
Finding Next Best Views for Autonomous UAV Mapping
through GPU-Accelerated Particle Simulation

Benjamin Adler, Junhao Xiao and Jianwei Zhang1

Abstract— This paper presents a novel algorithm capable
of generating multiple next best views (NBVs), sorted by
achievable information gain. Although being designed for way-
point generation in autonomous airborne mapping of outdoor
environments, it works directly on raw point clouds and thus
can be used with any sensor generating spatial occupancy
information (e.g. LIDAR, kinect or Time-of-Flight cameras). To
satisfy time-constraints introduced by operation on UAVs, the
algorithm is implemented on a highly parallel architecture and
benchmarked against the previous, CPU-based proof of concept.
As the underlying hardware imposes limitations with regards
to memory access and concurrency, necessary data structures
and further performance considerations are explained in detail.

Open-source code for this paper is available at
http://www.github.com/benadler/.

I. INTRODUCTION

For many real-world applications, mapping an outdoor en-
vironment by simply defining a region of interest in 3D space
and leaving the details of the procedure to an autonomous
robot would constitute a considerable improvement.

After successful implementation of localization and map-
ping for a UAV, our research focus has been on generation
of goal configurations in order to maximize the system’s
information gain. Determining this sensor placement is a
generalization of the NP-hard art gallery problem, and was
named the next best view (NBV) problem [1].

Because our experimental airborne platform features a
flight-time of only 15 minutes, NBVs need to be determined
quickly. In contrast to generating a single NBV for a given
input, computation of multiple NBVs sorted by achievable
information gain is preferred, as this enables creation of
trajectories that include all NBV-derived waypoints in an
order optimized to allow catenation by the robot in minimal
time.

This paper is organized as follows: In the next section,
we present a short overview of work in this and related
fields. Following, we briefly introduce our UAV and the idea
behind our approach, and then explain the data structures
and algorithms necessary to generate waypoints providing
high information gain. In section VI, we show waypoints
generated for point clouds captured during real flights and
analyze the real-time applicability of the algorithm. Finally,
we share our thoughts on current limitations and future
developments.

1Benjamin Adler, Junhao Xiao and Jianwei Zhang are with
the Institute of Technical Aspects of Multimodal Systems, De-
partment of Computer Science, University of Hamburg, Germany.
{adler,xiao,zhang}@informatik.uni-hamburg.de

Videos showing the application of the presented approach
for real-time generation of multiple NBVs are available at
http://tams.informatik.uni-hamburg.de/videos/.

II. RELATED WORK

The art gallery problem has been researched extensively,
with most contributions presenting algorithms operating on
polygons in two-dimensional space [2]. Because the problem
statement presumes the map to be known a-priori, these
works do not present sufficient solutions for NBV planning
in unknown evironments. There have been multiple publica-
tions surveying active perception planning for reconstruction
and inspection, the most recent being [3], which classifies
methods as either surface-based, volume-based or global. We
detect missing information using a surface-based approach,
while rating possible information gain of sensor poses using
volumetric data structures.

Reasoning over yet-unexplored spaces using probabilistic
methods, like in [4] yields helpful output so long as the
environment to be scanned follows the assumptions made
beforehand, e.g. flat table-tops and non-degenerate shapes.
Unfortunately, real-world outdoor scenarios are not neces-
sarily flat and often more complex than table-tops with
cutlery. The authors of [5] define a mutual information gain
resulting from travelling to a goal as “the difference between
the entropies of the distributions about the estimated states
before and after making the observations”. This definition
requires knowledge about the probability distribution after
making the observations at a given goal in unmapped en-
vironment, which cannot be foreseen and thus, must be
simulated under the assumption that “there exists a certain
available feature density [...] in terms of average number of
features per map grid area”. Approach [6] is used for ground-
based outdoor reconstruction, based on building voxel-grids
from acquired data and ray traversal for NBV computation,
but requires “a 2-D map with which it plans a minimal
set of sufficient covering views”. A frontier-based approach
is commonly used in NBV problems [7], [8], because it
yields sensor-poses located between known and unknown
regions. On one hand, these poses offer safe reachability,
because the path planner can compute a trajectory through
known parts of the environment. On the other hand - given
the pose is oriented towards the unmapped environment
- it will allow the sensor to deliver valuable information,
advancing the mapping process. In order to compute such a
pose, knowledge about frontiers has to be derived from the
underlying data structure. When using two-dimensional grid
maps, “frontier cells are defined as unknown cells adjacent

2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS)
November 3-7, 2013. Tokyo, Japan

978-1-4673-6357-0/13/$31.00 ©2013 IEEE 1056

to free cells and this way a global frontier map can be
produced” [9].

