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Abstract— A widely used technique for constructing two
dimensional maps employing range sensors is occupancy grid
mapping assuming normal distributed sensor errors. An al-
ternative to the grid map model with its fixed grid cell size
are variable resolution grid maps, e.g. quadtrees. In this
paper, the authors propose an approach for building occupancy
quadtree maps assuming unknown but bounded sensor errors.
Therefore, they examine possible types of sensor uncertainty
when using laser rangefinders. They show that the majority
of possible types of sensor errors can be covered much better
by bounded error models than by probabilistic models. Hence,
a novel inverse sensor model has been developed that incor-
porates measurement and pose uncertainty in a mathematical
straightforward way using interval analysis. With this model,
an approach for incrementally building occupancy quadtree
maps is proposed. A first real world experiment has shown the
applicability of the approach. Moreover, the authors compare
the map with its probabilistic grid map counterpart. The
bounded error quadtree has proved to be conservative but more
reliable than the conventional probabilistic grid map.

I. INTRODUCTION

Map building is the approach of generating a map of
the environment using a mobile robot platform with error-
neous sensor data and exactly known poses of the robot.
Metric maps are, in contrast to topological ones, spatial
representations of the environment. Having each subset of
the space attributed to a value describing whether the space
is occupied, free, or something in between, the map is called
occupancy map.

If the space is divided into equally distributed grid cells,
the map model is well-known as Occupancy Grid Map.
Grid maps have been introduced by Moravec and Elfes
[1], and form a widely known map format used in up-to-
date mobile robot applications when range measurements
are employed. A major drawback of spatial representation
via equally spaced grid cells are the memory requirements,
which only depend on the size of the mapped environment
and the grid cell width, and are independent of the mapped
environment properties. Grid maps of the same size always
reserve the same amount of space, even if the entire map is
completely free, e.g.

Hierarchical data structures, e.g. applied in image pro-
cessing, allow the representation of space using tree struc-
tures [2]. The so-called Quadtrees are able to represent
two dimensional homogeneous areas with low, and areas
of interest with high resolution. They have been extended
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by Kraetzschmar et al. to Probabilistic Quadtrees for the
use in mobile robot mapping systems (Variable Resolution
Mapping) [3]. The concept of variable resolution occupancy
maps can be generalized to maps of arbitrary dimension and
tree structure [4]. The authors have proven these maps to
require much less amount of memory space in typical indoor
scenarios compared to grid maps.

Common probabilistic approaches for incremental grid
mapping assume the data of the ranging sensors affected
with gaussian noise in longitudinal and angular dimensions
[5][6]. The map update is done by applying an inverse model
of the sensor, and updating the occupancy probabilities of
all affected grid cells using Bayes filter. One shortcoming
is the lack of incorporating pose uncertainty into the sensor
model [7], when mapping becomes the problem of building a
map with known but uncertain robot poses. Moreover, most
range sensors do not exhibit gaussian noise properties in
longitudinal and angular dimensions [8][9].

An alternative approach of modelling sensor noise is
assuming unknown but bounded sensor errors [10]. We will
show that the majority of possible sources of sensor errors
can be covered much better by bounded error models than
by probabilistic models. If the errors can be assumed to
be bounded in fixed intervals, mathematical methods of
interval analysis can be applied [11]. For example, pose
uncertainty can be incorporated in a straightforward manner.
Since interval computations calculate with outer boundaries
instead of probabilities, the results are, in general, more
conservative.

Unknown but bounded sensor errors, and especially in-
terval analysis, have been successfully applied to robotics.
For example, [12] and [13] present approaches to localize
mobile robots assuming bounded error models. In [14], Jaulin
developed an offline SLAM approach for constructing a
binary occupancy map based on subpavings. To the best
of our knowledge, incremental construction of occupancy
maps with range sensors assuming bounded errors has not
been presented before. Therefore, we will investigate the
applicability of interval analysis to occupancy mapping.
Moreover, we will show a natural way of using so called
Subpavings for mapping, which will directly lead to the use
of Quadtrees in combination with interval methods. Maps
built with bounded error assumptions will, in general, be
more conservative, i.e. less precise, but more reliable in
obstacle mapping than their probabilistic equivalents.

