

�

Abstract² This paper addresses a problem of cooperative

path finding (CPF) where the task is to find paths for agents of

a group of agents. Each agent is given a starting and a goal

position and its task is to reach the goal from the given start.

When following the paths, agents must not collide with each

other and must avoid obstacles. It is suggested to augment

propositional encodings of CPF with a so called mutex

reasoning. Mutex reasoning is trying to rule out unreachable

situations to reduce the size of the search space. It is checked

whether a given pair of locations is reachable by a given pair of

agents cooperatively. If not occurrence of the pair of agents in

the pair of vertices is forbidden. The performed experimental

evaluation showed that mutex reasoning improves existent

encodings by 2 to 5 times in terms of solving runtime when

makespan optimal solutions are searched.

I. INTRODUCTION AND RELATED WORKS

Cooperative path finding (CPF) [6], [10], [11], represents
an important problem in robotics. Consider a group of agents
or robots moving in a certain environment. Each agent is
given its starting position and goal position in the
environment. The task of each agent is to go from the starting
position to the goal. Agents must not collide with each other
and must avoid obstacles in the environment.

The environment where agents are moving is typically
modeled as an undirected graph where agents are placed in
vertices and edges represent passable regions [6].

In this work we are dealing with encodings of CPF as
propositional satisfiability (SAT) [2]. This allows us to use
the power of modern SAT solvers [12] in solving of CPF.
Employing SAT in CPF solving has been already studied in
[14]. Several encodings of CPF as SAT were suggested in
these works. The most important of them are so called
inverse and all-different encodings.

An improvement of existent encodings by a concept of
mutex reasoning is proposed. Mutex reasoning is inspired by
techniques from [5]. It checks if a given pair of vertices is
reachable by a given pair of agents in a given time. If this is
not possible then simultaneous occurrence of the given pair
of agents in the given pair of vertices is forbidden. This leads
to reduction of the size of the search space and consequently
in faster solving of the encoded instance.

Additionally it is proposed to solve CPF by translation to
SAT optimally with respect to the makespan. This is done by
trying to solve CPF encoding by SAT for iteratively longer
and longer makespans until solvable makespan is found. This
is the same approach as used in [4], [5]. However it is

Pavel Surynek is with Charles University in Prague, Faculty of

Mathematics and Physics, Department of Theoretical Computer Science and

Mathematical Logic, 0DORVWUDQVNp� QiP�VWt� ��, 118 00 Praha 1, Czech

Republic (phone: +420 221 914 245; fax: +420 221 914 323; e-mail:

pavel.surynek@mff.cuni.cz).

different from approach used in [14] where a makespan sub-
optimal solution is locally improved by replacing sub-
solutions by makespan optimal ones.

The approach employing SAT solving is targeted on
instances that are highly crowded with agents. This is the
case where other optimal solving methods such as [13]
cannot fully use its heuristics based on independence among
agents.

In section II. the problem of CPF is formally introduced
and existent propositional encodings are recalled. Next, the
concept of mutex reasoning is described (section III.) ± this is
the main contribution of the paper. In section IV. it is shown
how to use SAT encodings of CPF to find makespan optimal
solutions. An experimental part, where impact of mutex
reasoning on overall runtime is evaluated, follows in section
V. A competitive comparison with an alternative algorithm
WHCA* [11] is also given. Finally, concluding remarks are
given and future directions are mentioned.

II. BACKGROUND

In this section we would like to recall definition of the
problem of cooperative path-finding (CPF) [6], [10], [11],
and existent encodings of CPF as propositional satisfiability
(SAT) [1], [2] as they were suggested in [14], [15].
Encodings of our interest were introduced as inverse and all-
different in mentioned works.

A. Problem of Cooperative Path Finding (CPF)

The problem of cooperative path-finding which is also
sometimes referred as multi-agent path finding is a task to
find paths for agents of a group of agents. Each agent is given
its starting position and its task is reach a given goal position
without colliding with other agents and obstacles. Agents
move in a certain environment which is typically modeled as
undirected graph where agents are placed in vertices ± at
most one agent can be placed in a vertex and at least one
vertex must remain vacant to allow agents to move. Edges
model passable regions; that is, agents move between vertices
through edges.

