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Abstract² This paper addresses a problem of cooperative 

path finding (CPF) where the task is to find paths for agents of 

a group of agents. Each agent is given a starting and a goal 

position and its task is to reach the goal from the given start. 

When following the paths, agents must not collide with each 

other and must avoid obstacles. It is suggested to augment 

propositional encodings of CPF with a so called mutex 

reasoning. Mutex reasoning is trying to rule out unreachable 

situations to reduce the size of the search space. It is checked 

whether a given pair of locations is reachable by a given pair of 

agents cooperatively. If not occurrence of the pair of agents in 

the pair of vertices is forbidden. The performed experimental 

evaluation showed that mutex reasoning improves existent 

encodings by 2 to 5 times in terms of solving runtime when 

makespan optimal solutions are searched. 

I. INTRODUCTION AND RELATED WORKS 

Cooperative path finding (CPF) [6], [10], [11], represents 
an important problem in robotics. Consider a group of agents 
or robots moving in a certain environment. Each agent is 
given its starting position and goal position in the 
environment. The task of each agent is to go from the starting 
position to the goal. Agents must not collide with each other 
and must avoid obstacles in the environment. 

The environment where agents are moving is typically 
modeled as an undirected graph where agents are placed in 
vertices and edges represent passable regions [6]. 

In this work we are dealing with encodings of CPF as 
propositional satisfiability (SAT) [2]. This allows us to use 
the power of modern SAT solvers [12] in solving of CPF. 
Employing SAT in CPF solving has been already studied in 
[14]. Several encodings of CPF as SAT were suggested in 
these works. The most important of them are so called 
inverse and all-different encodings. 

An improvement of existent encodings by a concept of 
mutex reasoning is proposed. Mutex reasoning is inspired by 
techniques from [5]. It checks if a given pair of vertices is 
reachable by a given pair of agents in a  given time. If this is 
not possible then simultaneous occurrence of the given pair 
of agents in the given pair of vertices is forbidden. This leads 
to reduction of the size of the search space and consequently 
in faster solving of the encoded instance. 

Additionally it is proposed to solve CPF by translation to 
SAT optimally with respect to the makespan. This is done by 
trying to solve CPF encoding by SAT for iteratively longer 
and longer makespans until solvable makespan is found. This 
is the same approach as used in [4], [5]. However it is 
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different from approach used in [14] where a makespan sub-
optimal solution is locally improved by replacing sub-
solutions by makespan optimal ones. 

The approach employing SAT solving is targeted on 
instances that are highly crowded with agents. This is the 
case where other optimal solving methods such as [13]  
cannot fully use its heuristics based on independence among 
agents. 

In section II. the problem of CPF is formally introduced 
and existent propositional encodings are recalled. Next, the 
concept of mutex reasoning is described (section III.) ± this is 
the main contribution of the paper. In section IV. it is shown 
how to use SAT encodings of CPF to find makespan optimal 
solutions. An experimental part, where impact of mutex 
reasoning on overall runtime is evaluated, follows in section 
V. A competitive comparison with an alternative algorithm 
WHCA* [11] is also given. Finally, concluding remarks are 
given and future directions are mentioned. 

II. BACKGROUND 

In this section we would like to recall definition of the 
problem of cooperative path-finding (CPF) [6], [10], [11], 
and existent encodings of CPF as propositional satisfiability 
(SAT) [1], [2] as they were suggested in [14], [15]. 
Encodings of our interest were introduced as inverse and all-
different in mentioned works. 

A. Problem of Cooperative Path Finding (CPF) 

The problem of cooperative path-finding which is also 
sometimes referred as multi-agent path finding is a task to 
find paths for agents of a group of agents. Each agent is given 
its starting position and its task is reach a given goal position 
without colliding with other agents and obstacles. Agents 
move in a certain environment which is typically modeled as 
undirected graph where agents are placed in vertices ± at 
most one agent can be placed in a vertex and at least one 
vertex must remain vacant to allow agents to move. Edges 
model passable regions; that is, agents move between vertices 
through edges. 