Three-dimensional environment mapping is often imple-
mented using laser scanners and time-of-flight cameras,
so point clouds are a very common type of sensor data.
Unfortunately, information about exploration boundaries is
hard to generate from point clouds. Applying a plain spatial
subdivision to point clouds to form a 3D occupancy grid map
might appear as a logical next step, extending Mobarhani’s
definition into the third dimension. Constantly updating such
a grid quickly becomes a burden on the processing pipeline,
as all rays scanned by the laser scanner have to update all
the cells they travel through. This makes resolutions in the
centimeter range quickly become unfeasible. Furthermore, a
height limit has to be imposed manually to keep the robot
from mapping unknown (and empty) regions in the sky.

III. EXPERIMENTAL PLATFORM

Fig. 1. The experimental flying platform with mounted GNSS-antenna and
-receiver, laser scanner, IMU and processor-board.

The UAV consists of an “Okto 2”-multicopter from the
mikrokopter project (see fig. 1). For self-localization, it is
equipped with a commercial INS system, featuring a MEMS
IMU and a dual-frequency GNSS1 RTK2 receiver supporting
GPS and GLONASS constellations. Given sufficient satellite
reception, the system’s position is solved to a precision of
2 centimeters, while roll and pitch angles exhibit maximum
errors of 0.5◦. The precision of the heading angle depends
on the amount of motion the vehicle experiences and usually
converges to a maximum error of less than 1.0◦ after initial
alignment. A Hokuyo UTM-30LX laser range finder is
mounted below the vehicle’s forward arm with its front side
facing downwards. It is connected to an onboard-computer
that fuses data from both sensors in real-time, creating a
point cloud that is streamed to the ground station during
flight using an IEEE 802.11n wireless network. For a more
detailed description of the platform’s hardware, see [10].

IV. APPROACH

The algorithm is inspired by other researcher’s contribu-
tions concerned with creating watertight 3D models of real-
world environments: watertightness is not only a desireable

1Global Navigation Satellite System
2Real Time Kinematic

property for completely reconstructed models, but also a
helpful test for finding gaps that have remained throughout
the mapping process. The challenge here is to find gaps of
a desired minimum size in a small amount of time.

The algorithm requires a predefined bounding-box b that
contains both the UAV and the environment to be mapped. A
3D uniform grid GIG of information gain subdivides b, with
each cell carrying a scalar value indicating the information
gain achievable by scanning it. After the collider-cloud C
has been populated with an initial, downsampled set of NC

points (c ∈ C) from the onboard laser scanner, gaps are
detected by using a particle system which simulates pouring
water in the form of NP particles (p ∈ P) over C (see fig.
2(b)). We can postulate that whenever a p ∈ P first collides
with a c ∈ C and later arrives at b’s bottom plane, it has
successfully passed through a gap in C. The algorithm stores
the position Pcol of every particle p’s last collision with C.
Whenever a particle p reaches the bounding box’s bottom
plane, Pcol is looked up, and, if present, the information gain
value of GIG’s cell containing pcol is increased. Leaving
reachability concerns aside, cells of GIG in which many
particles slide through gaps in the point cloud intuitively
represent possible waypoints. Even though being designed
for application on a UAV, the implementation can be applied
to point clouds captured by any platform.

This algorithm has previously been implemented in a
similar form using the Bullet physics library: the point cloud
was managed using a fast dynamic bounding volume tree
based on axis aligned bounding boxes for the broadphase
collision detection. While the implementation proved to be a
working concept, it turned out to be too slow to handle the
number of collisions necessary for rapid detection of small
gaps. Thus, the algorithm was ported to CUDA running on
a graphics card.

A. Implementation on the GPU

To simulate NP particles being poured over a point cloud
of NC points, the algorithm requires multiple data structures
to be allocated in the graphics card’s memory. The basic
structures are depicted in fig. 3.

Idx Cpos Ppos Pvel Pcol GIG

0 xyzw xyzw xyzw xyzw 0
1 xyzw xyzw xyzw xyzw 0
2 xyzw xyzw xyzw xyzw 0
3 xyzw xyzw xyzw xyzw 0

.