The dynamicity of the model is that we adopt discrete
time. The arrangement of agents on the graph can change
between consecutive time steps in the following way. An
agent can move into neighboring unoccupied vertex,
provided that no other agent is entering the same target
vertex. Notice that multiple agents can move at a time.

Let) L :8á'; be an undirected graph and let # L
<=5á =6á å á =á= be a set of agents where �#� O �8�. The
arrangement of agents in) will be a uniquely invertible
function Ùã#7 8 called a location function. The
interpretation is that an agent = Ð # is located in a vertex

Ù:=;. A generalized inverse of Ù denoted as Ù?5ã87 # ë

Mutex Reasoning in Cooperative Path Finding

Modeled as Propositional Satisfiability

Pavel Surynek

2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS)
November 3-7, 2013. Tokyo, Japan

978-1-4673-6357-0/13/$31.00 ©2013 IEEE 4326

<c= will provide us an agent located in a given vertex or c if
the vertex is empty.

An arrangement of agents at time step E Ð 34 (natural
numbers including 0) will be denoted as ÙÜ. If we formally
express above transition conditions in terms of location
function then we have following transition constraints:

(i) Ê= Ð # either ÙÜ:=; L ÙÜ>5:=; or
<ÙÜ:=;áÙÜ>5:=;= Ð ' holds
(agents move along edges or not move at all),

(ii) Ê= Ð # ÙÜ:=; M ÙÜ>5:=; � ÙÜ
?5:=; Lc

(agents move to vacant vertices only), and
(iii) Ê=á > Ð # = M > � ÙÜ>5:=; M ÙÜ>5:>;

(no two agents enter the same target/unique
invertibility of resulting arrangement).

The initial arrangement is Ù4 and Ù> will denote the goal
arrangement. An instance of CPF is then given as quadruple
>)á#áÙ4áÙ>?. The task is to transform Ù4 to Ù> so that
transition constraints are preserved between all consecutive
time steps.

Definition 1 (solution, makespan). Let - L >)á#áÙ4áÙ>? be
an instance of CPF. A solution of - is a sequence of

arrangements Ù4áÙ5á å áÙ� where Ù� L Ù> and transition

constraints are satisfied between ÙÜ?5 and ÙÜ for every
E L sá å á ä. The number ä is called a makespan of the
solution. The shortest possible makespan of - will be
denoted as äÛ:-;.

 This paper addresses a question what is äÛ:-; for a given
CPF - and what is the corresponding makespan optimal
solution. This question has been already addressed from the
complexity point of view ± it is known that the question is
NP-hard [10].

B. Inverse Encoding

The inverse encoding introduced in [14] is used to
translate a question whether there exists a solution to a given
CPF of a given makespan into SAT. Having such an
encoding it is then possible to find ä:-; for a given - by
iterative trying of longer and longer makespans as it is done
by SAT-based domain independent planners SASE [4] and
SATPlan [5] (this approach however is not complete;
unsolvable CPF cannot be answered in this way).

Basically we need to model arrangements of agents at
individual time steps and to introduce transition constraints
into the model. In the inverse encoding, the arrangement of
agents at time step E is modeled by state variables ÛÜ

é for
R Ð 8 that represent inverse location function at the time

step E. Next, there are state variables îÜ
é for R Ð 8 that

represent actions taken in vertices at time step E. An
outgoing action into some of vertex neighbors or an
incoming action from some of vertex neighbors or noop can
be taken in each vertex. The domain of îÜ

é must consist of
t ���À:R; values to represent all the possible actions. It is
necessary to introduce some ordering on neighbors of each
vertex to be able to assign concrete actions to elements of
the domain of îÜ

é . Suppose that we have a function
êéã <Q�<RáQ= Ð '=7 <sátá åá ��À:R;= and its inverse êé

?5
that implements this ordering of neighbors. Now we are
ready to introduce representation of the E-th arrangement
formally.