In this paper, we will present an approach for incremen-
tally building a variable resolution occupancy map using
a bounded error sensor model, which describes the noise
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of a range sensor better than a gaussian model. Therefore,
we will propose an inverse error model for 2D laser range
finders. The approach will be capable of accommodating
pose uncertainty in a mathematical straightforward way when
calculating with known but uncertain robot poses. A first
real world experiment will show its applicability, and the
calculated map will be compared to its occupancy grid
counterpart.

The paper is structured as follows. The next section will
introduce the basics of interval analysis. Sections III and IV
will develop the sensor and map models used in the mapping
algorithm (Section V). Experimental results will be presented
in Section VI. The paper ends with a conclusion.

II. INTERVAL ANALYSIS

In this section, the basics of interval analysis will be in-
troduced. Furthermore, Subpavings and the algorithm SIVIA
will be presented. All notions and algorithms in this section
are taken from [11].

A. Basic Notions

A closed and connected subset of R is an interval

[x] = [x−, x+] = {x ∈ R|x− ≤ x ≤ x+}. (1)

The width of an interval is w([x]) = x+ − x−. A scalar
a ∈ R can be seen as point interval [a] = [a, a]. The set of all
intervals is denoted as IR. A box [x] ∈ IRn is the cartesian
product of n intervals: [x] = [x1]× [x2]× . . .× [xn]. The
width of this box is w([x]) = max1≤i≤n w([xi]).

As the image of an interval by a function is not necessarily
again an interval, the notion of inclusion function has been
introduced. The interval function [f ] : IRn → IRm for a real-
valued function f : Rn → Rm is an inclusion function for f
if f([x]) ⊂ [f ]([x]),∀[x] ∈ IRn. Basic elementary arithmetic
operations like +, −, ∗ and ÷, functions like sin, tan or exp,
and common operations on sets like ⊂, ∩ or ∪ are easily
extended to the interval domain. The interval hull operator
t calculates the convex hull of all its operands.

The notion of inclusion test is used to test, if the set of
an interval box [x] satisfies a given property. The inclusion
test t([x]) results in an interval boolean which can take on
the values 0, 1, or [0, 1], where [0, 1] means undetermined.

B. Regular Subpaving

A Subpaving is a set of non-overlapping interval boxes,
defined as

X = {[x1], [x2], . . . }. (2)

Xi ⊂ Rn is the ith interval box [xi] of X.
A subpaving is an easy representable subset of a set

of interest. To make it more easier to manipulate with a
computer, a subpaving can be regular. A Regular Subpaving
can be constructed by recursive bisections and selections of
the set. In general, the dimension with the larger interval
width will be chosen for bisection. A regular subpaving can
easily be represented as a binary tree, where each node has
exactly two child nodes. The left and right child nodes of a
box [x] can be accessed via L([x]) and R([x]), respectively.

C. SIVIA

Set Inverter Via Interval Analysis (SIVIA) is an algorithm
to calculate the inverse solution set of an inclusion function,
i.e. X = [f ]−1(Y). The solution set consists of an inner (X)
and an outer (X) regular subpaving, such that X ⊂ X ⊂ X.

In this paper, a more generic version of SIVIA will be used,
based on an inclusion test instead of an inclusion function.
It is stated in Alg. 1. t is the inclusion test, [x] is the initial
search box, ε is the lower threshold for the box width, and X
and X are the resulting inner and outer regular subpavings,
initialized as ∅.

Algorithm 1 SIVIA

1: procedure SIVIA(in: t, [x], ε, inout: X,X)
2: if [t]([x]) = 0 then
3: return
4: end if
5: if [t]([x]) = 1 then
6: X := X ∪ [x]
7: X := X ∪ [x]
8: return
9: end if

10: if w([x]) < ε then
11: X := X ∪ [x]
12: return
13: end if
14: SIVIA(t, L([x]), ε,X,X)
15: SIVIA(t, R([x]), ε,X,X)
16: end procedure

III. INVERSE SENSOR MODEL

In this section, we will develop an inverse sensor model
for the SICK LMS200 laser rangefinder, which is a sensor
widely used in mobile robotics and very typical for modern
range sensors. The inverse sensor model can in turn be
applied to map the environment of a mobile service robot. An
analysis of possible error sources and types of the employed
laser rangefinder is presented in the first subsection, followed
by the mathematical derivation of the sensor model.

