∈ A, a(s) describes the transition
s

a−→ s′ from a state s to its successor s′. An action a
is consequently parameterized by (∆x̂,∆ŷ,∆θ̂, f), where f
indicates the stance foot for the action and the remaining
parameters the displacement of the swing foot relative to f .
Furthermore, each action is parameterized over an interval
[∆zmin,∆zmax] that describes the admissible height differ-
ences from a state to its successor when executing this action.
For planar footsteps, it is ∆zmin = ∆zmax = 0.

B. Safe Actions

During planning, our system evaluates which of the ac-
tions a ∈ A can be executed safely from a given state s. Our
approach first checks whether the resulting footprint s′ =
a(s) is accessible, i.e., whether the corresponding surface of
the map is flat and horizontal. Accordingly, we compute the
difference between the minimum and maximum values in
the heightmap under the footprint and check whether it lies
within a threshold (implied by the hardware).

Additionally, an action a is only allowed if the height
difference ∆h(s, a) = za(s) − zs from s to its successor
a(s) lies within the limits ∆zamin and ∆zamax associated with
a. Hence, we require the following inequality to hold:

∆zamin ≤ ∆h(s, a) ≤ ∆zamax (4)

Finally, for motion planning in three-dimensional environ-
ments it is important to check whether the motions are free of
collisions, i.e., not only the footprints as is typically done in
footstep planning approaches. Our approach to whole-body
collision checking is described in the following.

C. Whole-Body Collision Checking

We propose a new representation called inverse
heightmap (IHM), which is computed for each action.
An IHM is a grid, centered at the stance foot, that stores
for each cell the minimum height relative to the stance foot
of any body part that falls into this cell while executing an
action. It is constructed from an animated 3D model of the
robot. The bottom image in Fig. 2 shows an example of an
IHM for a step-over motion, along with the 3D model used
for generating the IHM (top row). The green volume is a
3D visualization of the IHM and similar to a swept volume.
However, for efficient collision-checking, we only consider
its projection in the IHM.

To evaluate whether it is safe to execute an action a at a
state s, our system first aligns the corresponding IHMa at the
pose defined in s with height zs by an affine transformation.
Then, a simple comparison on the height values is used to
decide whether a is safe:

∀(u, v) ∈ IHMa : i(u,v) + zs > h(u,v). (5)

Here, zs is the height of state s, i(u,v) is the height stored
in cell (u, v), and h(u,v) is the corresponding value in the
heightmap. Because of this simple decision criterion, IHMs
are an efficient way to perform whole-body collision checks.
Note that they can be precomputed for all actions a ∈ A.

This approach, however, assumes that it is known where
the current swing foot comes from. Therefore, we assume
that every footstep passes through a predefined via point
configuration, similar to [22]. The IHMs consequently con-
sist of the downwards phase of an action from the via point
configuration to the double support phase and of the upwards
phase to the via point of the other foot.

2660



Fig. 2. Generation of an inverse heightmap (IHM) for a step-over action.
The top three images are snapshots of a 3D model of the robot executing the
action along with the volume covered by the motion (green). The bottom
image shows the resulting IHM (the darker the lower) that corresponds to
the projection of the volume onto the ground plane. The footprints of the
robot’s stance feet are outlined in red for reference.

D. Footstep Planning with ARA*

Our planner searches for the optimal solution with respect
to the time needed to reach a target state and plans a
sequence of safe actions that ensure collision-freeness of the
whole body. To plan footstep sequences, we rely on Anytime
Repairing A* (ARA*), which is an efficient anytime variant
of A*, i.e., it finds an initial solution as fast as possible,
while guaranteeing a bound on its suboptimality. Afterwards,
the algorithm tries to refine the solution in the remaining
time [4, 23]. This type of algorithm has two advantages.
First, it is goal directed and, second, an initial, valid solution
is computed fast. The latter is especially useful if the plan has
to be updated often, e.g., due to updates of the environment
representation.1

For the goal-directedness of ARA*, a heuristic has to
inform the algorithm about the estimated costs to the goal
from any state in the search space. Our approach aims at
minimizing the travel time, thus, the heuristic predicts the
remaining time to reach the goal location. We considered two
different heuristics and compared their performance in the
experimental evaluation in Sec.VII-A. To be able to compute
the optimal path, the heuristic needs to be admissible, i.e., it
may not overestimate the true costs. For both heuristics, we
obtain the predicted remaining time h(s) from a state s to
the goal by the estimated remaining distance d(s) divided by
the velocity vmax of the fastest action the robot can perform:

h(s) = d(s)/vmax (6)

1) Euclidean Distance Path Cost Heuristic: One simple
heuristic for obtaining the remaining distance d(s) to the goal
is the Euclidean distance. It promotes expanding states on the
straight line to the goal. This heuristic is clearly admissible.
On the down-side, it is often a poor approximation in
cluttered environments where detours are inevitable or step-
over actions are associated with high costs [4].