Definition 2 (inverse encoding). The E-th level of inverse
encoding consists of the following integer interval state
variables:

x ÛÜ
é
Ð <rásátá å áJ= for all R Ð 8 such that

 ÛÜ
é L F iff ÙÜ:=Ý; L R

x îÜ
é
Ð <rásátá å át ���À:R;= for all R Ð 8 such that

îÜ
é L r iff no-op was selected in R;

îÜ
é L êé:Q; iff an outgoing primitive action with

 the target Q Ð 8 was selected in R;
îÜ
é L ���À:R;E êé:Q; iff an incoming primitive

action with Q Ð 8 as the source was selected in R.
and constraints:

x îÜ
é L r � ÛÜ>5

é L ÛÜ
é for all R Ð 8 (no-op case);

x r O îÜ
é Q ��À:R; � ÛÜ

è L r è ÛÜ>5
è L ÛÜ

é è

 îÜ
è L êè:R; E ��À:Q; where Q L Ké

?5:îÜé;
for all R Ð 8 (outgoing agent case);

x ���À:R; O 6Ü
é Q t Û ��À:R; �

 îÜ
è L êè:R; where Q L êé

?5:îÜé F ���À:R;;
for all R Ð 8 (incoming agent case).

Notice that the encoding is built upon integer state
variables. We eventually use propositional encoding which is
obtained by translating integer state variables into bit vectors.
If the state variable has 0 states (0 elements in its domain)
then we need ¿���6 0À propositional variables.

If we are asking whether there is a solution of makespan
G to the given CPF - we need to build G levels according to
the definition. The starting arrangement is encoded so that the
Û4
é are set to reflect Ù4. Analogically this is done for the goal

arrangement with ÛÞ
é and Ù>.

C. All-Different Encoding

 An alternative encoding to inverse has been presented in
[15]. The alternative encoding is called all-different since it
uses all-different constraints extensively [9]. It is designed to
overcome the drawback of inverse encoding where size does
not reduce if the number of agents is reduced. In the all-
different encoding we encode positions of individual agents
directly; that is, location function Ù is used as basis for the
design of state variables. Suppose that 8 L <R5á R6á å á Rà=
we have a state variable æÜ

Ô
Ð <sátá å áI= for every agent

= Ð # and time step E representing in what vertex = is
located at E. Such design of state variables however allows
infeasible states where two or more agents share a vertex.
Therefore all-different constraints need to be enforced on
variables representing locations at every time step. Formally
the encoding looks as follows.

Definition 3 (all-different encoding). The E-th level of the
all-different encoding consists of the following finite domain
integer state variables:

x æÜ
Ô
Ð <rásátá å áI= for all = Ð #

 such that æÜ
Ô L H iff ÙÜ:=; L Rß

and the constraints are as follows:

x for all = Ð # and H Ð <sátá å áI=
æÜ
Ô L H � æÜ>5

Ô L º é' æÜ>5
Ô L º

ºÐ<5áåáà=�<é×áéº=Ð¾

(agents can move only along edges of)),

x for all = Ð #

% æÜ>5
Ô M æÜ

Õ

ÕÐº�Õ·Ô

(the target vertex of DJHQW¶s move must be empty),

ÕÖ
Ô
ÖÓ
�

�

�

�

�

�

�

4327

x and at most one agent resides in each vertex:

������������:æÜÔ- áæÜÔ. á å áæÜÔÙ;.

 The encoding over integer variables is again translated
into propositional vectors eventually.
 Since encoding the constraint that agents can move along
edges only is very space consuming and resulting in
extremely large formulae a reduction heuristic has been
used. If a vertex is unreachable by an agent from the starting
position in the given time or cannot reach the goal from the
vertex than constraints regarding this vertex can be omitted.
Formally the first constraint is introduced if and only if the
following condition holds:

����K:Ù4:=;á Rß; Q E è ����KkRß áÙ>:=;o Q G F E

 To ensure the correctness of the enhancement also we
need to forbid occurrence of agents in unreachable
locations. That is, following constraints are added to the
model:

x for all = Ð # and H Ð <sátá å áJ= such that

 ����K:Ù4:=;á Rß; P E é ����KkRß áÙ>:=;o P G F E
include æÜ

Ô M H

 Using above distance heuristic constraints to rule out
certain situation let to a drastic improvement in size of the
resulting formulae in all-different encoding as well as to
significant reduction in solving runtime by a SAT solver.

III. MUTEX REASONING

The application of the standard distance heuristic was
originally motivated by reduction of the size of the resulting
propositional formulae. Surprisingly it also let to
improvements in the solving runtime. These results inspired
us to use the distance heuristic also in the inverse encoding ±
here it does not reduce the size of the formula since no
constraint cannot be omitted but the runtime may be reduced.