The dynamicity of the model is that we adopt discrete 
time. The arrangement of agents on the graph can change 
between consecutive time steps in the following way. An 
agent can move into neighboring unoccupied vertex, 
provided that no other agent is entering the same target 
vertex. Notice that multiple agents can move at a time. 

Let ) L :8á'; be an undirected graph and let # L
<=5á =6á å á =á= be a set of agents where �#� O �8�. The 
arrangement of agents in ) will be a uniquely invertible 
function Ùã#7 8 called a location function. The 
interpretation is that an agent = Ð # is located in a vertex 

Ù:=;. A generalized inverse of Ù denoted as Ù?5ã87 # ë
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<c= will provide us an agent located in a given vertex or c if 
the vertex is empty. 

An arrangement of agents at time step E Ð 34 (natural 
numbers including 0) will be denoted as ÙÜ. If we formally 
express above transition conditions in terms of location 
function then we have following transition constraints: 

(i) Ê= Ð #  either ÙÜ:=; L ÙÜ>5:=; or 
<ÙÜ:=;áÙÜ>5:=;= Ð ' holds 
(agents move along edges or not move at all), 

(ii) Ê= Ð #  ÙÜ:=; M ÙÜ>5:=; � ÙÜ
?5:=; Lc 

(agents move to vacant vertices only), and 
(iii) Ê=á > Ð #  = M > � ÙÜ>5:=; M ÙÜ>5:>; 

(no two agents enter the same target/unique 
invertibility of resulting arrangement). 

The initial arrangement is Ù4 and Ù> will denote the goal 
arrangement. An instance of CPF is then given as quadruple 
>)á#áÙ4áÙ>?. The task is to transform Ù4 to Ù> so that 
transition constraints are preserved between all consecutive 
time steps. 

Definition 1 (solution, makespan). Let - L >)á#áÙ4áÙ>? be 
an instance of CPF. A solution of - is a sequence of 

arrangements Ù4áÙ5á å áÙ� where Ù� L Ù> and transition 

constraints are satisfied between ÙÜ?5 and ÙÜ for every 
E L sá å á ä. The number ä is called a makespan of the 
solution. The shortest possible makespan of - will be 
denoted as äÛ:-;. 
 

 This paper addresses a question what is äÛ:-; for a given 
CPF - and what is the corresponding makespan optimal 
solution. This question has been already addressed from the 
complexity point of view ± it is known that the question is 
NP-hard [10]. 

B. Inverse Encoding 

The inverse encoding introduced in [14] is used to 
translate a question whether there exists a solution to a given 
CPF of a given makespan into SAT. Having such an 
encoding it is then possible to find ä:-; for a given - by 
iterative trying of longer and longer makespans as it is done 
by SAT-based domain independent planners SASE [4] and 
SATPlan [5] (this approach however is not complete; 
unsolvable CPF cannot be answered in this way). 

Basically we need to model arrangements of agents at 
individual time steps and to introduce transition constraints 
into the model. In the inverse encoding, the arrangement of 
agents at time step E is modeled by state variables ÛÜ

é  for 
R Ð 8 that represent inverse location function at the time 

step E. Next, there are state variables îÜ
é  for R Ð 8 that 

represent actions taken in vertices at time step E. An 
outgoing action into some of vertex neighbors or an 
incoming action from some of vertex neighbors or noop can 
be taken in each vertex. The domain of îÜ

é  must consist of 
t ���À:R; values to represent all the possible actions. It is 
necessary to introduce some ordering on neighbors of each 
vertex to be able to assign concrete actions to elements of 
the domain of îÜ

é . Suppose that we have a function 
êéã <Q�<RáQ= Ð '=7 <sátá åá ��À:R;= and its inverse êé

?5 
that implements this ordering of neighbors. Now we are 
ready to introduce representation of the E-th arrangement 
formally. 

