
  

1 

Abstract—Certain robot missions need to perform 

predictably in a physical environment that may only be poorly 

characterized in advance. We have previously developed an 

approach to establishing performance guarantees for behavior-

based controllers in a process-algebra framework. We extend 

that work here to include random variables, and we show how 

our prior results can be used to generate a Dynamic Bayesian 

Network for the coupled system of program and environment 

model. Verification is reduced to a filtering problem for this 

network. Finally, we present validation results that 

demonstrate the effectiveness of the verification of a multiple 

waypoint robot mission using this approach. 

I. INTRODUCTION 

In research being conducted for the Defense Threat 
Reduction Agency (DTRA), we are concerned with missions 
that may only have a single opportunity for successful 
completion with serious consequences if the mission is not 
completed properly. In particular we are investigating 
missions for Counter-Weapons of Mass Destruction (C-
WMD) operations, which require discovery of a WMD 
within a structure and then either neutralizing it or reporting 
its location and existence to the command authority. Typical 
scenarios consist of situations where the environment may 
only be poorly characterized in advance in terms of spatial 
layout, and often have time-critical performance 
requirements. It is our goal to provide reliable performance 
guarantees regarding whether or not the mission in question 
as specified may be successfully completed under these 
circumstances, and towards that end we have developed a set 
of specialized software tools to provide guidance to an 
operator/commander prior to deployment. 

In prior work [2][13]-[17] using the Georgia Tech 
MissionLab toolkit [18]-[20] we translate mission software 
to a process algebra framework, and we verify whether the 
mission software when executed in an operator-selected 
physical environment  model (also process algebra) will 
achieve an operator-specified performance guarantee. The 
SysGen algorithm [15] identifies periodic behavior in a set of 
concurrent, connected processes that represent a behavior-
based robot program and its environment. The output of 
SysGen is a set of recurrent parameter flow functions. The 
effect of motion and sensor uncertainty is crucial in real-
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world robotics applications. In this paper, we address the 
problem of how flow-functions that include random 
variables can be generated. We show that a flow function 
can be mapped to an equivalent Bayesian Network, and that 
the problem of determining whether a mission will achieve 
its performance guarantee can be reduced to the filtering 
problem for a Dynamic Bayesian Network. Finally, new 
results are presented for a multi-waypoint robot mission and 
we validate these results showing the predictive power of 
our method. 

II. PRIOR WORK 

Automatic verification of software is a very desirable 
functionality in any application where software failure can 
bring heavy penalties [7]. Examples include embedded 
software such as airplane and space flight controllers as well 
as factory controllers and medical equipment. A completely 
general solution is ruled out by the undecidability of the 
halting problem; however, much research has been 
conducted on restricted instances of this problem. Model 
checking [6]-[8] is a very successful technique in which a 
program is mapped to a Kripke system – a state-based 
transition system where states are labeled with sets of 
propositions,. The instructions in the program map from one 
state to a successor state.  If the program has n variables, and 
if each variable ri can have values from a set val(ri), then the 
state space is i val(ri) = val(r0) … val(rn-1).  The 
verification problem in model-checking is, at its heart, a test 
of the reachability of a state or set of states from the start 
state given the program instructions.  

Automated verification of robot and multirobot software 
has several characteristics that set it apart from general 
purpose software verification. The first is that the robot 
program does not execute based on static inputs, but rather 
interacts with an environment model in an ongoing fashion.  
increasing the state-space by the product with the 
environment model. A second characteristic is that there 
may be a necessary continuous nature to some aspects of the 
environment; not easily handled with model-checking since 
the state space will grow with the size of the value space of 
the variables. A program with ten floating point 32-bit 
numbers has a potential state-space of size > 10

90
 for 

example. Finally, significant uncertainty pertains to the 
result of robot sensing and motion; this cannot be ignored or 
the results are not realistic.  

A state-based approach experiences significant 
combinatorial problems due to the characteristics discussed 
in the previous paragraph. However, model-checking is not 
the only approach to software verification. Satisfiability 
Modulo Theories (SMT) [21] cast verification as the 
satisfiability of expressions in a set of theories that can 
include real-numbers, array references and most recently 
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recursive functions. The challenge is in automatically 
transforming a program into an appropriate collection of 
expressions.  

In [15] we introduce a process algebra (PA) approach to 
representing robot programs and environment models.  The 
advantage of PA is that it can be used to determine how a 
process transforms its inputs to produce outputs without 
reference to states. Karaman et al. [10] also use a PA as a 
specification language for multiple UAV missions and 
develop a polynomial time algorithm that produces a plan to 
satisfy the specification.  That work, and our earlier work in 
PA for performance analysis of robot programs [13] 
leveraged the trace, or history of events, of a process. In this 
paper, we use a PA that includes I/O port communications 
[24] and leverage this structural locality information.  