1Note that in our experiments, ARA* yielded betted results
than R* [4, 24] due to our well-designed heuristics and since the scenarios
are not dominated by local minima.

Fig. 3. The left image shows an example heightmap, and the right image
the corresponding traversability costs used to generate the Dijkstra heuristic.

2) Dijkstra Path Cost Heuristic: We also developed a
more informed heuristic that better approximates the true
distance in presence of obstacles. The heuristic is based on
Dijkstra’s shortest path algorithm. In particular, we construct
a graph from the heightmap, where each node represents a
(x̂, ŷ)-location of the discrete state space and is associated
with a corresponding height value from the heightmap. The
edges of the graph represent the eight-neighborhood of the
nodes.

Our algorithm assigns traversal costs to each edge accord-
ing to the difference of the height values in its neighborhood.
If the height difference exceeds the maximum step height
of the robot, the edge is considered non-traversable and
infinite costs are assigned. Edges in a planar neighborhood
are considered planar as well and low costs are assigned.
All other edges correspond to a change in the elevation
where the robot could step up, down, or over. To account
for the additional time to execute these actions, our approach
assigns higher costs to such elevating edges. Afterwards a
full Dijkstra search is performed on the graph to compute
the metric distance d(s) of each node s to the goal state.
Fig. 3 gives an example for the traversability classification
of a heightmap. Here, dark corresponds to non-traversable,
bright to planar, and gray to elevating edges. The particular
costs of the edges depend on the target hardware platform
and should not overestimate the true costs. Otherwise the
heuristic would be inadmissible.

VI. ACTION SET FOR THE NAO HUMANOID

In this section, we describe the action set for the Nao
humanoid that we used during the experimental evaluation.
Nao is a small-sized humanoid developed by Aldebaran
Robotics. It is 58 cm in height, weighs 5.2 kg and has 25
degrees of freedom. With the provided walking controller,
the swing foot can be placed at most 8 cm to the front and
16 cm to the side and the peak elevation is 4 cm. The size
of the robot’s feet is approximately 16 cm×9 cm. From these
numbers, it is clear that Nao is not able to step over, onto,
or down from obstacles using the standard motion controller.
The discrete set consisting of 12 basic footsteps that we
chose from the possible motions of the standard controller
is shown in Fig. 4(a).

Using kinesthetic teaching, we designed motions that
allow the robot to overcome these limitations. A special
motion, the so-called T-step, where the feet are placed at
an angle of 90◦ (see Fig. 4(b)), is the basis for the other
actions. Our motivation for this action is to exploit the larger

2661



12 basic footsteps additional footsteps

2

1

1
2

1
2

∆zmax

(a) (b) (c) (d)

Fig. 4. Footsteps set for Nao. (a) Basic planar footsteps, (b) T-step, (c)
Step-over action, (d) Step-onto/down action. Step-over and Step-onto/down
actions are preceded by a T-step. All actions are also mirrored for the other
foot.

lateral foot displacement while moving forward. From this
pose, the robot can perform a step-over action to overcome
obstacles with a height and width of 6 cm (see Fig. 4(c)).
Furthermore, from the T-step the robot is able to step onto or
down from obstacles. Fig. 4(d) illustrates the robot stepping
onto an obstacle exemplary for this motion. The motion is
similar to the step-over action but the swing foot is placed
closer to the stance foot and at a different height. The height
is adjusted online using inverse kinematics based on the
value in the heightmap. The height difference relative to the
stance foot must be in the interval [∆zmin,∆zmax] for that
action as defined in Sec. V-B. In our implementation, we set
∆zmin = −7 cm and ∆zmax = 7 cm. All motions also exist in
a mirrored version for the other stance foot. Thus, we used
16 actions in total per foot for our experiments.

VII. EXPERIMENTAL EVALUATION

In this section, we present the results from a thorough
evaluation of our system. We first evaluate our 3D planner
quantitatively in experiments with simulated heightmaps.
Afterwards, we demonstrate the capabilities of our navigation
system in a series of real-world experiments. All experiments
were carried out with a small-sized Nao humanoid with a
head-mounted ASUS Xtion depth camera.