Definition 2 (inverse encoding). The E-th level of inverse 
encoding consists of the following integer interval state 
variables: 

x ÛÜ
é
Ð <rásátá å áJ= for all R Ð 8 such that 

 ÛÜ
é L F iff ÙÜ:=Ý; L R 

x îÜ
é
Ð <rásátá å át ���À:R;= for all R Ð 8 such that 

îÜ
é L r    iff no-op was selected in R; 

îÜ
é L êé:Q;  iff an outgoing primitive action with  

      the target Q Ð 8 was selected in R; 
îÜ
é L ���À:R;E êé:Q; iff an incoming primitive 

action with Q Ð 8 as the source was selected in R. 
and constraints: 

x îÜ
é L r � ÛÜ>5

é L ÛÜ
é  for all R Ð 8 (no-op case); 

x r O îÜ
é Q ��À:R;  �  ÛÜ

è L r è ÛÜ>5
è L ÛÜ

é è 

 îÜ
è L êè:R; E ��À:Q; where Q L Ké

?5:îÜé; 
for all R Ð 8 (outgoing agent case); 

x ���À:R; O 6Ü
é Q t Û ��À:R;  � 

 îÜ
è L êè:R; where Q L êé

?5:îÜé F ���À:R;; 
for all R Ð 8 (incoming agent case).  
 

Notice that the encoding is built upon integer state 
variables. We eventually use propositional encoding which is 
obtained by translating integer state variables into bit vectors. 
If the state variable has 0 states (0 elements in its domain) 
then we need ¿���6 0À propositional variables. 

If we are asking whether there is a solution of makespan 
G to the given CPF - we need to build G levels according to 
the definition. The starting arrangement is encoded so that the 
Û4
é  are set to reflect Ù4. Analogically this is done for the goal 

arrangement with ÛÞ
é  and Ù>. 

C. All-Different Encoding 

 An alternative encoding to inverse has been presented in 
[15]. The alternative encoding is called all-different since it 
uses all-different constraints extensively [9]. It is designed to 
overcome the drawback of inverse encoding where size does 
not reduce if the number of agents is reduced. In the all-
different encoding we encode positions of individual agents 
directly; that is, location function Ù is used as basis for the 
design of state variables. Suppose that 8 L <R5á R6á å á Rà= 
we have a state variable æÜ

Ô
Ð <sátá å áI= for every agent 

= Ð # and time step E representing in what vertex = is 
located at E. Such design of state variables however allows 
infeasible states where two or more agents share a vertex. 
Therefore all-different constraints need to be enforced on 
variables representing locations at every time step. Formally 
the encoding looks as follows. 

Definition 3 (all-different encoding). The E-th level of the 
all-different encoding consists of the following finite domain 
integer state variables: 

x æÜ
Ô
Ð <rásátá å áI= for all = Ð # 

 such that æÜ
Ô L H iff ÙÜ:=; L Rß  

and the constraints are as follows: 

x for all = Ð # and H Ð <sátá å áI= 
æÜ
Ô L H � æÜ>5

Ô L º é' æÜ>5
Ô L º

ºÐ<5áåáà=�<é×áéº=Ð¾
 

(agents can move only along edges of )), 

x for all = Ð # 

% æÜ>5
Ô M æÜ

Õ

ÕÐº�Õ·Ô

 

(the target vertex of DJHQW¶s move must be empty), 

ÕÖ
Ô
ÖÓ
�

�

�

�

�

�

� 
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x and at most one agent resides in each vertex: 

������������:æÜÔ- áæÜÔ. á å áæÜÔÙ;.  
 

 The encoding over integer variables is again translated 
into propositional vectors eventually. 
 Since encoding the constraint that agents can move along 
edges only is very space consuming and resulting in 
extremely large formulae a reduction heuristic has been 
used. If a vertex is unreachable by an agent from the starting 
position in the given time or cannot reach the goal from the 
vertex than constraints regarding this vertex can be omitted. 
Formally the first constraint is introduced if and only if the 
following condition holds: 

����K:Ù4:=;á Rß; Q E è ����KkRß áÙ>:=;o Q G F E 

 To ensure the correctness of the enhancement also we 
need to forbid occurrence of agents in unreachable 
locations. That is, following constraints are added to the 
model: 
 

x for all = Ð # and H Ð <sátá å áJ= such that 

  ����K:Ù4:=;á Rß; P E é ����KkRß áÙ>:=;o P G F E  
include æÜ

Ô M H 

 Using above distance heuristic constraints to rule out 
certain situation let to a drastic improvement in size of the 
resulting formulae in all-different encoding as well as to 
significant reduction in solving runtime by a SAT solver. 