We focus on a specific kind of robot programming: 
behavior-based robot programming [1]. A behavior-based 
robot interacting with its environment will respond to a 
specific set of environmental percepts as programmed by its 
behaviors. Once a percept is responded to, the robot may 
remain in this behavioral state or move to another that 
handles a different set of percepts. For the specific case of a 
system of a PA environment model and programmed 
behaviors represented in tail-recursive process definitions, 
we proposed a novel process interleaving theorem SysGen 
that allowed us to identify a single composite system period 
process. This process contained all the port-to-port 
communications that could happen in the system as part of 
the percept-response cycle. In a subsequent step, we showed 
how the transformations that occur with these port 
communications can then be written as a set of recurrent 
functions, which we called parameter flow-functions, since 
they related the value of variables in one iteration of the 
system period to that in the next iteration. The verification 
problem in this framework is the satisfiability of these 
functions modulo recurrent functions and real-numbers.   

Uncertainty plays a major role in real-life robotic 
performance and needs to be included in any useful 
approach to robot verification. Napp and Klavins [22] 
introduce a guarded command language CCL for 
programming and reasoning about robot programs and 
environments. They address uncertainty by adding a concept 
of rates and exponential probability distributions to CCL, 
which allows them to reason about the robustness of 
programs. Johnson and Kress-Gazit [9], addressing the 
automatic controller generation problem rather than 
verification, develop a model-checking based algorithm that 
handles uncertainty based on Discrete Time Markov Chains; 
however, they comment on the intractability of their 
approach for large state spaces. 

In this paper, we extend the flow-function approach to 
include random variables, and we map the solution of a 
system of flow-functions to a filtering problem for a 
Dynamic Bayesian Network. This approach can also 
leverage various parametric uncertainty distributions, 
including Mixture of Gaussians [23], to capture motion and 
sensor uncertainty. 

III. MISSION SPECIFICATION 

Dull, dirty, and dangerous missions are considered to be 
the natural niche for robots, and these missions have been a 
major driving force behind the advancement of robot 

technology. Over the past decades, we have seen an 
increasing number of robots being deployed to accomplish 
dangerous missions (e.g., disarming IEDs in Afghanistan). 
Missions in the domains of urban search and rescue (USAR) 
and counter weapons of mass destruction (C-WMD) are not 
only dangerous, but their failures usually have dire 
consequences. It is highly desirable then to have the ability 
to verify the performance of a robot before it is deployed to 
carry out a mission. However, verification of robotic 
missions poses a unique and significant challenge that is 
different from traditional software verification – the robot 
has to work in the real world, and the real world is inherently 
unpredictable. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. MissionLab robot mission specification toolset with 

VIPARS verification module, see [2] for more details. 

We have built our robot mission verification framework 
upon MissionLab

2
, a behavior-based robot programming 

environment [19]. MissionLab provides a graphical user 
interface where robot programs can be constructed as a finite 
state automaton (FSA) from a library of primitive behaviors. 
One of the many unique features of MissionLab is that it 
generates hardware-independent executables from user-
constructed FSAs, which allows the desired robot platform 
to be chosen at run time. For critical missions where 
performance guarantees are desirable, we introduced a 
verification framework into MissionLab by which missions 
can be verified before the executable generation step [2].  

The verification framework is shown in Fig. 1 as an 
extension to the MissionLab programming environment. The 
core of the framework is the process algebra based 
verification module, VIPARS (Verification in Process 
Algebra for Robot Schemas). To initiate the verification of a 
mission, the robot program is compiled from CNL 
(MissionLab’s internal representation [20]) to PARS 
(Process Algebra for Robot Schemas), the language 
understood by VIPARS. The robot operator also needs to 
provide VIPARS with models of the robot, the sensors it is 
equipped with, and the environment it is to operate in, along 
with the performance criteria that the mission is required to 
meet. VIPARS provides the operator with the performance 

 
2MissionLab, now in version 7.0, is freely available for research 

and education at http://www.cc.gatech.edu/ai/robot-

lab/research/MissionLab/. 
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guarantee for the mission based on how well the specified 
performance criteria were met. The verification module 
effectively forms a feedback design loop, where the operator 
can iteratively refine the robot program based on the 
information provided by VIPARS. 