We also observed that the distance heuristic simplifies the
situation very much. It does not account any interaction
among agents which is an important feature of CPF. Hence
we were considering some extension of the heuristic that also
considers interaction among agents.

Figure 1. Illustration of filtration through mutex reasoning.

This resulted in our suggestion of mutex reasoning in
encodings of CPF. Mutex reasoning takes into account pairs
of agents and checks they can occur simultaneously in a
given pair of vertices at a given time step. This is possible
only if they have chance to reach cooperatively the given pair
of vertices from starting positions and if they can

cooperatively reach the target vertices from the given pair of
vertices at the same time. Otherwise occurrence of the pair of
agents in the given pair of vertices at the given time step will
be forbidden.

The benefit of mutex reasoning is illustrated in Figure 1.
Notice that it is stronger than the standard distance heuristic
which considers distance to the target as the shortest path and
if the remaining number of time steps is less than the distance
then the situation is ruled out as infeasible. Such reasoning
however omits collisions among agents and is thus quite
inaccurate. Mutex reasoning on the other hand considers
pairs of agents in the cooperative manner. The instance
cannot be solved if the pair of agents cannot cooperatively
(which means that collisions between them are considered)
reach their targets in the remaining number of time steps. As
it is summarized in the following proposition the cooperative
distance to the targets is greater or equal to the shortest path
distances and hence mutex reasoning is able to rule out more
infeasible situations.

Proposition 1 (mutex reasoning). Let) L :8á'; be a
graph, # L <Ná L= be a set of agents, Ù4ã#7 8 and
Ù>ã#7 8 be a starting and a goal arrangement of agents

respectively. Then ä:)á#áÙ4áÙ>; R äk)á <N=áÙ4�<å=áÙ>�<å=o
and ä:)á#áÙ4áÙ>; R äk)á <L=áÙ4�<ã=áÙ>�<ã=o. If there exist

shortest paths from Ù4:N; to Ù>:N; and from Ù4:L; to
Ù>:L; that does not share any vertex then ä:)á#áÙ4áÙ>; L

����cäk)á <N=áÙ4�<å=áÙ>�<å=oâ äk)á <L=áÙ4�<ã=áÙ>�<ã=og. A

case when strict inequalities appears also exists. �

Proof. Clearly each agent has to reach its target vertex
which means to travel at least the distance equal to the
length of the shortest path from the starting position to the
target vertex. Hence first two inequalities must hold. If
shortest path connecting Ù4:N; to Ù>:N; and Ù4:L; to Ù>:L;
are disjoint then agents N and L can travel along them
independently and need maximum of both lengths to reach
Ù>:N; and Ù>:L; respectively. The case with strict
inequality is shown in Figure 1. �

Notice that there is still inaccuracy in mutex reasoning
since it does not account triples and larger groups of agents.
Computing cooperative distance to targets for larger groups
than pairs is computationally increasingly difficult. Hence we
settle with pairs as it represents a good trade-off between
filtering strength and computation time.

A. Extensions of Encoding with Mutex Reasoning

 The inverse encoding can be extended with mutex
reasoning in the following way. Again suppose that
encoding is constructed for makespan of G. The distance
heuristic is introduced by adding the following constrains
into the E-th level of the encoding:

x for all R Ð 8 and = Ð <sátá å áI= such that

 ����K:Ù4:=;á R; P E é ����KkRáÙ>:=;o P G F E
include ÛÜ

é M =

 Next suppose a pair of distinct agents =á > Ð # and a pair
of distinct vertices Qá R Ð 8. If the distance heuristic does
not forbid occurrence of = in Q at time step E nor occurrence
of > in R at time step E then mutex reasoning should be done
and the possibility of simultaneous occurrence of = and > in

r

p
����KkÙ:N;áÙ>:N;o L ss

Distance of agent r to

its target is

����KkÙ:L;áÙ>:L;o L ss

Distance of agent p to

its target is

ä:)á <Lá N=áÙ4áÙ>; L ÛÙ

Cooperative distance of both agents p and r to their destinations is

(only one agent can go through the corridor at a time).

 � Any instance containing this subproblem cannot be solved in less

than 20 time steps.

