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Abstract— In this paper, we propose a new insertion plan
for steerable flexible needles with which we can target multiple
locations in the plane with a single entry point (i.e. port). The
method is developed based on the observation that multiple
locations can be reached by a flexible needle through insertion,
partial retraction, rotation, and re-insertion of the needle. We
show that in 2D space this problem can be solved using a
geometric relationship between multiple tangent circles. Specif-
ically we find a needle insertion point, a corresponding insertion
direction and lengths for insertion and retraction with which
we can generate the optimal needle trajectory that reaches two
or three planar targets with the minimum tissue damage. This
minimization problem is solved using exhaustive search of a
cost function on the 1D bounded domain. We build a prototype
of a needle insertion system and develop C#-based software to
compute the optimal needle paths and perform the planned
insertion as an open-loop controller. Finally, actual insertion
examples are presented.

I. INTRODUCTION

A long and flexible needle with a bevel tip has been a very
interesting research topic for the recent years. Compared to
the stiff short needle, this new type of medical needle shows
an interesting potential that the user can generate a curved
shape of needle trajectory and more importantly, the needle
trajectory can be steered by two control inputs: pushing along
and rotating around the needle axis. This steerability is hard
to achieve with traditional stiff needles.

From the engineering point of view, research on flexible
needles includes modeling of kinematics and mechanics,
path planning, control, and image-guided needle insertion.
Webster III et al. [21] developed a nonholonomic kinematic
model for insertion of flexible bevel-tip needles. This model
became one of the most popular ones in the research on
flexible needles and was adopted in many works (e.g. see [5],
[6], [10], [14], [15], [22]). Alterovitz et al. [1] developed a
2D planner for insertion of flexible needles. The needle path
which reaches a planar target with the minimized insertion
length and simultaneously avoids the obstacles was obtained.
Duindam et al. [6] used geometric inverse kinematics to
generate a needle path. Park et al. [15] applied the path-
of-probability method based on the stochastic model to the
needle path generation. Patil and Alterovitz [16] developed
a fast planning algorithm for insertion of the flexible needle
in 3D environment with obstacles. For control, the LQG
control method was applied to flexible needles in [20], where
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Fig. 1. Illustration of liver biopsy with a flexible needle. The curvature
of the needle trajectory is not enough to achieve highly complicated needle
path.

the motion uncertainty and sensor types were considered,
and optimal placement of sensors were obtained. In addition
the arbitrary curvature of the needle trajectory was obtained
by duty-cycled spinning. Hauser et al. [8] developed a
feedback controller for flexible needles in 3D deformable
tissue. Ko et al. [11] developed a needle steering method
in 2D with a programmable bevel which enables various
curvature of needle trajectories. The fluoroscopic guidance
and the ultrasound guidance were shown to be a promising
approach for insertion of flexible needles in [7] and [13],
respectively. Based on the unicycle model in [21], the needle
trajectory can be assumed to be a circular arc when the
needle is inserted with pure pushing force along the needle.
Even though the simultaneous inputs (i.e. pushing while
rotating) can generate complicated needle trajectories, in this
paper we split the two inputs to reduce the complexity of the
problem as the planar case in [6]. In other words, at a given
moment either pushing force or rotation torque is applied at
the base of the needle. Therefore, the needle trajectory is a
combination of multiple circular arcs which are tangent to
each other.

We notice that many path planning methods for flexible
needles are based on the assumption that the insertion depth
is quite large compared to the radius of curvature of the
needle trajectory (e.g. see the simulation results in [5]).
Therefore the methods will work with needle trajectories
of large curvature (equivalently small radius of curvature),
which is possible only in a special situation such as pre-bent
needles. Although the trajectory by the pre-bent needle shows
small radius of curvature (6.1 cm in [17]), the discontinuity
in the trajectory may occur. The curvature of the trajectory
of a flexible needle which is the same type of needle used in
[21] was estimated as κ = 0.0062 mm−1 in [14], which
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is equivalent to the radius of curvature R = 161.3 mm.
Realizing that the potential application of the flexible needle
includes biopsy and drug delivery, we can assume that the
depth of needle insertion is limited by the size of a human
body. For example, for the liver biopsy, the needle is inserted
from the right side of the abdomen and reaches the inside of
the liver as shown in Fig. 1. Therefore, the needle insertion
depth does not exceed the depth of the liver. Comparing the
radius of curvature of the needle trajectory and the practical
insertion depth, we can conclude that very complicated
trajectory obtained by a large number of turns of the flexible
needle is not practical for needle trajectories whose radius of
curvature is large. Furthermore, the short and frequent turns
leave much tissue damage and cause the positioning errors.