A. Mission Design 

To illustrate the process of designing a mission with 
MissionLab and verifying it with VIPARS, we present a 
biohazard search scenario where the robot needs to access a 
room inside the basement of a building, where potential 
biological weapons might be located.  The layout of the 
basement is shown in Fig. 2, and the room the robot needs to 
access is shown with a red biohazard symbol. With a known 
layout of the environment, the simplest solution to 
accomplish the mission is to designate waypoints which the 
robot can follow to access the room of potential threat. The 
waypoints and the path of travel are shown in red in Fig. 2.  

 

Fig. 2. Building layout with waypoints labeled in red 

The program for the multi-waypoints mission from Fig. 2 
is shown in Fig. 3; this behavioral FSA was created with 
CfgEdit, the Configuration Editor, in MissionLab. The FSA 
consists of a series of GoToGuarded and Spin behaviors 
with AtGoal and HasTurned triggers. The GoToGuarded 
behavior drives the robot to a specified goal location (i.e., 
waypoint) with a velocity dropoff_radius around the goal 
location. Dropoff_radius specifies the distance from the 
goal, where the robot starts to slow down as it approaches 
the goal location. The AtGoal trigger causes a transition to 
the next state when the robot reaches the goal location. The 
spin behavior rotates the robot around an obstacle with a 
given velocity. The HasTurned behavior causes a state 
transition when the robot has turned a desired angle.  The 
robot operator could verify the design intent by simulating 
the mission with the simulation environment provided in 
MissionLab, however a simulation is insufficient to provide 
performance guarantees for the mission.  

B. Mission Performance Criteria 

Performance criteria are mission constraints (e.g., safety 

and time constraints) that the robot system has to meet in 

order to assert “mission accomplished.” The probability that 

the system will perform under these criteria is the mission 

effectiveness. Quantification of this probability provides a 

metric of success for the system, which in turn allows for 

decision-makers to properly assess the different options 

associated with each mission. Mission effectiveness (ME) is 

calculated as follows: ME = AR, where A is the availability 

at the start of the mission and R is the mission reliability 

with environment and operator effects included [12]. For the 

purposes of this paper, we will define availability as the 

probability that an item will be operational at a given time, 

and reliability as the ability of a system to operate under 

designated performance criteria for fixed periods of time. 

This model is consistent with the model previously provided 

in [2] where the first term is effectively the availability and 

the second reliability.  

Previous models for mission effectiveness rely entirely on 

empirical test data. This makes characterizing a system’s 

effectiveness difficult when no such previous data exists, 

which is often the case with robotic systems. Gathering data 

specific to each C-WMD mission is not really feasible, so 

predicting the rates of failures for the system becomes 

imperative. Since both availability and reliability are 

characterized by the behaviors of the failure rates, if the 

failure rates of the components in the system can be 

predicted without the use of past data then the mission 

effectiveness can also be predicted. 

C. Verification of Performance Guarantee 

Designs rarely work the first time off the drawing board. 
Final working products usually emerge only through 
numerous “going back to the drawing board” moments. The 
design of robot missions is no exception. However, for time-
critical C-WMD and USAR missions where we might only 
have one opportunity to complete the mission, we need to 
have some guarantee that our robotic system will succeed 
before its deployment.  

 

Fig. 3. Mission design with MissionLab’sCfgEdit, showing the 

mission design for a multiwaypoint mission. Each ‘state’ and 

‘trigger’ node (the large and small circles) corresponds to a 

behavior and the arrows denote sequencing. 

To obtain a performance guarantee for the robot mission 
in Fig. 3, the operator needs to compile the mission into 
PARS, select models of sensor, robot, and the environment, 
and provide VIPARS with the performance criteria (Fig. 1).  
Currently, VIPARS outputs 1) a Boolean answer regarding 
whether the mission as specified can be successful, and 2) a 
list of performance criteria indicating if each criterion had 
been met. If the predicted performance of the mission does 
not meet the necessary performance criteria, the operator 
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could refine the robot program based on the feedback 
provided by VIPARS. This iterative process can continue 
until the operator is satisfied with the performance guarantee 
and sufficiently confident to deploy the robot.  

 

IV. PARS REPRESENTATION OF MISSIONS 

PARS is a process algebra [4] for representing robot 
programs and environments for the purpose of analysis and 
verification. This section gives a brief introduction to PARS 
as a precursor to the discussion on flow-functions and 
filtering in subsequent. For a more thorough introduction, 
and a wider selection of controllers and environment models, 
see [13][17]. 