In the experiments presented in the following, the robot
takes a point cloud with its camera every second step
(generally, it is also possible to increase the number of steps
between two consecutive measurements). The robot waits
about 0.5 s before recording the point clouds to reduce distur-
bances caused by its shaking motion and delays between the
joint encoder readings and the depth camera data. To obtain a
larger field of view, the robot takes two depth images with its
camera facing left and right and combines them to one large
point cloud. Here, the camera is pitched down by 50◦ and
the yaw angle is +17◦ and -17◦, respectively. Our planner
treats unknown areas as free space to allow for planning
into unknown areas, which often occurs when only onboard
sensor data is used. While executing the planned motions,
the robot actively looks in direction of the next unknown
area to update the heightmap. After each new measurement
the robot checks if the planned path is still valid. If not, the
robot re-plans the path. A video demonstrating the system is
available online at http://youtu.be/g2NZ_EasJv0.

Fig. 5. Three randomly sampled maps consisting of bars, platforms, and
blocks used to quantitatively evaluate our 3D planner. The level of the color
gray hereby indicates the height of the cells (the darker, the higher).

A. Quantitative Evaluation of the 3D Planner
To evaluate our planner and the two different heuris-

tics quantitatively, we randomly generated ten different
heightmaps. The sampled maps are all of size 2.5 m × 2.5 m
with a resolution of 4 mm and contain obstacles such as
bars, platforms, and blocks of varying width, length, and
height. Three example heightmaps are shown in Fig. 5. We
sampled start and goal locations uniformly such that they
were collision-free and their distance was between 1.5 m and
3.0 m. We then used our motion planner to generate safe
trajectories on a computer with an Intel Core i5 3.1 GHz
CPU. The initial suboptimality bound for the planner was
set to 8 in all experiments. All 100 planning problems could
be solved by ARA* within the given time limits of 5 s
and 10 s, respectively. As can be seen from Table I, the
extended Dijkstra heuristic leads to more efficient solutions
that are closer to the optimal path compared to the straight-
line Euclidean distance heuristic (significant at 95% level).
Shown are the mean and standard deviation of the path cost
suboptimality (path costs divided by the costs of the optimal
solution). On average, it took 97 s to compute the optimal
plan, whereas our anytime algorithm generates first, valid
solutions within less than a second on average and afterwards
improves the found plan. Furthermore, we observed that
the whole-body collision checks using inverse heightmaps
consumed only 27.1% ± 2.7% of the planning time.

We also evaluated the planning performance when consid-
ering the 3D structure and the extended action set compared
to 2D footstep planning [4]. To this end, we applied ARA*
using only the set of planar footsteps shown in Fig. 4(a) to the
same set of 100 planning problems. The 2D planner was only
able to solve 91% of the planning problems within the limit
of 10 s. In most of the generated maps, our new 3D planner
outperformed the 2D variant in terms of paths costs since the
latter one had to choose detours around obstacles. In some
simpler scenarios, however, the generated solutions of the
2D planner were superior to the ones of the 3D planner. The
reason is that the 3D planner has to additionally perform
whole-body collision checks and has a higher branching
factor so that the 2D planner could expand more states and
found better solutions within the given time limit.

B. Evaluation of Localization and Mapping
The following experiment is designed to evaluate the

state estimation accuracy of our approach in terms of both
localization and mapping performance. We tracked the pose
of the robot with an optical motion capture system from

2662



TABLE I
QUANTITATIVE EVALUATION OF THE MOTION PLANNER.

Heuristic Dijkstra Euclid Dijkstra Euclid
t-Limit 10 s 10 s 5 s 5 s

Suboptimality 1.04±0.05 1.13±0.14 1.08±0.10 1.19±0.19
tinit_sol [s] 0.73±0.83 0.61±0.54 0.71±0.80 0.58±0.52

Motion Analysis while the robot traversed the course shown
in the top image of Fig. 6. The bottom image shows
the corresponding heightmap learned by the robot during
navigation using our approach. The path traversed by the
robot is indicated by the footprints and lead over a bar. As
one can see, the map closely resembles the actual structure
of the scenario shown in the top image.

Using the motion capture system, we measured the ac-
cumulated error between the tracked pose and the pose
estimated by our approach and between the tracked pose and
the odometry. Fig. 7 shows the results in terms of the planar
translational and rotational error, plotted over the actual
traveled distance. We observed that the accumulated drift of
the pose estimate was 0.21 m in xy-direction over the whole
trajectory of 3.47 m. Hence our system drifts approximately
5.9 cm per traveled meter. Analogously, the accumulated
drift in the yaw-angle was 3.46◦ and hence, on average
our system drifts 0.99◦ per meter. For odometry, we noted
an accumulated drift of 0.53 m in xy-direction and 6.10◦

in the yaw-angle. Hence, the average drift is 15.3 cm and
1.76◦ per traveled meter, respectively. Thus, our approach
clearly outperforms the pure odometry estimate obtained
from forward kinematics of the measured leg joint angles.
Furthermore, the experiment illustrates that our localization
method is able to reduce the drift of the pose estimate and
allows for constructing an accurate environment map.