A. Types of Sensor Errors

Laser rangefinders are optical measurement devices to
measure the range to an object in the environment. A laser
beam is emitted and, if it hits an object, diffusely reflected.
The returning echo is detected, and a range value can be
calculated based on the speed of light and the measured
time between emission and detection. In its most common
configuration, the SICK LMS200 emits 181 laser beams
in equidistant steps of 1◦, resulting in a full scan of 181
measurement values.

Sensor noise and measurement errors have a variety of
sources. The exact behaviour of the SICK laser beam has
been examined by several authors. Skrzypczyński [9] distin-
guishes between quantitative errors like an offset, changing
reflection characteristics depending on the object surface,
signal noise and beam spreading, and qualitative errors. Ye
and Borenstein [8] discovered that there is an offset between
measured and real object range. The offset depends on the
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Fig. 1. Measurement box [p′] of a single laser range measurement.
Measured distance [d] and measurement angle [ϕ] are afflicted by sensor
errors.

sensor’s state (temperature) and changes over runtime. They
also detected a variance in the measured range depending
on different surface materials, colors and impact angles of
the laser beam. An exact relation could not be found. Sanz-
Cortiella et al. [15] discovered an additional sensor noise
approximately gaussian distributed. In contrast, they detected
no probabilistic distribution in the intensity profile due to
beam spreading, but rather fixed boundaries of the beam.

Comparing these results to existing approaches of mod-
elling the sensor beam of laser rangefinders, a probabilistic
model turns out to be not suitable for most types of sensor
errors. Consequently, we can state fixed bounds for the
following error types: the dynamic offset in the range mea-
surements, the variation in the measurements due to surface
properties, and the spreading of the laser beam. Additionally,
we can also assume fixed bounds for the sensor noise, even
if it is gaussian distributed. This leads to our novel approach
of developing a sensor model that assumes all possible
sources of noise to be absolutely bounded. Calculating with a
bounded error model instead of a probabilistic one promises
the outcome to be more conservative but more guaranteed,
which means that the result will be more reliable than with
probabilistic approaches regarding the mapping of obstacles.

Having a look on the second class of error sources, qualita-
tive errors like specular reflections or so-called mixed pixels,
it is obvious that they can not be modelled as absolutely
bounded. They have to be treated as ”outliers” during the
mapping process.

B. Developing the Bounded Sensor Model

In addition to the afore mentioned sources of sensor noise
and errors, the pose of the robot, i.e. the sensor, will be
uncertain and modelled as a three dimensional interval box
(two spatial and one angular dimension). Taking into account
all uncertainties and bounded errors, we have developed a
sensor model for typical laser rangefinders as follows.

As commercially available laser rangefinders do not allow
to access the signal level of the detection electronics, sensor

Fig. 2. Measurement box [p′′] of a single laser range measurement with
considered beam width.

noise and errors have to be modelled via directly accessible
values. Range offset, differing range measurements due to
surface properties and signal noise will be modelled by an
error in the distance measurement d. The error afflicted dis-
tance will be the interval [d], having w([d]) as the maximum
assumed error bound. The laser beam is assumed to spread
in width with an angle of ϕb. Together with the angular
position of the scanning mirror ϕm, the beam angle results
in [ϕ] = [ϕm − ϕb

2 , ϕm + ϕb

2 ]. Now, an outer boundary of
the possible locations of the real object reflection can be
calculated in the sensor coordinate frame:

[p′] =

(
[d] · cos([ϕ])
[d] · sin([ϕ])

)
. (3)

This box and its further developments will be referred to as
measurement box. It is depicted in Fig. 1.

Moreover, the width of the laser beam has to be consid-
ered. Therefore, we displace the origin of the beam virtually
to behind. The distance [d] is extended by

∆d = cot(
ϕb
2

) · wb
2
. (4)

The new measurement box considering the beam width now
calculates to

[p′′] =

(
([d] + ∆d) · cos([ϕ])−∆d · cos(ϕm)
([d] + ∆d) · sin([ϕ])−∆d · sin(ϕm)

)
. (5)

It is depicted in Fig. 2.
Furthermore, the displacement of the sensor on the robot

platform (xs, ys, ϕs) has to be considered to obtain the
measurement box in the robot coordinate frame. As the robot
pose is known but uncertain, it is available as interval box
[x] = ([x], [y], [θ])T . Hence, the measurement box in the
global coordinate frame is defined in (6).