The semantics of a process in PARS is an extended port-
automaton [24], an automaton equipped with communication 
ports over which it can send messages to other concurrent 
automata, and extended with duration and partitioned end-
states (success/stop and fail/abort). A process P with initial 
parameter (variable) values u1,u2,…,un, input 
ports/connections i1,i2,…,im, output ports/connections 
o1,o2,…,op and final result values v1,v2,…,vq is written as: 

 Pu1,u2,…,un (i1,i2,…,im) (o1,o2,…,op) v1,v2,…,vq

Subscripts indicate parameters. Parentheses are used to 
group port connections and the angle brackets, variable 
results. In this paper (except for Section VI, which refers to 
actual implementation) we will just use global port names 
rather than the more general but more verbose port-to-port 
connections. For brevity, the parts of a process description 
that are empty are typically omitted. Process variables 
(initial parameters, results) can be random variables; we’ll 
return to this in more detail.  Processes that are defined only 
in terms of a port-automaton are referred to as basic 
processes, the atomic units from which programs are built 
(see Table 1). 

Non-basic processes are defined in terms of compositions 
of other processes. For example a process T that inputs a 
value on port c1 and then outputs it on port c2 is defined: 

 T=Inc1 x ; Out c2, x

A sequential composition (;) in which the first process 
ends in abort (see Table 1) just aborts. This implements a 

conditional construct.  Other composition operations include 
parallel-max (|), a parallel communicating composition of 
processes that terminates when all have terminated, and 
parallel-min or disabling (#), a parallel communicating 
composition of processes that terminates as soon as any 
terminate. A tail-recursive (TR) process is written as: 

 Ta= Pa b ; Tf(a,b)

This provides an repetitive construct. Any language that 
implements sequence, condition and loop constructs is 
sufficient to represent any program [5]; thus, we can be 
confident that PARS can represent any program. In (3), 
f(a,b) indicates how the parameters (or variables) of the 
process are transformed when passed to the next recursion. 
We refer to such functions for TR processes as parameter 
flow functions. 

A. PARS Controllers 

One objective of our project is to automatically translate 
MissionLab’s underlying CNL mission specification 
language [20] into the PARS description of the mission 
controller. This work is in progress but not completed, and 
for now, we manually translate from CNL to PARS. A 
MissionLab waypoint mission, as described in Section III, 
might be approximated in PARS as:  

Missionw,i = Gotow(i) ; Neqi,n ; Missionw,i+1                 (4) 
   Gotoa  = TurnToa ;MoveToa 

MoveTog = Inp r ;Neqr,g; Outv, u(g-r ) ; MoveTog 
TurnTog = Inp r ; Outh, d(g-r )             

The controller Missionw,0 visits a series of waypoints 
w(i),i=0..n. For each waypoint, Gotow(i) first turns the robot 
towards the waypoint by outputting d(g-r), the relative 
direction to the waypoint, onto the heading port h, and then 
repeatedly outputting a speed, u(g-r) on the velocity port v. 

The example used in this paper is basically a motion 
example. The representation and method is not however 
intrinsically limited to this controller or to motion examples. 

B. PARS Environments 

An environment model in PARS is a causal model of the 
environment in which a robot program is carried out. An 
example of an environment model that includes both 
position and heading uncertainty is shown below: 

Envr,a,s = (Delayt  #  Odor #  Atr) ;                                         (5) 
              ((Inh a; Ranh z) #  (Inv s; Ranv w));  

       Envr+u(a+z)*(s+w)*t, a, s                           

Odor  =Ran e ; Outp, r+e ; Odor 

The environment model accepts a heading input on port h 
or a speed in the direction of the heading on port v. The 
process Atr represents the robot at location r (where r is a 
random variable). The process Odo (short for Odometry 
sensor) makes position information (with noise) available in 
a loop until terminated by the Delay enforcing the discrete 
progress of time in steps of at most t. The new position of 
the robot is calculated as the old position incremented by a 
noisy speed command (s+w) in the unit vector direction 
u(a+z) of the noisy heading. The actuator and odometer 
noise (the variables z, w, and e in (5)) is characterized by the 
distributions for speed, heading and sensor noise, h ~ 
N(h,h), v ~ N(v,v), and  ~ N(m,m). 

C. PARS Goals 

It is very common in model-checking and other kinds of 
verification to use a temporal logic to specify the property to 
be verified. Another approach, called refinement, is to use 
the same language for property and program, but consider 
the property to be a more abstract version of the program.  
We specify performance goals directly in PARS. For 
example, the designer may wish to specify that the robot 

Table 1.Examples of Basic Processes 
Process Stop Abort 

Delay t After time t If forced by # 

Ran v Returns a random sample v from a 

distribution. 