We also measured the time for aligning the point clouds
and updating the heightmap. On average, a heightmap update
from a combined point cloud took 0.07 s ± 0.02 s. Combin-
ing the point cloud from the left and the right view, and
aligning the resulting point cloud to the previous combined
point cloud with GICP took 0.41 s ± 0.22 s.

C. Parameterized Stepping Over and Onto Motions

In the remaining two experiments, we present qualitative
results of our framework with a Nao humanoid. Fig. 8 shows
an experiment in which the robot climbed two stairs up and
down again. No model of the stair was used, not even the
height of the stairs was known beforehand. The heightmap
was constructed online and the height of the footsteps was
computed according to this representation.

D. Traversing Narrow Passages

The final experiment demonstrates the advantage of ap-
plying whole-body collision checks. Fig. 9 shows a scenario
where a Nao humanoid needed to traverse a passage that
was so narrow that the humanoid could not walk through
facing forwards without its arms colliding with the obstacles.
Consequently, our motion planner computed a path where the
robot traversed the passage sideways and without collisions.

goal

Fig. 6. Top: Cluttered scenario autonomously traversed by the robot
from left to right for evaluating the state estimation accuracy. The black
line shows the path traversed by the robot (manually drawn). Bottom: The
corresponding heightmap learned during navigation by our approach along
with the path traversed by the robot. As can be seen, the environment is
represented highly accurate. The dark area correspond to unobserved areas.

 0

 5

 10

 15

 0  0.5  1  1.5  2  2.5  3

y
aw

-e
rr

o
r 

[°
]

traveled distance [m]

 0

 10

 20

 30

 40

 50

x
y

-e
rr

o
r 

[c
m

]

odometry
our approach

Fig. 7. Localization accuracy relative to the ground truth from an optical
motion capture system. Our approach clearly outperforms the odometry
estimate and leads to an accurate pose estimate during navigation.

As the lower body fitted through in a forward direction,
motion planners that consider only the feet or legs of the
robot for collision checks might have found a solution
leading to a collision during the execution of the plan.

VIII. CONCLUSIONS

In this paper, we presented an integrated approach that
enables a humanoid robot to navigate in previously unknown,
cluttered environments. Our system includes incremental
pose estimation based on odometry and point cloud align-
ment using GICP, mapping of the environment using an ac-
curate heightmap representation, anytime footstep planning,
and whole-body collision checking using inverse heightmaps.
To the best of our knowledge, this is the first system that
combines these techniques in a unique framework.

As the experiments with a Nao humanoid show, our
technique to pose estimation clearly outperforms the odom-

2663



Fig. 8. Nao climbing up and down steps by carrying out parameterized
step onto and down actions. The right column shows the heightmap
representation at the time of the image on the left along with the current
footstep plan and the pose estimate.

Fig. 9. Traversing a narrow passage. The Nao humanoid cannot walk
through the passage facing forwards because its arms would collide with
the obstacles. Our planner performs whole-body collision checks and thus
computes a solution where the robot traverses the passage sideways.

etry estimate and allows for the construction of accurate
heightmaps. Based on this, our robot plans and robustly
executes sequences of actions that include stepping over and
climbing up or down obstacles as well as passing through
narrow passages. Our approach to planning and collision-
checking based on a learned heightmap representation can
be generally applied to any humanoid robot.

REFERENCES

[1] D. Maier, A. Hornung, and M. Bennewitz. Real-time navigation in 3D
environments based on depth camera data. In Proc. of the IEEE-RAS
Int. Conf. on Humanoid Robots (Humanoids), 2012.

[2] M. Stilman, K. Nishiwaki, S. Kagami, and J. Kuffner. Planning
and executing navigation among movable obstacles. In Proc. of the
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), 2006.

[3] J.-S. Gutmann, M. Fukuchi, and M. Fujita. Real-time path planning
for humanoid robot navigation. In Proc. of the Int. Conf. on Artificial
Intelligence (IJCAI), 2005.

[4] A. Hornung, A. Dornbush, M. Likhachev, and M. Bennewitz. Anytime
search-based footstep planning with suboptimality bounds. In Proc. of
the IEEE-RAS Int. Conf. on Humanoid Robots (Humanoids), 2012.