The task of sequentially reaching multiple locations is a
quite traditional problem in robotics [19]. However, while
many planning methods for flexible needle insertion from a
single fixed point to a single target have been reported, only a
few references deal with the multiple-target problem. In [18],
it was observed that the flexible needle could reach multiple
targets from a single port by inserting, partially retracting,
rotating and re-inserting. In [22], the RRT method was used
to plan the insertion of multiple needles to multiple targets,
but a bounded entry region, not a single port, was considered.
Lobaton et al. [12] developed a sampling-based method to
generate curvature-constrained paths which can be used for
the flexible needle reaching multiple targets.

In our work, we develop an insertion plan for the flexible
needle with multiple targets and a single entry point in 2D
environment. Because the curvature of the needle trajectory
is not large compared to the insertion depth as aforemen-
tioned, we assume that the needle trajectory consists of only
a few tangent circular arcs. Instead, we allow for selection
of the location of the single port for the needle. The optimal
choice of the single port location will result in the optimal
needle path that reaches multiple targets from the single port
and minimizes tissue damage. Our approach is also tested
with the experimental setup. The potential application of the
proposed approach includes percutaneous biopsy of multiple
locations and prostate brachytherapy.

II. PROBLEM STATEMENT

In 2D, two target points can be reached by the flexible
needle (see Figure 1 in [18]). The needle hits the first target
along the circular arc. Then the needle is retracted up to a
special turning point. Next the needle is rotated around the
needle axis by 180◦ at the base. The subsequent insertion
will generate a new direction of trajectory which reaches
the second target. The tissue damage can be quantified by
the length of the needle trajectory inside the tissue, since
the tissue damage mainly occurs when the needle travels
forward, and the tissue damage is negligible when the needle
is retracted. The needle rotation (or turn) can damage the
issue, but this is not included in our damage estimation
because in our method the number of turns is respectively
fixed at 1 and 2 for two targets and three targets.

Our first task is to derive the equation for the cost function
which measures the tissue damage when the aforementioned
insertion procedure is applied. This cost function is defined
as a function of the port location (i.e. initial insertion
location). With the input port location, the cost function will
compute the length of the needle trajectory after the needle
trajectory from the input location to the multiple targets is
geometrically obtained. Again, the multiple targets are hit
by the needle through insertion, retraction, rotation (or turn)
and re-insertion.

We will find the cost functions for a two-target case and a
three-target case. Then we will find the optimal port location
numerically, and then find the insertion parameters such as
the insertion directions and the insertion/retraction lengths.
We will perform the actual needle insertion using hardware
setup for needle insertion and software that we made for easy
application of the planning method.

The proposed problem in this paper can be understood as
a Steiner tree problem [9] where the shortest interconnect is
sought for a given set of objects. It is worthwhile to note
that most versions of the Steiner tree problem are provably
NP-complete. Along this line, the work in [12] may be
applied to our problem. However, the major difference is that
in our problem the starting location for the needle insertion is
sought along with the optimal interconnect. In addition, we
will solve this problem with consideration of the practical
issues in the needle insertion such as the limitation of the
trajectory curvature and the potential positioning errors and
tissue damage by too many turns. Finally, our approach will
be assessed with the needle insertion experiments.

III. GEOMETRY PROBLEMS AND COST FUNCTION

In this section, we derive the equations for the cost
functions which quantify the tissue damage for the two-
target case and the three-target case. In addition, we find the
equations for the insertion direction and lengths of forward
insertion and retraction of the needle for hitting multiple
targets.