If forced by # 

Inc  y , Out c, x Perform input and output, 
respectively, on port c 

If forced y # 

Eqa,b , Neq a,b, 
Gtra,b, etc., 

a=b, ab, a>b, etc., Otherwise 
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arrives at position a after time t1 and stays there for at most 
a time t2: 

 Goal = Delayt1 ; (Delayt2 # Ata)

where t1 and t2 are variables. A property specification 
process network is actually a process network constraint 
expression, a specification of a set of possible networks. The 
system and property to be verified are compared and if the 
system can be shown equivalent to the property, we extract 
the constraints that the property network impose on the 
system and determine if they hold. 

V. VERIFICATION METHOD 

The verification approach presented at the end of the last 
section is as follows: Given a parallel composition of a 
controller and system: 

 ( Gotoa |  Envr0,h0,0 )

will (7) achieve the performance specification in (6)? In [15] 
we leverage a property of behavior-based systems to reduce 
the complexity of this problem. We present an algorithm, 
SysGen that matches the recurrent structure in the controller 
and environment processes to generate a process network 
that is a behavioral system period. The port connectivity in 
this system period is then analyzed to determine the way in 
which the system period transforms process variables, 
generating a set of recurrent functions, flow-functions, one 
function fi for each variable ri in the system period. We show 
that verification then consists of solving these recurrent 
functions for initial variable values and goal variable values 
(established by matching the system period and property 
network) as boundary conditions. We consider in this paper 
a practical Bayesian approach to the solution of these flow 
functions. 

FloGen( FS = {f1,…fm} ): // component flow fns for processes p1,…,pm 

1. For each fi FS 
2.       For each vj in fi not a parameter of pi 

3.           aport in pi that generated vj 

4.           While (a !=) 
5.       cm(a) is the network connection of a on pk 

6.                  uparameter value to the port operation on cm(a) 

7.    aport in pk that generated u or  if none 
8.        Replace vj with u 

 

Fig. 4. Flow Function Generation Algorithm, FloGen 

A. Flow Functions  

SysGen allows us to recast the analysis of the recurrent 
system into the analysis of a single period. This period 
transforms the values of the variables at start of repetition k 
of the period to those at the start of repetition k+1. Variables 
may be transformed by operations within processes (we can 
get this from the process flow functions) or they may be sent 
via port communications to be included in other processes, 
but that we now have to calculate. Figure 5 shows an 
example of this for two processes.  

The FloGen algorithm (Fig. 4) produces a flow function 
that includes these transformations for each parameter to the 
system period. For each flow variable, ri R = {r1,…,rn}, 
FloGen traces its transformation through processes and port 
communications to generate a single flow function fi defined 
as: 

 )val(r  )val(r ..)   val(r:)r,...,(rf
1+ki,kn,k1,n1i

 

The complexity of FloGen depends on the number of 
component processes and the number of parameters to each, 
since each parameter will generate one flow function. If there 
are m port-to-port connections in the system period, then m is 
the upper bound on the sequence of substitutions for port 
connections in FloGen.  

Flow variables may contain random variables. Hence the 
flow function relates the value of the random variable ri,k of 
time step k to its value in time step k+1 given the values of 
the other variables in R. This is equivalent to a calculation of 
the posterior probability ri,k+1 given the values of all the 
variable values at time k, Rk, which we can write 

 P( ri,k+1 | Rk)  = fi( Rk).

Matching a goal network and a system is a constraint on 
the posteriori values of some of the flow variables.  

Not all variables in Rk may be needed to calculate each 
rk+1. Any particular variable may only depend on some of 
the variables in Rk as given by the structure of the processes 
and process communications. This structural locality 
property is identified by the FloGen algorithm as it follows 
port connections between processes (Fig. 5), expressing the 
inherent conditional independence: 

 P( ri,k+1 | Ri,k )  = fi( Ri,k ), Ri,k  Rk

The resulting structure can be drawn as a Bayesian 
network as shown in Figure 6.  

 

As long as flow functions can include the effect of 
program conditionals [17], we can assume Ri,k = Ri and 
hence that the evolution of flow-variable values is a 
stationary process and can be captured as the Dynamic 
Bayesian Network (DBN). We define a function F as the 
transition model of the DBN, where  

 F(Rk) = ( f1(R1,k), f2(R2,k),…) 

B. Verification as Filtering 

The process of matching the system and goal networks 
[15] identifies a subset of the flow-variables, G  R, and the 
values to be associated with them  

 

 

 

 

 

 

 

Fig. 6. Flow function fi(r1…rn)=ri evaluation shown as a 

Bayesian Network. 
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Fig. 5. Example of variable value transformation (dotted 

lines) for variables r and q in a single system period 

composed of two processes P1 and P2. 
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 GV={ (g,v) | gG and v val(g) }