4328

Q and R respectively at time step E should be checked.
Formally it means to introduce the following constraint:

x for all Qá R Ð 8 with Q M R and =á > Ð <sátá å áI= with
= M > such that

 ����K:Ù4:=;áQ; Q E è ����K:QáÙ>:=;; Q G F E and
 ����K:Ù4:>;á R; Q E è ����K:RáÙ>:>;; Q G F E and

 äk)á <=á >=áÙ4�<_á`=á := \ Qá > \ R;o P E or

 äk)á <=á >=á := \ Qá > \ R;á=>�<_á`=o P G F E
include ÛÜ

è M = éÛÜ
é M >

 The same augmentation can be made for the all-different
encoding. We do not need to add distance heuristic as it is
already present. Thus only mutex reasoning is added as
follows:

x for all =á > Ð # with = M > and Há D Ð <sátá å áJ= such
that

 ����K:Ù4:=;á Rß; Q E è ����K:Rß áÙ>:=;; Q G F E and
 ����K:Ù4:>;á RÛ; Q E è ����K:RÛ áÙ>:>;; Q G F E and

 äk)á <=á >=áÙ4�<_á`=á := \ Qá > \ R;o P E or

 äk)á <=á >=á := \ Qá > \ R;á=>�<_á`=o P G F E
include æÜ

Ô M H é æÜ
Õ M D

B. Notes on the Implementation of Mutex Reasoning

To implement mutex reasoning it is necessary to quickly
determine the optimal makespan ä for every pair of agents
and every pair of vertices. The task is transformed into
finding shortest paths in a derived graph. The graph say
)6 L :86á'6; will consists of pairs of vertices; that is,
86 L 8 H 8. Edges will model allowed moves of pairs of
agents; that is, >:QáR;â :Sá V;? Ð '6 if and only if :Qá R; L
:Sá V; or �<Qá RáSá V=� L u è :Q L R é S L V; or
�<Qá RáSá V=� L v.

Construction of)6 consumes time and space of é:�8�8;.
Computing all pairs shortest paths in)6 using matrix
multiplication requires time of é:���6�8�6 ® �8�6 ; L
�é:���6 �8� ® �8�6 ; where é:0 ; is complexity of matrix
multiplication of size 0 H 0. The well known bound for
matrix multiplication is ñ O täuyx [3].

The high complexity of this style of computing of optimal
makespans prohibits application of the technique for larger
groups of agents than pairs.

Let us note that in our implementation we compute
optimal makespan for pairs of vertices only if it is needed
(actually we need only single source shortest paths from pairs
of starting positions and from goal positions respectively)
which makes this computation negligible with respect to time
consumption by the SAT solver.

IV. MAKESPAN OPTIMAL SOLVING OF CPF

 Modeling of CPF as propositional formula has been
already studied in [14], [15]. However, the approach adopted
in these works was to generate solutions of makespan as
short as possible but not necessarily the optimal one. This
was done by generating sub-optimal solution first by some
existing method. Then subsequences of the computed sub-
optimal solution were iteratively replaced by makespan
optimal sub-solutions computed by the SAT solver until
timeout was reached. Given a subsequence of the solution it
can be used to form an instance of CPF. The arrangement at
the beginning of the subsequence is taken as the starting

arrangement and the state at the end of the subsequence is
taken as the goal arrangement.
 Here we would like to use SAT solving to compute
makespan optimal solutions. We can adopt the technique
how makespan optimal replacements are computed in [14],
[15]. This is done by trying iteratively longer and longer
makespans while for each makespan the encoding of the
instance is constructed and the SAT solver is asked if it is
satisfiable. If so the process terminates with answer that
solution exists. If not longer makespan is tried. If the there is
no solution to the given CPF instance then the process
continues to the given makespan limit and terminates with
no answer. In this sense the technique is incomplete. Notice
that the same strategy is used in SAT-based domain
independent planning as represented by SATPlan [5] and
SASE [4] planners.
 Notice however that it can be easily made complete by
first checking if a solution exists by some fast polynomial
time algorithm such as PUSH-and-SWAP [7]. If this initial
check says that solution exists then we run iterative SAT
solving with no makespan limit.
 The process of generating makespan optimal solution to
CPF is formalized as Algorithm 1.