Fig. 3. Four vectors of float4 are allocated, storing NC collider positions
Cpos as well as NP particle positions Ppos, particle velocities Pvel and
particle collision-positions Pcol in GPU memory. Also, memory for NGIG

scalar cell-values of a grid GIG of information gain is allocated.

To speed up collision detection, further data-parallel prim-
itives have been utilized: as a spatial decomposition tech-
nique, two spatial hash tables (see fig. 4) using a common
uniform grid GSHT (the subscript SHT denotes “spatial
hash table”) with NGSHT

= GSHTx ∗GSHTy ∗GSHTz cells

1057

(a) (b) (c)

(d) (e) (f)

Fig. 2. Overview of the process: a) shows predefined bounding box b and the initial point cloud from the onboard laser scanner. b) shows 16k particles
p ∈ P in gray being poured over downsampled cloud of colliders c ∈ C in blue. c) depicts falling particles p ∈ P that have collided with any c ∈ C in
red, others remain gray. d-f) overlay a visualization of GIG over sparse and dense point clouds, showing cells with high information gain in red.

enable efficient access to both particles P and colliders C. In
the following paragraphs, we describe only the spatial hash
table storing the particles, since the second table storing the
colliders is organized in the same fashion.

Fig. 4. Particles p ∈ P (shown in gray) and colliders c ∈ C (i.e. points
from downsampled point cloud, blue) located in cells of a uniform grid
(showing a two-dimensional grid for clarity). Cells are labeled using their
hash values, while particles and colliders are labeled with their index in
Ppos and Cpos, respectively.

The SHT requires two vectors Pindex and Pcellhash,
associating the particle’s index in Ppos with the hash of
GSHT ’s cell containing it. This is shown in fig. 5.

In order to quickly find all particles within a given grid

Particle Particle
CellHash Index

Index (Pcellhash) (Pindex)
0 0 6

N
P

1 4 9
2 4 2
3 5 1
4 7 3

Fig. 5. The resulting spatial hash table for particles contains NP entries
and is sorted according to cell hash. This data is used to build the cell
lookup table presented in fig. 6

cell during the following collision stage, the particle vectors
shown in fig. 3 are sorted according to the hash value of their
containing cell in GSHT . Afterwards, a vector CellStart of
NGSHT

integers is allocated, where CellStart[h] stores the
index of the first particle in Ppos that is contained in the grid
cell with hash h. If the cell does not contain any particles, its
value is set to UINTmax. In analogous fashion, CellStop
is allocated, and CellStop[h] stores the index of the last
particle in Ppos that is contained in the grid cell with hash
h. An example is shown in fig. 6.

B. Algorithm

Using these structures, a single iteration of the particle
simulation is processed as described in Algorithm 1:

To build the spatial hash table, NP threads write their
threadId into Pindex[threadId] and the hash of the cell con-

1058

Algorithm 1 Massively parallel test for watertightness of C
1: // Build spatial hash table for particles
2: for each core i < NP do in parallel
3: Pindex[i]← i
4: Pcellhash[i]← GETCELLHASH(GSHT , Ppos[i])
5: end for
6: RADIXSORTKEYVALUE(Pcellhash, Pindex)
7:
8: // Build cell lookup table for particles
9: allocate sharedHash[NP]

10: for each core i < NP do in parallel
11: sharedHash[i + 1]← Pindex[i]
12: SYNCHRONIZETHREADS()
13: if sharedHash[i] 6= sharedHash[i− 1] then
14: PcellStart[Pcellhash[i]]← i
15: if i > 0 then
16: PcellEnd[sharedHash[i + 0]]← i
17: end if
18: end if
19: end for
20: // Repeat lines 2–19 for colliders SHT and cell
21: // lookup table if collider cloud C changed
22: // collide particles
23: for each core i < NP do in parallel
24: force← (0, 0, 0)
25: cellHashes← GETNEIGHBORHASHES(Ppos[i])
26: for each h ∈ cellHashes do
27: // collide p against colliders
28: for j ← CcellStart[h], CcellEnd[h] do
29: force += COLLIDEDEM(Ppos[i], Cpos[j])
30: end for
31: // save particle pos in case of collider-collision
32: if force 6= (0, 0, 0) then
33: Pcolpos[i]← Ppos[i]
34: end if
35:
36: // collide p against other particles
37: for j ← PcellStart[h], PcellEnd[h] do
38: force += COLLIDEDEM(Ppos[i], Ppos[j])
39: end for
40: Pvel[i]← (force + Pvel[i])
41: end for
42: end for
43: // Integrate motion
44: for each core i < NP do in parallel
45: Pvel[i]← damping ∗ (Pvel[i] + (g ∗∆t));
46: Pvel[i]← COLLIDEWITHBOUNDINGBOX(Ppos[i])
47: Ppos[i]← Ppos[i] + (Pvel[i] ∗∆t)
48: if Ppos[i].y < b.min.y then
49: Ppos[i].y ← b.max.y
50: if Pcol[i] 6= (0, 0, 0) then
51: GIG[GETCELLHASH(Pcol[i])]+=1
52: Pcol[i]← (0, 0, 0)
53: end if
54: end if
55: end for