The verification problem asks whether the execution of 
the controller in the given environment will result in the 
flow-variables in G having the values specified by GV. 
However, if the variables are random variables, then we 
need to modify this: P(GVk| Rk) is the probability that GV 
holds at step k given the flow-variable values at that step. 
For each gG this means integrating the value of the 
probability density over a small range around of the value v. 
Our definition of a successful verification is that  

 P(GVk | R1:k) > Pv

Where Pv is a user specified constant (typically 80% in our 
experiments, but user definable) and where R1:k means the 
sequence of flow-variable values from the first to step k. We 
introduce an observation model GF(Rk) to implement this 
evaluation at any step: 

 GF(Rk)   =    P(GVk | Rk) 

The goal conditions may be achieved on any step, so the 
probability of achieving the goal is the disjunction (sum) of 
the probabilities on each step: 
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While thresholding on Pv in (13) gives a way to determine 
a successful verification, it does not allow us to determine a 
non-successful verification. One solution is to bound k, 
insisting: 

 P(GVk | R1:k) > Pv and k<Kmax

This solution is reasonable if k can be related to time (for 
example if a maximum time can be established for the 
execution of a system period) and if there is a maximum 
time constraint on the activity (for example, that the mission 
must be achieved before a given time). 

C. Extension of SysGen 

Consider a a system Sys composed of set of processes P1, 
P2, …, Pm: 

 Sys = P1 | P2 | … | Pm
= S(P1, ..., Pm)  ;  Sys 

where each Pi =  ̂  ; Pi,  and where  ̂  is not recursive; that is, 
each Pi is a tail-recursive (TR) process. SysGen constructs 
the system period S(P1, ..., Pm)  for such systems. However, 
Sysgen is defined in [15] only for a composition of TR 
processes. If one of the processes, Pi, is for example a 
sequence of Gotoa processes in a waypoint mission, then Pi is 
not TR. There is a straightforward extension for SysGen to 

automate this. Let one process Pi in (18) be non-TR, then let 
us consider all the scenarios that can result, and let  ̂  be the 
‘period’ we then identify for use in SysGen: 

1. Pi is pure straight-line code: In that case, we have 
 ̂    ; so we calculate the system flow-function and 
DBN, and filter the DBN for just a single time-step 
(since the straight-line code does not repeat, only one 
step is necessary).  

2. Pi is straight-line code followed by a single TR process, 
Pi a, b = SL a y ; Ta, b, y. In this case, we break the problem 
into two sequential problems;  
(a) we first address the system with  Pi replaced by SL, 

calculating the flow-function and DBN and filtering 
for one time step, and carry the variable values over 
to a second system  where 

(b) we address the system with Pi replaced by T, which 
is TR and can be handled in the normal fashion.  

3. Pi is a sequence of two TR processes, Pia,b= T1ay ; 
T2a,b,y or a TR process followed by straight-line code. 
We also break this into a sequence of two problems 
with Pi replaced by T1 in the first and Pi replaced by T2 
in the second, carrying the variable values over 
between both problems. 

Using this approach, a mission with k sequential motions 
will be broken automatically into k filtering problems. In the 
current version of VIPARS, each problem is treated as a 
distinct and independent step, and the probability of success 
is simply the product of the step probabilities. 

a) Moving up the ramp that 

leads to the building entrance 

b) Entering the building at the 

loading dock 

c) Traveling down the long 

hallway 

   

f) Entering the room with 

potential biohazard threat 

e) Moving toward the room 

entrance 

d) Rounding a corner 

Fig. 7. Snapshots of Pioneer 3-AT robot at several points during a 

validation of the multiple waypoint mission presented in Fig. 3. 

Table 2. Validation Result 

# of Runs # of Failures # of Successes P( Success) 

40 12 28 70% 

VI. RESULTS 

We conducted a validation of our performance prediction 
for the multiple waypoint mission (Section III). The 
VIPARS module was used to generate a prediction of the 
robot position after completing the mission. The robot 
motion and sensing uncertainty distributions used in 
VIPARS were calibrated for the Pioneer 3-AT robot for an 
indoor surface [16]. The robot mission was carried out 40 
times and measurements made of the robot’s success at 
completing the mission. The prediction and validation 
results were then compared. In [16] this approach was used, 
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to validate the accuracy of a set of single waypoint missions.  