III. MUTEX REASONING 

The application of the standard distance heuristic was 
originally motivated by reduction of the size of the resulting 
propositional formulae. Surprisingly it also let to 
improvements in the solving runtime. These results inspired 
us to use the distance heuristic also in the inverse encoding ± 
here it does not reduce the size of the formula since no 
constraint cannot be omitted but the runtime may be reduced. 

We also observed that the distance heuristic simplifies the 
situation very much. It does not account any interaction 
among agents which is an important feature of CPF. Hence 
we were considering some extension of the heuristic that also 
considers interaction among agents. 

 

Figure 1.  Illustration of filtration through mutex reasoning. 

This resulted in our suggestion of mutex reasoning in 
encodings of CPF. Mutex reasoning takes into account pairs 
of agents and checks they can occur simultaneously in a 
given pair of vertices at a given time step. This is possible 
only if they have chance to reach cooperatively the given pair 
of vertices from starting positions and if they can 

cooperatively reach the target vertices from the given pair of 
vertices at the same time. Otherwise occurrence of the pair of 
agents in the given pair of vertices at the given time step will 
be forbidden. 

The benefit of mutex reasoning is illustrated in Figure 1. 
Notice that it is stronger than the standard distance heuristic 
which considers distance to the target as the shortest path and 
if the remaining number of time steps is less than the distance 
then the situation is ruled out as infeasible. Such reasoning 
however omits collisions among agents and is thus quite 
inaccurate. Mutex reasoning on the other hand considers 
pairs of agents in the cooperative manner. The instance 
cannot be solved if the pair of agents cannot cooperatively 
(which means that collisions between them are considered) 
reach their targets in the remaining number of time steps. As 
it is summarized in the following proposition the cooperative 
distance to the targets is greater or equal to the shortest path 
distances and hence mutex reasoning is able to rule out more 
infeasible situations. 

Proposition 1 (mutex reasoning). Let ) L :8á'; be a 
graph, # L <Ná L= be a set of agents, Ù4ã#7 8 and 
Ù>ã#7 8 be a starting and a goal arrangement of agents 

respectively. Then ä:)á#áÙ4áÙ>; R äk)á <N=áÙ4�<å=áÙ>�<å=o 
and ä:)á#áÙ4áÙ>; R äk)á <L=áÙ4�<ã=áÙ>�<ã=o. If there exist 

shortest paths from Ù4:N; to Ù>:N; and from Ù4:L; to 
Ù>:L; that does not share any vertex then ä:)á#áÙ4áÙ>; L 

����cäk)á <N=áÙ4�<å=áÙ>�<å=oâ äk)á <L=áÙ4�<ã=áÙ>�<ã=og. A 

case when strict inequalities appears also exists. � 

Proof. Clearly each agent has to reach its target vertex 
which means to travel at least the distance equal to the 
length of the shortest path from the starting position to the 
target vertex. Hence first two inequalities must hold. If 
shortest path connecting Ù4:N; to Ù>:N; and Ù4:L; to Ù>:L; 
are disjoint then agents N and L can travel along them 
independently and need maximum of both lengths to reach 
Ù>:N; and Ù>:L; respectively. The case with strict 
inequality is shown in Figure 1. � 

Notice that there is still inaccuracy in mutex reasoning  
since it does not account triples and larger groups of agents. 
Computing cooperative distance to targets for larger groups 
than pairs is computationally increasingly difficult. Hence we 
settle with pairs as it represents a good trade-off between 
filtering strength and computation time. 