Algorithm 1. SAT based CPF solving.
 input: a CPF instance - and makespan limit �.
 output: a pair consisting of the optimal makespan
 and an optimal solution

function Find-Optimal-Solution :- L :
 L :8á';á#áÙ4áÙ>;á�;: pair
1: for G L sátá å á� do
2:) ZEncode-CPF-as-SAT :ÑáG;
3: if Solve-SAT�:); then
4: O Z Extract-Solution-from-Valuation:);
5: return :Gá O;
6: return :»áÎ;

V. EXPERIMENTAL EVALUATION

 We implemented the presented mutex reasoning encoders

and SAT-based optimal solution generator employing

proposed encodings in C++. Our preliminary experiments

showed that the most suitable SAT solver for CPF encodings

is cryptominisat [12] hence we employed it in our solution

generator. The code as well as all the experimental data will

be made available on: http://ktiml.mff.cuni.cz/~surynek/

research/iros2013 to allow reproducibility of all the

presented results.

 The experimental evaluation is targeted on measuring the

runtime of the SAT-based optimal solving that employs

proposed mutex reasoning in comparison with existent

encodings without mutex reasoning and on comparison with

WHCA* [11]. WHCA* is one of the most frequently used

algorithm for CPF and it is known to generate near optimal

solutions very quickly and thus it is suitable for comparison.

 As it was suggested by Silver in [11] we used CPFs

consisting of 4-connected grids with randomly placed

obstacles. We used the setting where 20% of randomly

selected vertices were occupied by obstacles (the same

setting was used by Silver in [11]).

 Grids of sizes 4î����î��� �î��� �î��� DQG��î��ZHUH� WHVWHG��

The number of agents ranged from 1 to �8��t. The starting

arrangement and the goal arrangement were generated

B � � C

B � � C

4329

UDQGRPO\�� $Q� H[DPSOH� RI� WHVWLQJ� LQVWDQFH� RQ� �î�� JULG� LV�

shown in Figure 3.

 Comparison of runtimes with inverse and all-different

encodings and those augmented with mutex reasoning is

shown in Figure 2.

Figure 2. Runtime of optimal SAT-based solver with various encodings

with respect to the incresing number of agents. In smaller grids inverse

encoding with mutex reasoning performs marginally better than all-different

encoding with mutex resoning which are both better than encodings without

mutex reasoning - the improvement is around 2.0 times to 5.0 times. In

larger grids all-different encoding with mutex resoning is the best.

Figure 3. Example of CPF instance on a JULG�RI�VL]H��î� with 20% of

positions occupied by obstacles.

 It can be read from results that mutex reasoning improves

solving time approximately by 2.0 to 5.0 times. On grids of

VL]H� �î��� �î��� DQG� �î�� inverse encoding with mutex

reasoning dominates. On two larger cases ± �î��DQG��î��±

the best encoding is all-different encoding with mutex

reasoning. This encoding turned out to be most suitable in

cases with few agents in large environments. However,

notice that SAT-based CPF solving is targeted on relatively

crowded environments where other techniques such as

WHCA* are failing. In crowded environments the inverse

encoding is more suitable and mutex reasoning makes it yet

faster solvable.

TABLE I. OPTIMAL MAKESPANS OF CPF ON GRIDS WITH
20% OBSTACLES.

Grid size

(w?h) ð?ð ñ?ñ ò?ò ó?ó ô?ô

|Agents|

1 4 3 6 4 7

2 3 4 7 6 6

3 4 4 6 7 12

4 5 6 10 11 9

5 6 7 8 10 9

6 6 6 10 6 11

7 7 7 9 10 11

8 8 10 13 11

9 11 10 11

10 9 13 13 9

11 13 10 11

12 12 9 11

13 12 13 12

14 13 13 13

15 14 11 13

16 14 15 14

17 15 11 12

18 13 12

19 16

 The computed optimal makespans are summarized in

TABLE I. In some cases solution did not exists.
The comparison of optimal SAT-based solving with

WHCA* regarding the makespan is shown in Figure 4. It
can be observed that WHCA* really generates solution
whose makespans are close to the optimal ones. However,
the weakness of WHCA* is that on more crowded
environments it is unable to generate any solution. In these
cases SAT-based solving with improved encodings in more
promising. Window size in WHCA* was set to 64 in all the
presented test. All the invocations of WHCA* finished in
less than 0.1 seconds.