A. Validation Procedure 

The multi-waypoint mission employed a Pioneer 3-AT 
robot (Fig. 7). The mission area is approximately 6020 
meters. The robot started at the bottom of the ramp. The start 
location of the robot is (8.40, 23.80) with respect to the 
world coordinates as shown in Figure 2. The waypoints for 
the missions are (18.20, 23.80), (18.0, 20.80), (58.75, 22.50), 
(58.75, 33.75), and (60.50, 40.50); and the robot is to visit 
the waypoints in the order listed with (60.50, 40.50) as the 
final waypoint. Following the waypoints, the robot moved 
up the the loading dock ramp where an entrance to the 
building is located. The robot then entered the building and 
traveled down a long hallway (approximately 40 meters in 
length), which leads to the room of interest located at the 
end of the hallway. The performance criterion for the 
mission is whether the robot had gained access to the room 
of interest (i.e., reached the final waypoint, which resides in 
the room). The objective of this guided-navigation mission is 
to have the robot enter a room where potential biohazards 
may be stored. Once the robot is in the room, it could deploy 
its onboard sensors (e.g., chemical) to search the room for 
biohazards. However, this paper focused on verifying the 
guided-navigation mission, thus the mission is considered 
successful once the robot enters the room of interest. 
Verification of the biohazard detection and identification 
mission with chemical sensors will be conducted in our 
future work.  

The mission was run 40 times and the number of 
success/failures was recorded (Table 2). Most failures 
observed were due to the robot being stuck at the corner near 
the third waypoint as in Figure 7d. The reason for the failure 
is that the robot was not able to reach the third waypoint at 
the end of the long corridor. While the robot was near the 
waypoint physically, its internal localization said otherwise 
due to error accumulation in the odometry. As a result, the 
robot kept trying to go the third waypoint, but the corner 
walls prevented motion. Obviously better results could be 
obtained with better sensors, but that is not the point of this 
paper: it is rather to predict the likelihood of success given a 
particular robot configuration, hence the reason we 
encountered such a high failure reason. 

B. VIPARS Prediction 

The MissionLab FSA is manually translated to set of 
PARS equations. The waypoint mission of Section III is 
approximated in PARS as: 

Missiong1,g2,g3,g4(p,hi)(v,ho) =  

  Turng1(p,hi)(ho) ; MoveToVCg1(p)(v)  ; 

  Turng2(p,hi)(ho) ; MoveToVCg2(p)(v)  ; 

  Turng3(p,hi)(ho) ; MoveToVCg3(p)(v)  ; 

  Turng4(p,hi)(ho) ; MoveToVCg4(p)(v)  ; 

  Turng5(p,hi)(ho) ; MoveToVCg5(p)(v)  . 

The mission is five instances of a process that turns the 
robot to face the goal Turng1, and a process that then moves 
the robot towards that goal, MoveToVCg1. Note that this 
network also includes port connection information (as in 
e.g., eq. (1)), which we omitted for brevity in previous 
sections. Here it indicates the connections for the position 

input (p), the heading input (hi), the heading output (ho) and 
the velocity output (v) crucial for FloGen analysis.  The 
system process is the concurrent, communicating 
composition of the mission and environment processes: 

SYS = NEnvP0,H0 (c2,c3 )(c1,c4 ) | MissionG1,G2,G3,G4 (c1,c4 )(c2,c3 ) . 

The parameters P0, H0, G1, G2 and so forth in the 
expression above are the initial conditions for the system: 
the initial position, heading, goal locations etc. The port 
connections c1,...,c4 in the expression connect the position, 
heading and velocity ports on the mission to those in the 
environment model. The NEnv process is similar to Env in eq. 
(5), but with the information about heading and rotational 
uncertainty included. The process contains no information 
about walls or laser sensing to detect and respond to walls 
and obstacles. We have included this kind of information in 
previous work (e.g., [16],[17]), but our objective eventually 
is to not require an accurate map, or even any map, for 
verification, since that information may not be available.  

The VIPARS module first determines if SYS is composed 
of purely TR processes. If so, it can be verified by 
determining if a system period exists (eq. (18)), and if one 
does, by extracting the system flow functions and using the 
DBN filtering approach presented in Section V.B. If SYS is 
not composed of purely TR processes (as in this case), then 
the result presented in Section V.C is used to break up the 
system into a sequence of networks of TR processes, and the 
DBN filtering applied to each in turn. In this example, 10 
networks are extracted and filtered in sequence. The goal of 
reaching its final location is applied to each filtering result.  

In [15], we show how this goal is specified and matched 
with the SYS network to determine what variables to inspect 
during filtering. The termination condition for filter is shown 
in eq. (17). The results demonstrate statistically the 
predictive power of this approach for single waypoint 
missions. Most waypoint missions have many waypoints, 
and that is the more complex result presented here.  