IV. MAP MODELS
In this section, we will present the applied map models.

First, the necessity of using a measure for the occupancy

[p] =

(
[x] + ([d] + ∆d) · cos([θ] + [ϕ] + ϕs)−∆d · cos([θ] + ϕm + ϕs) + xs · cos([θ])− ys · sin([θ])
[y] + ([d] + ∆d) · sin([θ] + [ϕ] + ϕs)−∆d · sin([θ] + ϕm + ϕs) + xs · sin([θ]) + ys · cos([θ])

)
(6)
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certainty will be explained. When using mathematical tech-
niques based on interval analysis, it suggests itself to use
a map model based on subpavings. Therefore, Occupancy
Paving Maps will be developed. Moreover, we will show
as an outcome that Occupancy Quadtree Maps with interval
methods for 2D mapping can be used.

A. Using Occupancy

In Sec. III-A we found out that most types of sensor
errors can be modelled bounded. If all sensor errors could be
covered by bounded modelling without any violation of these
bounds, it would suffice to assign each map cell a binary
value which takes on one of two states, free or occupied.
However, it has been found that qualitative errors (”outliers”)
and rare violations of the assigned error bounds cannot be
completely avoided. Therefore, each map cell needs some
kind of occupancy measure to fuse guaranteed and outlier
measurements.

We propose to use a k-class occupancy state, where each
cell can take over one of k occupancy classes. Class 1
corresponds to the empty state, class k is the occupied state,
and bk2 c is the unknown state. When a grid cell is affected
by a scan update, its occupancy class is incremented or
decremented.

When using hierachical tree structures as spatial represen-
tation, map cells are represented by leaf nodes. Inner nodes of
the tree structures can be assigned the maximum occupancy
class of its child nodes. As benefit, we obtain a variable
resolution representation if we limit the depth level when
traversing the tree. Hereby, a coarse path planning, e.g., could
calculate on a coarse map, while a fine path planning could
use the same tree structured map with a maximum detail
level.

B. Occupancy Paving Map

The notion of a regular subpaving has been introduced in
Sec. II-B. It is a widely used spatial representation when
calculating with interval analysis. We propose to use it as
a model for map representation. Moreover, we extend it to
have each grid cell an occupancy class assigned as described
above. When each subset of the space is annotated with an
occupancy class explicitly, a Regular Paving can be used
[16]. Thus, we obtain a map model, the k-Class Occupancy
Paving Map (k-OPM), easily created and modified by inter-
val methods and well suited to represent spatial occupancy
structures.

C. Occupancy Quadtree Map

Subpavings and quadtrees both are spatial structures con-
structed by recursive partitioning of the space, and both
can be represented as trees. Obviously, they share the same
properties, disregarding that subpavings are constructed by

bisections, and quadtrees by quarterings. Since quadtrees are
already common used in robotics for 2D mapping and path
planning purposes, it is straightforward to modify existing
interval methods to work on quadtrees instead of subpavings.

In addition, we extend the quadtree structure the same way
as above, to have each grid cell assigned an occupancy class,
resulting in a k-Class Occupancy Quadtree Map (k-OQM).
Properties of the resulting quadtree are well specified in [3]
and [4]. Please note that an OQM can be transformed to a
2D OPM without loss of information, and vice versa.

V. MAPPING ALGORITHM

Using the techniques for modelling sensor errors and the
map presented above, a novel algorithm for incremental map
building can be developed. First, the method for calculating
the occupied map cells of a single laser beam is derived
from the inverse sensor model. Then, the calculation of the
empty map cells of a single beam is presented. The section
closes with the complete algorithm for updating the cells of
a variable resolution map incrementally.

A. Calculating Occupied Cells

Because calculations with unknown but bounded error
modelling are more conservative in their results, the outer
hull of a scan point box as described in Sec. III-B is used
for computing the occupied box set of a full 180◦ laser range
scan. It includes all map cells that overlap with the scan point
boxes. Therefore, the union

XO =

n⋃
i=1

[pi] (7)

of all n scan point boxes is calculated with (6), and the
union set is regularized to a regular subpaving, or quadtree
respectively. The algorithm BUILDSP to build a regular
subpaving from a set of boxes is stated in [17]. It can easily
be extended to the construction of a quadtree. The resulting
set is XOCC.