0.01

0.1

1

1 2 3 4 5 6 7

R
u

n
ti

m
e

 (
se

co
n

d
s)

Runtime | Grid 4?4 | 20% obstacles

All-Different

Inverse

Mutex/All-Different

Mutex/Inverse

0.01

0.1

1

10

1 2 3 4 5 6 7 8 10

R
u

n
ti

m
e

 (
se

co
n

d
s)

Runtime | Grid 5?5 | 20% obstacles

All-Different

Inverse

Mutex/All-Different

Mutex/Inverse

0.1

1

10

100

1000

10000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

R
u

n
ti

m
e

 (
se

co
n

d
s)

Runtime | Grid 6?6 | 20% obstacles

All-Different

Inverse

Mutex/All-Different

Mutex/Inverse

0.01

0.1

1

10

100

1000

10000

100000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

R
u

n
ti

m
e

 (
se

co
n

d
s)

Runtime | Grid 7?7 | 20% obstacles

All-Different

Inverse

Mutex/Inverse

Mutex/All-Different

0.1

1

10

100

1000

10000

100000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

R
u

n
ti

m
e

 (
se

co
n

d
s)

Runtime | Grid 8?8 | 20% obstacles

All-Different

Inverse

Mutex/Inverse

Mutex/All-Different

r

p

s

t

u

q r

p

s

t

u

q

p

q

r

s

t

u

'�]��ñ?ñ|20% obstacles

L <LáMá Ná Oá PáQ= »Ù »
>

|Agents|

|Agents|

|Agents|

|Agents|

|Agents|

4330

If we summarize experimental results we can conclude
that mutex reasoning brings a significant improvement into
existent CPF encodings. This means further improvement of
SAT-based CPF solving. Moreover we suggested to use
translation of CPF to SAT for makespan optimal solving of
CPF. As mutex reasoning improves SAT encodings of CPF
it can be viewed as technique that makes optimal CPF
solving through SAT more viable.

Figure 4. Comparison optimal makespans generated by SAT-based

solving with those generated by WHCA*. The window size for WHCA*

was 64. Again there is 20% of obstacles. In more crowded environments

WHCA* is unable to generate any solution.

VI. CONCLUSION AND FUTURE WORK

 In this paper we suggested a so called mutex reasoning as
an improvement of existent encodings of CPF as SAT.
Namely existent inverse and all-different encodings are
augmented with mutex reasoning. Mutex reasoning checks
reachability of a pair of vertices by a pair of agents in
cooperative manner. This allows to rule out certain
important cases that can reduce the size of the search space
significantly ± these cases include for example a situation
where two agents need to exchange themselves through a
corridor.
 Additionally we suggested to employ translation of CPF
to SAT for makespan optimal CPF solving. This is a first
attempt to solve CPF optimally by SAT (in related works
only near optimal solutions were found through SAT
solving). Together with encodings augmented by mutex
reasoning we have shown in comparison with WHCA* that

SAT-based approach is a viable option to solve CPF
optimally.
 For future work we are considering to further improve
SAT encodings of CPF. It seems to be promising to
preprocess clauses expressing difference of certain state
variable from a set of constants by resolution which can
reduce the size of clauses expressing mutex reasoning.

ACKNOWLEDGMENT

This work has been done within the PRVOUK P46
project provided by Charles University in Prague and is also
partially supported by Czech Science Foundation under
contract number GAP103/10/1287.

I would like thank reviewers for their thorough evaluation
of the paper and valuable suggestions.

REFERENCES

[1] A. Biere, M. Heule, H. van Maaren, T. Walsh, ³Handbook of

Satisfiability�´�IOS Press, 2009.

[2] S. A. Cook, ³The Complexity of Theorem Proving Procedures�´

Proceedings of the 3rd Annual ACM Symposium on Theory of

Computing (STOC 1971), pp. 151-158, ACM Press, 1971.

[3] D. Coppersmith, S. Winograd, ³Matrix Multiplication via Arithmetic

3URJUHVVLRQV�´� -RXUQDO� RI� 6\PEROLF� &RPSXWDWLRQ�� 9ROXPH� ������ SS��
251-280, Elsevier, 1990.

[4] R. Huang, Y. Chen, W. Zhang. ³A Novel Transition Based Encoding

Scheme IRU� 3ODQQLQJ� DV� 6DWLVILDELOLW\�´ Proceedings AAAI 2010,

AAAI Press, 2010.