Table 3. VIPARS Waypoint Distributions 
W# (x ,y )  pmax 

1 (17468, 23585) [ 2610,         0;        0,8830] 0.91 

2 (17850, 21206) [4675,      286;    286, 9449] 0.99 

3 (59411,21639) [14986,  -608;   -608, 48005] 0.81 

4 (59092,33444) [24717,  -218;   -218, 50625] 0.99 

5 (60422, 39764) [30051,-1048; -1048, 52273] 0.99 

VIPARS reported a successful verification with final 
position distributions (in mm) shown in Table 3. Calculation 
time on an Intel Core 2 Duo 1.8GHz laptop was of the order 
of a few minutes including (overly) extensive diagnostic 
output. VIPARS was run several times with different Pmin to 
determine a maximum value for a successful verification 
(i.e., largest Pmin before Tmax). These are shown as the last 
column in Table 3. Since a failure could occur at any 
waypoint, we estimate the estimate for success as the 
product of successes at each waypoint, psucc = 
0.91*0.99*0.81*0.99*0.99=71.5%. The VIPARS breakdown 
into these 5 subproblems is automatic and just separated out 
here for a more detailed comparison with the validation. 

C. Comparison of Predicted and Measured Results 

Empirical experiments show a success probability of 70% 
for this mission, from 40 runs with 12 failures. Our predicted 
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success rate is ~72%. We can statistically compare the 
prediction with the validation results using a z-statistic 
proportion test. The null hypothesis is H0: psucc=0.72 and Ha: 
psucc<0.72. We calculate the z-statistic as z =-0.28, and 
p(Z<-0.28)=0.3897 from the standard distribution tables.  

Since 0.05<<0.3897 we (emphatically) fail to reject H0: 
p=0.72 at the 95% confidence level. So although our 
predicted results are a little more optimistic than the 
experimental results, they are not significantly different. The 
waypoint with lowest pmax, is also the one that offered most 
difficulty during empirical validation, and this also supports 
the usefulness of the VIPARS prediction. 

VII. CONCLUSIONS 

The general case of software verification runs afoul of the 
halting problem. To address this fundamental limitation, 
most work therefore focuses on specific cases; we have 
focused on a PA structure that captures behavior-based 
programming well and avoids explicit state: concurrent 
interacting systems of TR processes. TR processes have the 
useful feature that they easily allow the construction of 
recurrent flow-functions that capture how the TR processes 
transform variable values on each recursive step. To model 
uncertainty, which is a sine qua non for realistic robot 
results, processes are allowed to have random variables. We 
show that the flow function in this case can be mapped to a 
Bayesian Network, and the recurrent nature of the flow-
functions can be captured as a Dynamic Bayesian Network. 
The verification problem for the random variable case can 
then be phrased a DBN filtering problem.  

Lahijanian et al. [11] and Johnson & Kress-Gazit [9] 
address the problem of automatically generating a controller 
from a high-level specification in a temporal logic such as 
LTL or CTL. Model-checking provides techniques to verify 
an automaton with respect to a temporal logic specification 
and hence is leveraged in the aforementioned and similar 
formal methods work in robotics. Our focus is verification of 
operator-generated mission software to provide performance 
guarantees and hence the temporal logic aspect is not as 
useful an ingredient. Because of state-combinatorics, we 
have elected to follow an SMT-like approach instead. 

Sampling approaches, such as Ymer [25], use Monte Carlo 
sampling of execution paths to verify probabilistic systems. 
Simulation is typically used to generate sample paths and 
sufficient samples are taken to verify a system within a 
bound for false positives and a bound for false negatives. 
Our approach is parametric rather than sampling based and 
does not need bounds, and of course, does not need to carry 
out multiple simulation runs. An advantage of sampling 
methods is that they can handle Semi-Markov or 
Generalized Semi-Markov systems. 

In [16] we reported strong statistical evidence of the 
predictive power of our approach for single motions at 
various distances and speeds. Here, we extended that 
validation to a multiple waypoint mission. Empirical testing 
of this mission on a Pioneer 3-AT robot yielded a 70% 
success probability. The VIPARS prediction was 72%. The 
results are statistically strong enough to count the validation 
as successful.  
 Although a C-WMD mission might have some waypoint 
aspects if sufficient knowledge is available a priori, it is 

more likely that the mission will be of an explore-and-find 
nature rather than strictly follow-the-waypoints, and will 
involve multiple robots. We are already specifying and 
executing missions of this kind in MissionLab and we will 
now study how VIPARS can be used to verify performance 
guarantees for these missions.  
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