A. Extensions of Encoding with Mutex Reasoning 

 The inverse encoding can be extended with mutex 
reasoning in the following way. Again suppose that 
encoding is constructed for makespan of G. The distance 
heuristic is introduced by adding the following constrains 
into the E-th level of the encoding: 

x for all R Ð 8 and = Ð <sátá å áI= such that 

  ����K:Ù4:=;á R; P E é ����KkRáÙ>:=;o P G F E  
include ÛÜ

é M = 

 Next suppose a pair of distinct agents =á > Ð # and a pair 
of distinct vertices Qá R Ð 8. If the distance heuristic does 
not forbid occurrence of = in Q at time step E nor occurrence 
of > in R at time step E then mutex reasoning should be done 
and the possibility of simultaneous occurrence of = and > in 

r 

p 
����KkÙ:N;áÙ>:N;o L ss 

Distance of agent r to 

its  target is 

����KkÙ:L;áÙ>:L;o L ss 

Distance of agent p to 

its  target is 

 

ä:)á <Lá N=áÙ4áÙ>; L ÛÙ 

Cooperative distance of both agents p and r to their destinations is 

(only one agent can go through the corridor at a time). 

 � Any instance containing this subproblem cannot be solved in less 

than 20 time steps. 
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Q and R respectively at time step E should be checked. 
Formally it means to introduce the following constraint: 

x for all Qá R Ð 8 with Q M R and =á > Ð <sátá å áI= with 
= M > such that 

  ����K:Ù4:=;áQ; Q E è ����K:QáÙ>:=;; Q G F E and 
  ����K:Ù4:>;á R; Q E è ����K:RáÙ>:>;; Q G F E and 

  äk)á <=á >=áÙ4�<_á`=á := \ Qá > \ R;o P E    or 

  äk)á <=á >=á := \ Qá > \ R;á=>�<_á`=o P G F E 
include ÛÜ

è M = éÛÜ
é M > 

 The same augmentation can be made for the all-different 
encoding. We do not need to add distance heuristic as it is 
already present. Thus only mutex reasoning is added as 
follows: 

x for all =á > Ð # with = M > and Há D Ð <sátá å áJ=  such 
that 

  ����K:Ù4:=;á Rß; Q E è ����K:Rß áÙ>:=;; Q G F E and 
  ����K:Ù4:>;á RÛ; Q E è ����K:RÛ áÙ>:>;; Q G F E and 

  äk)á <=á >=áÙ4�<_á`=á := \ Qá > \ R;o P E    or 

  äk)á <=á >=á := \ Qá > \ R;á=>�<_á`=o P G F E 
include æÜ

Ô M H é æÜ
Õ M D 

B. Notes on the Implementation of Mutex Reasoning 

To implement mutex reasoning it is necessary to quickly 
determine the optimal makespan ä for every pair of agents 
and every pair of vertices. The task is transformed into 
finding shortest paths in a derived graph. The graph say 
)6 L :86á'6; will consists of pairs of vertices; that is, 
86 L 8 H 8. Edges will model allowed moves of pairs of 
agents; that is, >:QáR;â :Sá V;? Ð '6 if and only if :Qá R; L
:Sá V; or �<Qá RáSá V=� L u è :Q L R é S L V; or 
�<Qá RáSá V=� L v. 

Construction of )6 consumes time and space of é:�8�8;. 
Computing all pairs shortest paths in )6 using matrix 
multiplication requires time of é:���6�8�6 ® �8�6 ; L
�é:���6 �8� ® �8�6 ; where é:0 ; is complexity of matrix 
multiplication of size 0 H 0. The well known bound for 
matrix multiplication is ñ O täuyx [3]. 

The high complexity of this style of computing of optimal 
makespans prohibits application of the technique for larger 
groups of agents than pairs. 

Let us note that in our implementation we compute 
optimal makespan for pairs of vertices only if it is needed 
(actually we need only single source shortest paths from pairs 
of starting positions and from goal positions respectively) 
which makes this computation negligible with respect to time 
consumption by the SAT solver. 