[5] +�� .DXW]�� %�� 6HOPDQ�� ³Unifying SAT-based and Graph-based

3ODQQLQJ�´ Proceedings of the 16th International Joint Conference on

Artificial Intelligence (IJCAI 1999), pp. 318-325, Morgan Kaufmann,

1999.

[6] D. Kornhauser, G. L. Miller, P. G. Spirakis, ³Coordinating Pebble

Motion on Graphs, the Diameter of Permutation Groups, and

$SSOLFDWLRQV�´ Proceedings of the 25th Annual Symposium on

Foundations of Computer Science (FOCS 1984), pp. 241-250, IEEE

Press, 1984.

[7] R. Luna, K. E. Berkis, ³Push-and-Swap: Fast Cooperative Path-

FindiQJ� ZLWK� &RPSOHWHQHVV� *XDUDQWHHV�´ Proceedings of the 22nd

International Joint Conference on Artificial Intelligence (IJCAI 2011),

pp. 294-300, IJCAI/AAAI Press, 2011

[8] D. Ratner, M. K. Warmuth, ³)LQGLQJ�D�6KRUWHVW�6ROXWLRQ�IRU�WKH�1�î�1�
Extension of the 15-38==/(� ,V� ,QWUDFWDEOH�´� 3URFHHGLQJV� RI� $$$,�

1986, pp. 168-172, Morgan Kaufmann, 1986.

[9] J.-C. 5pJLQ� ³$�)LOWHULQJ�$OJRULWKP�IRU�&Rnstraints of Difference in

CSPs,´�3URFHHGLQJV�RI�$$$,�������SS�����-367, AAAI Press, 1994.

[10] M. R. K. Ryan, ³Exploiting Subgraph Structure in Multi-Robot Path

3ODQQLQJ�´ Journal of Artificial Intelligence Research (JAIR), Volume

31, 2008, pp. 497-542, AAAI Press, 2008.

[11] D. Silver, ³&RRSHUDWLYH�3DWKILQGLQJ�´ Proceedings of the 1st Artificial

Intelligence and Interactive Digital Entertainment Conference (AIIDE

2005), pp. 117-122, AAAI Press, 2005.

[12] M. SRRV�� .�� 1RKO�� &�� &DVWHOOXFFLD�� ³([WHQGLQJ� 6$7� 6ROYHUV� WR�

Cryptographic Problems�´ SAT 2009, 12th International Conference

(SAT 2009), pp. 244-257, Lecture Notes in Computer Science 5584,

Springer, 2009.

[13] T. S. Standley, R. E. Korf. ³Complete Algorithms for Cooperative

3DWKILQGLQJ� 3UREOHPV´�� 3URFHHGLQJV� RI� ,-&$,� ����, pp. 668-673,

IJCAI/AAAI Press, 2011.

[14] 3�� 6XU\QHN�� ³Towards Optimal Cooperative Path Planning in Hard

Setups through Satisfiability Solving�´�Proceedings of the 12th Pacific

Rim International Conference on Artificial Intelligence (PRICAI

2012), pp. 564-576, Lecture Notes in Computer Science 7458,

Springer, 2012.

[15] P. Surynek�� ³On Propositional Encodings of Cooperative Path-

finding�´�Proceedings of the 24th International Conference on Tools

with Artificial Intelligence (ICTAI 2012), pp. 524-531, IEEE Press,

2012.

0

2

4

6

8

1 2 3 4 5 6 7

M
a

k
e

sp
a

n

Makespan|Grid 4?4

WHCA

SAT

0

2

4

6

8

10

1 2 3 4 5 6 7 8 9

M
a

k
e

sp
a

n

Makespan|Grid 5?5

WHCA

SAT

0

4

8

12

16

1 3 5 7 9 11 13 15 17

M
a

k
e

sp
a

n

Makespan|Grid 6?6

WHCA

SAT

0

4

8

12

16

20

1 3 5 7 9 11 13 15 17 19

M
a

k
e

sp
a

n

Makespan|Grid 7?7

WHCA

SAT

0

4

8

12

16

20

24

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

M
a

k
e

sp
a

n

Makespan|Grid 8?8

WHCA

SAT

|Agents| |Agents|

|Agents|
|Agents|

|Agents|

4331