B. Calculating Empty Cells

The computation of the empty map cells is not as straight-
forward as computing the occupied set. Calculating the
empty box hull of a single laser beam could, depending on its
angle and measured distance, result in a box covering most
of the map space. Because the goal is to get a map estimate
conservative in a sense of occupied cells instead of free cells,
a different approach based on the SIVIA algorithm has been
developed. It is based on the inclusion test whether a box
[xt] = ([xt], [yt])

T is included in the sensor beam between
emitter and distance [d] = [d−, d+]. Therefore, in (8), (6) has
been solved for [dt] = ([dx], [dy])T . With (8), an inclusion

[dt] =

(
[xt]−[x]+∆d·cos([θ]+ϕm+ϕs)−xs·cos([θ])+ys·sin([θ])

cos([θ]+[ϕ]+ϕs) −∆d
[yt]−[y]+∆d·sin([θ]+ϕm+ϕs)−xs·sin([θ])−ys·cos([θ])

sin([θ]+[ϕ]+ϕs) −∆d

)
(8)
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Fig. 3. Single sensor beam as a subpaving. Blue cells belong to the
occupied cells set, yellow cells to the outer empty cells set, and red cells
to the inner and outer empty cells set.

test testing whether a box has a non empty intersection with
the empty space of a beam can be defined:

t∩([xt]) =

{
1 if [dx] ∩ [dy] ∩ [0, d−] 6= ∅,
0 otherwise

. (9)

SIVIA (see Alg. 1) can be easily be simplified to compute
the outer set in combination with t∩. If both inner and outer
subpavings are necessary, the four corner points [xt]p, [xt]q,
[xt]x, [xt]y of the test box [xt] have to be tested as well.
The resulting inclusion test tEMP is formulated as follows:

tEMP([xt]) =⊔
(t∩([xt]), t∩([xt]p), t∩([xt]q), t∩([xt]x), t∩([xt]y)).

(10)

To compute the empty inner and outer set of a full laser
scan, the union of all n calls to SIVIA has to be computed
as

XEMP =

n⋃
i=1

Xi (11)

and

XEMP =

n⋃
i=1

Xi. (12)

Fig. 3 visualizes a calculated regular subpaving of a single
sensor beam, including occupied, inner and outer empty
cells.

C. Map Update

With the XOCC and XEMP sets, a spatial map can be
build incrementally. After calculating the XOCC and XEMP

sets of a single laser scan, all affected map cells have to be
updated. As we want our map to be more conservative, all
cells that are part of both the XOCC and XEMP sets are
removed from the XEMP set in each time step. Afterwards,
the occupancy class of all map cells belonging to the

XOCC set is increased, and the occupancy class of all cells
belonging to the XEMP set is decreased. Moreover, if all
children of a map node are leaf nodes and are member of
the same occupancy class after update, they are removed, and
the parent node gets a leaf node. Vice versa, if a cell of the
XOCC or XEMP sets is smaller than the corresponding map
cell, the map cell node is partitioned recursively to reach the
same accuracy. The full algorithm is stated in Alg. 2. The
choice whether to use the inner or outer XEMP set depends
on the chosen error bounds and ε, as the inner set might be
empty with relatively small error bounds and large minimum
cell width.

Algorithm 2 UBBMAP

1: procedure UBBMAP(out: M)
2: Initialize M as root node with occupancy class b k

2
c

3: while Sensor data available do
4: Compute XOCC and XEMP

5: XEMP := XEMP\XOCC

6: INCOCCUPANCY(XOCC)
7: DECOCCUPANCY(XEMP)
8: end while
9: end procedure

VI. EXPERIMENTAL RESULTS

To show the applicability of the presented approach for
building a variable resolution map assuming unknown but
bounded sensor errors, we have conducted a first real world
experiment. A map of a typical indoor environment has been
constructed with the presented map and sensor error models.
Moreover, a probabilistic grid map has been built using the
same sensor data. We will examine and compare both maps
built with the different approaches.

The experiments have been done using real sensor data
in MATLAB. For the interval mathematics, the INTLAB
toolbox [18] has been used. To build variable resolution hi-
erarchical structures, the SCS toolbox [19] has been applied
and extended. The sensor data was taken by a mobile robot
platform equipped with a SICK LMS200 laser rangefinder,
traversing along an office floor. During traversing, the current
position of the robot was constantly computed by a Monte
Carlo Localization (MCL) algorithm (200 particles, single
iteration, reduced 3D laser rangefinder data [20]). Local-
ization uncertainty has not been taken into account here.
The following error bounds of the laser rangefinder were
assumed: distance error ±35mm, opening angle of the beam
0.25◦, beam diameter at emitter 12mm. They were taken
from the specification provided by the manufacturer.