[5] K. Hauser, T. Bretl, and J.-C. Latombe. Non-gaited humanoid loco-
motion planning. In Proc. of the IEEE-RAS Int. Conf. on Humanoid
Robots (Humanoids), 2005.

[6] J. Chestnutt, M. Lau, K. M. Cheung, J. Kuffner, J. K. Hodgins, and
T. Kanade. Footstep planning for the Honda ASIMO humanoid. In
Proc. of the IEEE Int. Conf. on Robotics and Automation (ICRA),
2005.

[7] N. Perrin, O. Stasse, L. Baudouin, F. Lamiraux, and E. Yoshida. Fast
humanoid robot collision-free footstep planning using swept volume
approximations. IEEE Transactions on Robotics (T-RO), 28(2), 2012.

[8] K. Nishiwaki, J. Chestnutt, and S. Kagami. Autonomous navigation
of a humanoid robot over unknown rough terrain using a laser range
sensor. Int. Journal of Robotics Research (IJRR), 2012.

[9] A. Hornung, D. Maier, and M. Bennewitz. Search-based footstep
planning. In Proc. of the ICRA Workshop on Progress and Open
Problems in Motion Planning and Navigation for Humanoid, 2013.

[10] D. Maier, C. Lutz, and M. Bennewitz. Autonomous biped navigation
through clutter. In Proc. of the RSS Workshop on Robots in Clutter:
Preparing Robots for the Real World, 2013.

[11] N. Perrin, O. Stasse, F. Lamiraux, Y. J. Kim, and D. Manocha. Real-
time footstep planning for humanoid robots among 3D obstacles using
a hybrid bounding box. In Proc. of the IEEE Int. Conf. on Robotics
and Automation (ICRA), 2012.

[12] R. Cupec, G. Schmidt, and O. Lorch. Experiments in vision-guided
robot walking in a structured scenario. In IEEE Int. Symp. on Industrial
Electronics, 2005.

[13] P. Michel, J. Chestnutt, S. Kagami, K. Nishiwaki, J. Kuffner, and
T. Kanade. GPU-accelerated real-time 3D tracking for humanoid
locomotion and stair climbing. In Proc. of the IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems (IROS), 2007.

[14] J.-S. Gutmann, M. Fukuchi, and M. Fujita. 3D perception and envi-
ronment map generation for humanoid robot navigation. Int. Journal
of Robotics Research (IJRR), 27(10):1117–1134, 2008.

[15] F. Endres, J. Hess, N. Engelhard, J. Sturm, D. Cremers, and W. Bur-
gard. An evaluation of the RGB-D SLAM system. In Proc. of the
IEEE Int. Conf. on Robotics and Automation (ICRA), 2012.

[16] P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox. RGB-D mapping:
Using kinect-style depth cameras for dense 3d modeling of indoor
environments. Int. Journal of Robotics Research (IJRR), 31(5):647–
663, 2012.

[17] R. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim, A. Davi-
son, P. Kohli, J. Shotton, S. Hodges, and A. Fitzgibbon. Kinectfusion:
Real-time dense surface mapping and tracking. In Proc. of the IEEE
Int. Symp. on Mixed and Augmented Reality (ISMAR), 2011.

[18] J. Chestnutt, Y. Takaoka, K. Suga, K. Nishiwaki, J. Kuffner, and
S. Kagami. Biped navigation in rough environments using on-board
sensing. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems (IROS), 2009.

[19] A. Segal, D. Hähnel, and S. Thrun. Generalized-ICP. In Proc. of
Robotics: Science and Systems (RSS), 2009.

[20] P. Pfaff, R. Triebel, and W. Burgard. An efficient extension of elevation
maps for outdoor terrain mapping and loop closing. Int. Journal of
Robotics Research (IJRR), 2007.

[21] K. Khoshelham and S. Oude Elberink. Accuracy and resolution of
Kinect depth data for indoor mapping applications. Sensors: Journal
on the Science and Technology of Sensors and Biosensors, 12:1437–
1454, 2012.

[22] J. Kuffner Jr, K. Nishiwaki, S. Kagami, M. Inaba, and H. Inoue.
Footstep planning among obstacles for biped robots. In Proc. of the
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), 2001.

[23] M. Likhachev, G. Gordon, and S. Thrun. ARA*: Anytime A* with
provable bounds on sub-optimality. In Proc. of the Conf. on Neural
Information Processing Systems (NIPS), 2004.

[24] M. Likhachev and A. Stentz. R* search. In Proc. of the National
Conf. on Artificial Intelligence (AAAI), 2008.

2664