Cell PindexStart PindexEnd
Hash (CellStart) (CellStop)

0 0 0

N
G

S
H

T

1 UINTmax *
2 UINTmax *
3 UINTmax *
4 1 2
5 3 3
6 UINTmax *
7 4 4
8 UINTmax *

Fig. 6. The cell lookup table: for each cell’s hash value, CellStart
and CellStop store the beginning and end indices of contained particles
in Pindex. UINTmax in CellStart denotes empty cells, while * in
CellStop denotes an undefined value.

taining Ppos[threadId] into Pcellhash[threadId] in lines 2-
5. Afterwards, both vectors are sorted according to Pcellhash

using a parallel radix sort.
The cell lookup table is populated in lines 9-19: one thread

per particle reads Pcellhash[threadId] into the temporary
cellHash[threadId], located in the given thread-block’s
shared memory space. In this way, each cell hash is fetched
from global memory only once. After synchronization of
all threads in the warp (ensuring that all hashes have been
loaded), they are compared against the cell-hash of the previ-
ous particle in cellHash[threadId−1]. Because Pcellhash is
sorted, a failed comparison means that the previous particle is
located in a different cell, allowing CellStart and CellStop
to be populated.

To detect and process collisions, NP threads fetch
Ppos[threadId] and compute the hash value of GSHT ’s
respective cell. They then iterate through its own and all
33 − 1 = 26 neighboring cells in the grids of the SHTs for
both other particles and colliders (lines 23-42). To ensure that
particles in non-neighboring cells cannot collide, their diam-
eter must be less than the grid-cell’s smallest side. For every
cell visited, CellStart and CellStop are used to quickly
access the indices of contained particles. When collisions
occur, Pvel[threadId] is updated using forces computed by
the discrete elements method and Ppos[threadId] is copied
to Pcol[threadId] (line 33), allowing this particle’s last
collision to be retrieved when it reaches the bounding box’s
bottom plane in the next step.

The particle-motion is integrated by launching NP threads:
each kernel first updates Pvel[threadId] according to a
given timestep t, gravity g ∈ R3 and a global damping
value. It also collides Ppos[threadId] against the inner sides
of b, confining the particle to the bounding box. Then,
Ppos[threadId] is updated according to Pvel[threadId] and
t and used to check whether Ppos[threadId] has reached b’s
bottom plane. If so, that particle’s last collision is looked up
from Pcol[threadId] and is, if not null, used to increment
the information gain of GIG’s cell containing it in line 51.

After multiple iterations, GIG’s cells are sorted in order
of decreasing information gain values, and their respective

1059

positions in R3 are copied into the CPUs memory space.
After close waypoints are merged, they are passed to the
path planner, which will try to steer the UAV as close to the
given goal configurations as possible.

V. OPTIMIZATION

For optimization, a locality preserving hashing function
is used to assign hash values to GSHT ’s cells. Prior to
collision detection, particle and collider positions are sorted
according to the hash values of the cells containing them.
This is not only a prerequisite for populating CellStart
and CellStop, it also increases the probability of fetching
positions of other particles in the same and neighboring
grid cells from neighboring memory locations, maximizing
the memory bandwidth utilization by using coalesced access
patterns. Pre-sorting both particles and colliders also best
leverages the L2 caches for global memory access that
emerged with CUDA compute capability 2.0, as particle and
collider positions will already be cached when neighboring
threads need to fetch their positions in order to execute
collision tests against them.