IV. MAKESPAN OPTIMAL SOLVING OF CPF 

 Modeling of CPF as propositional formula has been 
already studied in [14], [15]. However, the approach adopted 
in these works was to generate solutions of makespan as 
short as possible but not necessarily the optimal one. This 
was done by generating sub-optimal solution first by some 
existing method. Then subsequences of the computed sub-
optimal solution were iteratively replaced by makespan 
optimal sub-solutions computed by the SAT solver until 
timeout was reached. Given a subsequence of the solution it 
can be used to form an instance of CPF. The arrangement at 
the beginning of the subsequence is taken as the starting 

arrangement and the state at the end of the subsequence is 
taken as the goal arrangement. 
 Here we would like to use SAT solving to compute 
makespan optimal solutions. We can adopt the technique 
how makespan optimal replacements are computed in [14], 
[15]. This is done by trying iteratively longer and longer 
makespans while for each makespan the encoding of the 
instance is constructed and the SAT solver is asked if it is 
satisfiable. If so the process terminates with answer that 
solution exists. If not longer makespan is tried. If the there is 
no solution to the given CPF instance then the process 
continues to the given makespan limit and terminates with 
no answer. In this sense the technique is incomplete. Notice 
that the same strategy is used in SAT-based domain 
independent planning as represented by SATPlan [5] and 
SASE [4] planners. 
 Notice however that it can be easily made complete by 
first checking if a solution exists by some fast polynomial 
time algorithm such as PUSH-and-SWAP [7]. If this initial 
check says that solution exists then we run iterative SAT 
solving with no makespan limit. 
 The process of generating makespan optimal solution to 
CPF is formalized as Algorithm 1. 
 

 

Algorithm 1. SAT based CPF solving. 
 input:  a CPF instance - and makespan limit �. 
 output:  a pair consisting of the optimal makespan 
    and an optimal solution 

 
function Find-Optimal-Solution :- L :
 L :8á';á#áÙ4áÙ>;á�;: pair 
1:  for G L sátá å á� do 
2:   ) ZEncode-CPF-as-SAT :ÑáG; 
3:   if Solve-SAT�:); then 
4:    O Z Extract-Solution-from-Valuation:); 
5:    return :Gá O; 
6:  return :»áÎ; 
 

V. EXPERIMENTAL EVALUATION 

 We implemented the presented mutex reasoning encoders 

and SAT-based optimal solution generator employing 

proposed encodings in C++. Our preliminary experiments 

showed that the most suitable SAT solver for CPF encodings 

is cryptominisat [12] hence we employed it in our solution 

generator. The code as well as all the experimental data will 

be made available on: http://ktiml.mff.cuni.cz/~surynek/ 

research/iros2013 to allow reproducibility of all the 

presented results. 

 The experimental evaluation is targeted on measuring the 

runtime of the SAT-based optimal solving that employs 

proposed mutex reasoning in comparison with existent 

encodings without mutex reasoning and on comparison with 

WHCA* [11]. WHCA* is one of the most frequently used 

algorithm for CPF and it is known to generate near optimal 

solutions very quickly and thus it is suitable for comparison. 

 As it was suggested by Silver in [11] we used CPFs 

consisting of 4-connected grids with randomly placed 

obstacles. We used the setting where 20% of randomly 

selected vertices were occupied by obstacles (the same 

setting was used by Silver in [11]). 

 Grids of sizes 4î����î��� �î��� �î��� DQG��î��ZHUH� WHVWHG��

The number of agents ranged from 1 to �8��t. The starting 

arrangement and the goal arrangement were generated 

B � � C 

B � � C 
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UDQGRPO\�� $Q� H[DPSOH� RI� WHVWLQJ� LQVWDQFH� RQ� �î�� JULG� LV�

shown in Figure 3.  

 Comparison of runtimes with inverse and all-different 

encodings and those augmented with mutex reasoning is 

shown in Figure 2.  

 

 

 

 

 

 
 

Figure 2.  Runtime of optimal SAT-based solver with various encodings 

with respect to the incresing number of agents. In smaller grids inverse 

encoding with mutex reasoning performs marginally better than all-different 

encoding with mutex resoning which are both better than encodings without 

mutex reasoning - the improvement is around 2.0 times to 5.0 times. In 

larger grids all-different encoding with mutex resoning is the best. 