A. Two-target problem

Fig. 2 shows the geometry of the case where the two target
points, P1 = (x1, y1) and P2 = (x2, y2), are reached by the
needle in this order. The first trajectory from the insertion
point Pin = (x, 0) to the first target follows a circle whose
center and the radius are O1 and r, respectively. The insertion
angle, θ should be determined so that the needle can reach P1

following a circular arc. Next the needle is retracted up to the
turning point, T1 and then it is turned by 180◦. The needle
is inserted again from T1 and it reaches the second target
point P2. The cost function is the tissue damage estimated
by the length of the needle trajectory:

f2(x) = l1 + l2.

The subscript in f2(x) denotes that this cost function is
defined in the case of two target points.

Now we will derive the equations for the two angles ψ1

and ψ2 shown in Fig. 2. The distances of the first and second
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Fig. 2. The two tangent circular arcs show the needle trajectory that reaches
two targets.

target points from the insertion point Pin are written as

k =
√

(x1 − x)2 + y21 and m =
√
(x2 − x)2 + y22 ,

respectively. The angles α and β in Fig. 2 are expressed
using the lengths as

α = arccos

(
k

2r

)
and β = arccos

(
m2 + k2 − p212

2mk

)
(1)

where p12 is the distance between the two target points. The
distance between the center of the first circle, O1 and the
second target, P2 can be written as

a =
√
r2 +m2 − 2rm cos γ

where γ = α + β. Consequently the angles ψ1 and ψ2 are
written as

ψ1 = arccos

(
2r2 − k2

2r2

)
and ψ2 = arccos

(
5r2 − a2

4r2

)
.

(2)
Therefore the cost function can be rewritten as

f2(x) = l1 + l2 = r(ψ1 + ψ2) (3)

The benefit of this geometric approach is that the coordi-
nates of the centers of the circles and the turning point do
not have to be specified. For faster numerical minimization
of the cost function, it is good to have the cost function (3)
without complicated subroutines that computes the centers
and turning points.

Depending on the locations of targets, the solution may not
exist. For example, if P1 is more than 2r away from Pin or
P2 is more than 3r away from O1, then there is no solution
geometrically. These cases can be automatically detected
during the solution process shown above. Specifically the
inputs for arccos(x) should be bounded as −1 ≤ x ≤ 1. If
the function inputs in (1) and (2) are outside of this bound,
it means that the solution does not exist. Therefore we can
filter out the no-solution cases.
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Fig. 3. The three tangent circular arcs show the needle trajectory that
reaches three targets.

B. Three-target problem

We can extend the two-target problem to the three-target
problem assuming that the targets and the insertion point
are on the same plane. Even though this assumption does
not reflect the general situation where three targets and a
port are not on the plane, this approach is meaningful for
multiple reasons.

First, for some potential applications such as prostate
brachytherapy [4] there are many targets and we can group
three targets so that the aforementioned assumption is satis-
fied. This approach can reduce the complexity of the problem
by replacing the full 3D problem to the planar problem. A
similar (but not the same) approach was introduced in [3].
The authors take subgroups of targets and a straight needle
reaches the targets with minimum error. Second, it is worth to
experimentally test the feasibility of the proposed approach
for three targets. For a set of three targets the optimal port
on the same plane will be determined and the results will
be used in the needle insertion test in Section V. If the
performance of the actual insertion for the three targets is
verified with our optimization approach, this will open the
possibility that the solution of the three-target problem can be
improved in the future without a doubt about the feasibility.

Let us assume that the third target is reached as shown in
Fig. 3. After the needle reaches P2, it is retracted up to the
turning point, T2, turned by 180◦ and then inserted again to
hit P3. The cost function for this case is written as

f3(x) = l1 + l2 + l3,

where l1, l2 and l3 are arc lengths as shown in Fig. 3. The
main task is to quantify l3, because l1 and l2 were identified
in the previous subsection.

The distance between Pin and P3 is written as

k′ =
√

(x3 − x)2 + y23 .

In the triangle ∆P2PinP3, the angle β′ ≡ ∠P2PinP3 can be
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expressed as

β′ = arccos

(
k′2 +m2 − p223

2k′m

)
,

where p23 is the distance between P2 and P3. Since the
angle ∠O1PinP2 is given as γ = α + β as shown in the
previous subsection, we have α′ ≡ ∠O1PinP3 = γ − β′. In
∆O1PinP3, we can compute the length,

a′ ≡ O1P3 =
√
r2 + k′2 − 2rk′ cosα′,

with which we can compute the angle:

δ ≡ ∠P3O1O2 = η1 + η2

where η1 ≡ ∠P3O1P2 and η2 ≡ ∠P2O1O2. The η1 and η2
are written as

η1 = arccos

(
a′

2
+ a2 − p223
2a′a

)

η2 = arccos

(
4r2 + a2 − r2

4ra

)
.