A. Map Building

A 10-class occupancy quadtree map has been built with
the aquired sensor data. The minimum cell width threshold
was ε = 100mm. The resulting map is depicted in Fig. 4a.
As can be seen, the environment has been well mapped.
The floor structures are clearly identifiable. As described
previously, for visualization or further processing, the map
can be instantly output at a different resolution. Fig. 5
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(a) Occupancy quadtree map with bounded errors (b) Occupancy grid map with normal distributed errors

Fig. 4. Calculated occupancy maps of a real indoor environment. The occupancy scale of the cells ranges from white (free) to black (occupied).

Fig. 5. The same occupancy quadtree map as in Fig. 4a, visualized with
a reduced maximum grid cell width of 400mm, and grid cell structure.

shows the same map as in Fig. 4a with a minimum cell
width threshold of 400mm. For clarity purposes, the grid
structure of the quadtree has been made visible here. A map
at this detail level would suffice for a coarse path planning
algorithm, e.g.

B. Comparison with Occupancy Grid Map

For comparison, an occupancy grid map has been built on
the same data as used in the previous experiment, applying an
approach similar to those presented e.g. in [5] or [7]. Here,
the errors were modelled as two normal distributions, one
in longitudinal and one in angular dimension. The variances
were chosen according to the bounded error parameters with
σd = 35mm and σϕ = 0.125◦. The beam diameter at the
emitter could not be considered with the simple probabilistic
error modelling. The cell width was constantly set to ε =
100mm. Fig. 4b visualizes the resulting grid map.

To examine the differences, an exemplary section has been

chosen and marked with a blue circle in both maps of Fig. 4.
In the marked area, the grid map lacks some wall structures
which have not been mapped consequently. In contrast, they
are properly mapped in the quadtree map. This is due to
the probabilistic model. There is an overconfidence in the
center of the beam, where the normal distribution takes its
highest probability values concerning both free and occupied
space. When errors in the sensor model or localization
errors occur, possibly occupied cells are updated with a low
probability, which means they are designated as empty. On
the contrary, the bounded error quadtree map is updated in
equal increments along the whole beam, both in empty and
occupied directions. In general, the quadtree map is more
conservative in occupancy, possibly resulting in more falsely
detected occupied cells compared to the grid map. The grid
map could be made more conservative by increasing the
variances of the normal distributions, neglecting the relation
to the assumed error bounds. In fact, there is no direct
relation between absolute error bounds and the variance
of the normal distributions, which is a major drawback in
probabilistic error models. Future work will examine this
issue in detail.

The occupancy grid map consists of 73080 grid cells,
while the occupancy quadtree map takes 39256 leaf nodes.
Please note that computation time has not been considered
yet. In its basic implementations, the grid mapping algorithm
takes square, and the bounded error mapping exponential
execution time. Here, the calculation of the full map took
60 minutes (grid mapping) and 1077 minutes (bounded
error mapping) respectively using unoptimized MATLAB
implementations.

VII. CONCLUSION
The paper presented an approach for variable resolution

mapping of two dimensional indoor environments assuming
unknown but bounded sensor errors. Therefore, map models
and a novel inverse sensor model have been developed. We
have shown that assuming absolutely bounded errors is more
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suitable for most possible error types of a laser rangefinder
compared to probabilistic models. A first experiment has
proven that the approach is capable of properly mapping a
real world environment. Moreover, the built map has been
compared with a fixed-size occupancy grid map employing
a probabilistic sensor error model.

The experiment indicates that it is possible to obtain
correct maps of variable grid size when calculating with
bounded errors and interval methods. The comparison with a
probabilistic computed grid map has shown that the bounded
error map has typical properties for interval computations:
they are more conservative, i.e. less precise, but more reli-
able in a sense of mapped obstacles. Moreover, the novel
approach is capable of dealing with pose uncertainty in a
mathematical straightforward way.

Future work will concentrate on the examination of the
influence of different sensor error types and position un-
certainty on the mapping result. The execution time of
the approach will also be an issue. Furthermore, we will
investigate the relation between absolute error bounds and
the variances in the probabilistic sensor model.
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