To reduce the amount of memory and the number of
collision-test required, point cloud C is downsampled from
the original, dense point cloud by removing points that have
neighbors closer than a distance d. In theory, as long as
d < 2r, particles p ∈ P with a radius r will be unable
to fall through gaps that appeared in C in the process of
sparsing. In practice, as the simulation is performed using
discrete timesteps, d should be chosen with a safety margin
to avoid fast-falling spheres to pass through C due to coarse
timesteps.

To render particle and collider positions efficiently, they
are stored in OpenGL vertex buffer objects. During simula-
tion, they are mapped into CUDA address space, avoiding
copies between interleaving CUDA and OpenGL stages.

VI. RESULTS

The implementation of [10] was tested on an Intel Xeon
E3-1245 CPU clocked at 3.30 GHz. It is an unoptimized,
single-threaded version which delegates collision detection
and handling to the Bullet Physics library. Afterwards, it
queries for collisions that ocurred during processing in order
to manage a structure similar to Pcol. Activating visualization
causes further slowdowns, as usage of OpenGL immediate
mode requires that all geometry is re-uploaded to the device
for every frame. As shown in fig. 8, testing a point cloud
with 10k points for watertightness using 1k to 64k particles
required between 0.7 and 44 seconds for each simulation
step.

The GPU implementation was tested on a NVIDIA Quadro
2000 graphics card with 192 CUDA fermi-cores clocked at
625 MHz as well as a NVIDIA GTX 670 card, providing
1344 CUDA kepler-cores running at a clock of 980 MHz. It
is up to three orders of magnitude faster, taking between 2
and 12 ms. This is because integration of motion, collision
detection and handling as well as pointcloud visualization

using OpenGL core profile are very suitable for processing
on Single Instruction Multiple Data (SIMD) architectures.

Because the proposed algorithm causes the information
gain in GIG’s cells to steadily increase during simulation,
termination criteria are non-apparent: a tradeoff must be
found between short runtimes for rapid generation of results
and longer runtimes that allow a better sampling of the point
cloud’s gaps. Figure 7 presents the normalized information
gain values of the point cloud depicted in fig. 2(f) at different
steps into the particle simulation. While a visible difference
exists between the information gain values at 400 and 700
steps into the simulation (a) and b)), the normalized infor-
mation gain remains almost constant during the following
simulation steps (between b) and c)). Thus, for the targeted
application on UAVs, using a bounding box b with a size of
643m, 16k particles (p ∈ P) with a radius of 0.25m and
64k colliders (c ∈ C) allows generation of multiple NBVs
in less than 3s using a NVIDIA GTX 670 graphics card.

 1

 10

 100

 1000

 10000

 100000

1k 2k 4k 8k 16k 32k 64k 128k 256k

S
i
m
u
l
a
t
i
o
n

s
t
e
p

d
u
r
a
t
i
o
n

(
m
s
)

Number of Particles

Intel Xeon E3-1245 (single core)
NVIDIA Quadro 2000

NVIDIA GTX 670

Fig. 8. This graph shows the maximum time required for a single timestep
of the simulation containing 16k colliders against the number of particles.
Visualization was disabled in both tests. Note the logarithmic scale of the
ordinate axis. The runtime of the proof-of-concept implementation for the
CPU is up to three orders of magnitude longer than those of the GPU-based
implementations.

The amount of memory required on the graphics card is
determined by the number of points in the collider cloud NC ,
the number of particles NP , the number of cells NGSHT

in
both spatial hash tables as well as the number of cells for
the global grid of information gain NGIG

. The respective
data structures and their size are detailed in Table I. As an
example, for generating waypoints for a point cloud with 64k
points using 128k particles, we use two spatial hash tables
for particles and colliders with NGSHT

= 128 ∗ 64 ∗ 128
cells each, while the computed information gain is stored in
a grid with NGIG

= 256 ∗ 32 ∗ 256 cells. This results in a
total memory requirement of only 26.5 Mb.

VII. OUTLOOK

The authors plan to further improve the presented ap-
proach in terms of efficiency. Because most parts of the
implementation are memory-bound, the impact of using half-
floats (i.e. binary16 in IEEE 754 parlance) for at least the

1060

(a) (b) (c)

Fig. 7. Grid of information gain with 256 ∗ 32 ∗ 256 cells, projected as in fig. 2(f). Maximum information gain is shown normalized using a heat map
visualization a) after 400, b) after 700 and c) after 1000 simulation steps.