Now let us consider ∆O1O2P3. The length in the triangle
can be written as

ϵ ≡ O2P3 =
√
4r2 + a′2 − 4ra′ cos(δ).

Therefore the angle ∠O2O3P3 can be computed as

ψ3 = ∠O2O3P3 = arccos

(
5r2 − ϵ2

4r2

)
.

Finally the cost function is given as

f3(x) = l1 + l2 + l3 = r(ψ1 + ψ2 + ψ3) (4)

Like the two-target problem, the function inputs for
arccos(x) can be used to filter out the no-solution cases.

C. Insertion direction and retraction lengths

Even though the insertion direction (angle θ) and retraction
lengths (b1, b2) in Fig. 2 are not used when the cost function
is derived, they should be found after the cost function
is minimized because they will be used for actual needle
insertion. For a two-target problem, the needle is inserted at
the optimal insertion point (Pin) with the insertion direction
(θ). When the needle inserted forward with the insertion
length l1, the needle hits the first target. Then it is retraced
by b1 and rotated by 180◦ at the base. Finally it is reinserted
by l2 to reach the second target.

The coordinates of the point O1 = (xO1, yO1) can be
determined using the two points, P1 and Pin. Because both
points are on a same circle around the center coordinates,
O1, we can write two equations with respect to the circle :{

(x1 − xO1)
2 + (y1 − yO1)

2 = r2

(x− xO1)
2 + (yO1)

2 = r2.

Therefore, there are two possible coordinates of the O1,
which is

O1 =

[
x+ x1 ± y1v

2
,
y1 ± (x− x1)v

2

]
,

where v is written as

v =

√
4r2

(x− x1)2 + y21
− 1.

One coordinates of a center can be decided by the second
target. Accordingly, the angle (θ) can be obtained by

θ =
π

2
+ arccos

(
x− xO1

r

)
. (5)

In the two target case (P1 → P2), the turning point(T1) can
be calculated by finding the angle ζ1 ≡ ∠O1P2 which is the
angle of the vector

−−−→
O1P2 from x-axis, and ζ2 ≡ ∠P2O1O2:

ζ1 = arctan

(
y2 − yO1

x2 − xO1

)
and ζ2 = arccos

(
a2 + 3r2

4ar

)
.

The coordinates of the turning point (T1) is computed as

T1 = [xO1 + r cos(ζ1 − ζ2), yO1 + r sin(ζ1 − ζ2)].

As a result, the retraction length (b1) can be derived using
ρ1 ≡ ∠P1O1T1 as

b1 = rρ1 = 2r arcsin

(
P1T1
2r

)
. (6)

where P1T1 is the distance between P1 and T1.
In the three target case (P1 → P2 → P3), there will be

two retraction lengths, b1 and b2. The first retraction length
(b1) can be obtained by the same process for b1 in the two-
target problem. Likewise the second retraction length (b2)
can be similarly computed by calculating the second turning
point(T2). Two angles, ξ1 and ξ2, mean ∠P3O2 which is
the angle of the vector

−−−→
P3O2 from x-axis and ∠P3O2O3

respectively, and can be written as

ξ1 = arctan

(
yO2 − y3
xO2 − x3

)
and ξ2 = arccos

(
ϵ2 + 3r2

4rϵ

)
.

The second turning point (T2) can be expressed as

T2 = [xO2 − r cos(ξ1 − ξ2), yO2 + r sin(ξ1 − ξ2)].

The coordinates of O2(xO2 , yO2) can be obtained by the
similar process to the O1. The retraction length (b2) can be
derived using ρ2 ≡ ∠P2O2T2

b2 = rρ2 = 2r sin

(
P2T2
2r

)
(7)

where P2T2 is the distance between P2 and T2.
It is important to note that the insertion direction (θ)

and the retraction lengths (b1 and b2) are obtained after the
cost function is minimized. Therefore the calculation in this
subsection is not repeated in the minimization.