 
Figure 3.  Example of CPF instance on a JULG�RI�VL]H��î� with 20% of 

positions occupied by obstacles. 

 It can be read from results that mutex reasoning improves 

solving time approximately by 2.0 to 5.0 times. On grids of 

VL]H� �î��� �î��� DQG� �î�� inverse encoding with mutex 

reasoning dominates. On two larger cases ±  �î��DQG��î��± 

the best encoding is all-different encoding with mutex 

reasoning. This encoding turned out to be most suitable in 

cases with few agents in large environments. However, 

notice that SAT-based CPF solving is targeted on relatively 

crowded environments where other techniques such as 

WHCA* are failing. In crowded environments the inverse 

encoding is more suitable and mutex reasoning makes it yet 

faster solvable. 

TABLE I.  OPTIMAL MAKESPANS OF CPF ON GRIDS WITH 
20% OBSTACLES. 

Grid size 

(w?h) ð?ð ñ?ñ ò?ò ó?ó ô?ô 

|Agents| 

1 4 3 6 4 7 

2 3 4 7 6 6 

3 4 4 6 7 12 

4 5 6 10 11 9 

5 6 7 8 10 9 

6 6 6 10 6 11 

7 7 7 9 10 11 

8  8 10 13 11 

9   11 10 11 

10  9 13 13 9 

11   13 10 11 

12   12 9 11 

13   12 13 12 

14   13 13 13 

15   14 11 13 

16   14 15 14 

17   15 11 12 

18    13 12 

19    16  

 

 The computed optimal makespans are summarized in 

TABLE I. In some cases solution did not exists. 
The comparison of optimal SAT-based solving with 

WHCA* regarding the makespan is shown in Figure 4. It 
can be observed that WHCA* really generates solution 
whose makespans are close to the optimal ones. However, 
the weakness of WHCA* is that on more crowded 
environments it is unable to generate any solution. In these 
cases SAT-based solving with improved encodings in more 
promising. Window size in WHCA* was set to 64 in all the 
presented test. All the invocations of WHCA* finished in 
less than 0.1 seconds. 
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If we summarize experimental results we can conclude 
that mutex reasoning brings a significant improvement into 
existent CPF encodings. This means further improvement of 
SAT-based CPF solving. Moreover we suggested to use 
translation of CPF to SAT for makespan optimal solving of 
CPF. As mutex reasoning improves SAT encodings of CPF 
it can be viewed as technique that makes optimal CPF 
solving through SAT more viable. 

 

 

 

 
 

Figure 4.  Comparison optimal makespans generated by SAT-based 

solving with those generated by WHCA*. The window size for WHCA* 

was 64. Again there is 20% of obstacles. In more crowded environments 

WHCA* is unable to generate any solution. 

VI. CONCLUSION AND FUTURE WORK 

 In this paper we suggested a so called mutex reasoning as 
an improvement of existent encodings of CPF as SAT. 
Namely existent inverse and all-different encodings are 
augmented with mutex reasoning. Mutex reasoning checks 
reachability of a pair of vertices by a pair of agents in 
cooperative manner. This allows to rule out certain 
important cases that can reduce the size of the search space 
significantly ± these cases include for example a situation 
where two agents need to exchange themselves through a 
corridor. 
 Additionally we suggested to employ translation of CPF 
to SAT for makespan optimal CPF solving. This is a first 
attempt to solve CPF optimally by SAT (in related works 
only near optimal solutions were found through SAT 
solving). Together with encodings augmented by mutex 
reasoning we have shown in comparison with WHCA* that 

SAT-based approach is a viable option to solve CPF 
optimally. 
 For future work we are considering to further improve 
SAT encodings of CPF. It seems to be promising to 
preprocess clauses expressing difference of certain state 
variable from a set of constants by resolution which can 
reduce the size of clauses expressing mutex reasoning. 
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