TABLE I
MEMORY ALLOCATED IN GPU MEMORY SPACE

Data Type Size Count
Pvel float4 16 bytes NP

Pcol float4 16 bytes NP

Ppos float4 16 bytes NP

Pindex uint 4 bytes NP

Pcellhash uint 4 bytes NP

CellStartP uint 4 bytes NGSHT

CellStopP uint 4 bytes NGSHT

Cpos float4 16 bytes NC

Cindex uint 4 bytes NC

Ccellhash uint 4 bytes NC

CellStartC uint 4 bytes NGSHT

CellStopC uint 4 bytes NGSHT

GIG char 1 byte NGIG

collider positions will be researched, as it allows doubling
both capacity and memory bandwidth. This data format has
been supported by OpenGL since version 3.0. CUDA sup-
ports half floats merely as a storage format, but conversion
to single-precision floats requires only a single instruction.
Especially when applied to outdoor scenarios, a precision
in the centimeter range for the colliders c ∈ C is deemed
sufficient for gap detection. The particle’s collision positions
will also be converted to half-floats, but this is expected to
have less effect, since updates to these values are compar-
atively rare. Whether particle positions and velocities can
also be stored with lower precision needs to be investigated,
as slight changes in the particle system’s parameters often
translate to large changes in the particles’ behavior.

To optimize memory access patterns, it is planned to
compare performance to other cell-hashing functions that
are expected to provide better locality than the currently
used simple serial hashing function (shown in fig. 4). Tests
are currently being done with Hilbert- and Z-Order curves
(Morton code).

We have successfully developed a planar surface based
outdoor mapping system in our previous work [11], which
is fast, accurate and robust compared to state-of-the-art algo-

rithms, but not fully autonomous, because a human operator
is required for viewpoint planning. It is therefore interesting
to embed this NBV planning algorithm in the system for
autonomous exploration tasks. Especially for application on
UAVs, extensions allowing anticipation of collisions between
the robot and the fused point cloud are currently being
researched. Whenever C is updated, one thread per cell
can be employed to check potentially colliding points in
every grid cell that is traversed by the planned trajectory
within milliseconds. If at least one thread detects a potential
collision, the path needs to be replanned.

REFERENCES

[1] C. Connolly, “The determination of next best views,” in IEEE Interna-
tional Conference on Robotics and Automation, vol. 2, pp. 432–435,
1985.

[2] J. O’Rourke, Art Gallery Theorems and Algorithms. New York, NY:
Oxford University Press, 1987.

[3] W. R. Scott, G. Roth, and J.-F. Rivest, “View planning for automated
three-dimensional object reconstruction and inspection,” ACM Com-
put. Surv., vol. 35, no. 1, pp. 64–96, 2003.

[4] C. Potthast and G. S. Sukhatme, “A probabilistic Framework for
Next Best View Estimation in a Cluttered Environment.” Available
at: http://robotics.usc.edu/ potthast/vua2012.pdf, retrieved on January
13th, 2013, Sept. 2011.

[5] M. Bryson and S. Sukkarieh, “Active airborne localisation and ex-
ploration in unknown environments using inertial SLAM,” in IEEE
Aerospace Conference, p. 13 pp., 2006.

[6] P. Blaer and P. K. Allen, “Data acquisition and view planning for 3-D
modeling tasks,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems, (Marina, San Diego, California, USA), pp. 417–
422, Oct. 2007.

[7] B. Yamauchi, “Frontier-Based Exploration Using Multiple Robots.,”
in Agents, pp. 47–53, 1998.

[8] R. Shade and P. Newman, “Choosing where to go: Complete 3D ex-
ploration with stereo.,” in IEEE International Conference on Robotics
and Automation, (Shanghai, China), pp. 2806–2811, IEEE, May 2011.

[9] A. Mobarhani, S. Nazari, A. H. Tamjidi, and H. Taghirad, “Histogram
based frontier exploration,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems, (San Francisco, CA, USA), pp. 1128–
1133, Sept. 2011.

[10] B. Adler, J. Xiao, and J. Zhang, “Towards Autonomous Airborne
Mapping of Urban Environments,” in 2012 IEEE Conference on
Multisensor Fusion and Integration for Intelligent Systems (MFI),
pp. 77–82, Sept. 2012.

[11] J. Xiao, B. Adler, H. Zhang, and J. Zhang, “Planar Segments Based
3D Point Cloud Registration in Outdoor Environments,” Journal of
Field Robotics, vol. 30, no. 4, pp. 552–582, 2013.

1061