IV. EXPERIMENTAL SETUP AND SOFTWARE
DEVELOPMENT

For the systematic experiment where we can apply the
needle insertion plan developed in this paper, we set up a pro-
totype of needle insertion system and build software which
allows users to pick the targets, automatically computes the
needle insertion plan and executes the actual needle insertion.
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Fig. 4. The hardware setup for needle insertion

A. Hardware

The needle insertion system we set up for experiment is
shown in Fig. 4. The system is composed of an operation
part and a detection part. The operation part has two stepper
motors, which insert and rotate the flexible needle precisely.
The stepper motors are operated by a PC via RS-485 and can
be rotated by 0.007◦ for each micro step. One stepper motor
attached to the end of a linear motion stage inserts the needle
by the desired distance and the other one located on the top
of the linear motion stage rotates the needle shaft. A Nitinol
wire used as a flexible needle has a 0.71 mm diameter and
bevel angle of roughly 45◦. There are three straight rails at
the bottom of the linear motion stage and a rotation platform,
which supports the needle end so that the user can adjust the
insertion point and angle manually by aligning the needle
with the guide line from the software. We place the linear
motion stage at the top of the two straight rails using rotation
clamps which allow the stage to slide when the user changes
the insertion point and direction. The rotation platform allows
the user to precisely set the angle of needle insertion at the
resolution of 20 minutes using vernier scale as shown in
Fig. 5. In order to prevent unexpected bending during the
insertion, a cover material shaped like telescoping support
sheath covers the Nitinol wire. In addition, a spring of 6 mm
length is equipped between the rotatable needle end and the
straight telescoping support sheath as shown in Fig. 5 to
prevent the needle bucking and compensate the misalignment
between the rotatable end and the straight telescoping support
sheath. We make the artificial tissue by mixing clear gelatin
sheets with sugar powder in warm water. The detection part
consists of a web camera, which can capture 640 × 480
pixel images at each frame. This web camera is mounted
above the artificial tissue about 355.6 mm high position
perpendicularly to get the x, y coordinates of needle tip and
trajectory effectively. We assume that the top surface of the
artificial tissue is the horizontal plane.

B. Software

The insertion procedure is accomplished by motor control
software programmed by C# language with visual studio
2010 from Microsoft, in which the image processing is done

Fig. 5. The flexible needle cover and precision rotation platform

Fig. 6. The block diagram of software operation

by both aforge.NET 2.2.4.1 and EMGUCV 2.4 libraries.
The software is composed of several subparts to operate the
needle insertion system: the communication part to commu-
nicate among PC and stepper motors by the results of the
insertion plan, the needle control part for the user to handle
both stepper motors manually, the vision system part to detect
needle tip, select target points, and watch the optimal needle
trajectory, and the operation part to calculate the results of
the insertion plan. The software operates the needle insertion
system by following the procedures shown in Fig. 6. All
parameters the software uses are in pixel unit until the final
insertion step, in which the final parameters are multiplied
by a conversion factor to get the parameters in mm unit.
For the constructed hardware system, 1 pixel is converted
to 0.4265 mm. Although most processes run automatically
by the needle insertion software, the needle setup at the
optimal location and direction is done manually. We leave
the automation of this process as future work. Before starting
each experiment, the software gets the radius of curvature
as a preparation step because a radius of curvature can
be varied depending on the condition of artificial tissue
and environment temperature. The software selects multiple
points on the arc of needle trajectory to get the radius of
curvature after inserting the needle to a maximum distance
on the horizontal plane. In this paper, we developed a method
based on [21] in which the author introduced a unicycle
model with which the needle trajectory is a circular arc.

V. EXAMPLES OF NEEDLE INSERTION

Experiments are performed to verify the needle insertion
plan. The artificial tissue and needle are not replaced during
the experiment to maintain consistency in the data and model
parameters. We perform three experiment sets with different
target points. The target locations are shown in Table I.
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TABLE I
TARGETS AND OPTIMAL PARAMETERS FOR THE EXPERIMENTS

In the experiments, the order of targets is not fixed before
minimization. For Examples 1 and 2 in Table I, the software
compares two cases (P1 → P2 and P2 → P1) with respect to
the minimum cost and decides the target order which gives
a lower cost. Fig. 7 shows the cost function in the bounded
search domain for the insertion location. Fig. 7(a) shows the
cost functions for Example 1. The two cost function plots
for this example are corresponding to the two different target
orders (P1 → P2 and P2 → P1). The lower minimum value
is found in the continuous line which represents the cost
function when P1 is firstly targeted. Therefore, the minimizer
for this cost function becomes the optimal insertion point and
the optimal target order is automatically obtained as P1 →
P2. Fig. 7(b) shows the cost functions for Example 2. For
this case, the lower minimum value appears in the dotted
line which represents the cost function when P2 is firstly
targeted. Therefore the optimal target order is P2 → P1.
For Example 3, six possible targeting orders are searched.
Since the minimization of the cost function developed in
Section III is done very fast in a modern PC, searching the
six cases is not time-consuming. Through this search, the
optimal insertion point and the optimal targeting order are
obtained as shown in Table I.

After the insertion point is found by minimizing the
cost function, the insertion direction (θ) and the retraction
lengths (b1 and b2) are simply computed by the method in
Section III-C. Note that the needle insertion system only
needs the insertion location (Pin), the insertion angle (θ) and
the traveling lengths: forward insertion lengths (l1, l2, l3) and
retraction lengths (b1, b2). The numerical results are provided
in Table I.

The last row of the Table I shows the locations that the
needle actually reaches in the experiment. These locations
were measured by the web camera above the artificial tissue.
In comparison with the desired target points in the second
row of the Table I, the errors are 0.43 mm in minimum

Fig. 7. The costs for the two-target cases

and 2.73 mm in maximum. The source of these errors
includes the inaccurate measurement of radius of curvature
of the needle trajectory and the manual positioning of the
needle tip according to the insertion point and direction
calculated from the insertion plan. Nevertheless, it is worth
paying attention to the result that the maximum and average
errors are respectively less than 3 mm and 2 mm, because
the needle was inserted by the open-loop controller and
reached multiple targets. The potential source of error in
other insertion methods is that the methods allow many
turns of the needle as long as a path is generated. In our
method, the number of turns is limited. Specifically, the
number of turn is n − 1 where n is the number of target
points. We expect that the needle insertion based on the
proposed planning method will become more accurate with
the feedback controller which is our future research topic.
The result images of the experiments captured by the web
camera are represented in Fig. 8. For each case, we can
check the actual needle trajectory and target errors during
the insertion.

VI. CONCLUSION

A new insertion plan for flexible needles with multiple
planar targets and a single entry point was developed. We
used the consecutive insertions through insertion, partial
retraction, rotation, and re-insertion to target multiple points
with the flexible needle. The proposed planning method
finds the optimal entry point with which we can generate
the needle path which minimizes the tissue damage that
is estimated by the length of the needle path. To this
end, we defined the cost function which is a function of
the port location, and numerically solved the minimization
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Fig. 8. The examples of experiment

problem. After the minimization, we computed the insertion
parameters such as the insertion direction and the lengths for
insertion and retraction in addition to the port location.

In order to test the performance of the insertion plan, the
hardware was built for the actual needle insertion, and the
software was developed for path generation based on the
cost minimization and semi-automatic needle control. The
experiments showed that the open-loop controller based on
the result from the insertion plan could insert the needle
to target multiple points with the error less than 3 mm.
The averaged error was less than 2 mm. This small error
increased the expectation that the needle insertion based on
the proposed planner will be very accurate with the feedback
control.

Since the experimental setup used the assumption that
tissue deformation is negligible and tissue is homogenous,
the practical application of the proposed planning requires
the test with more practical assumptions and experimental
setup. However, this paper provided the significant first step
for solving the multiple-target needle insertion problem by
proposing a mathematical optimization approach and per-
forming the experimental feasibility test. This provides the
new topics for future research such as tests of flexible needle
for multiple targets with deformable and inhomogeneous
tissue as well as ex-vivo and in-vivo setup.

The paper focussed on the planar case. As an extended
effort, the authors are working on the needle insertion for
three-dimensional multiple targets. A journal publication for
the theoretical approach is in revision [2], and subsequent
experimental results are expected.
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