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Abstract— Graphical models jointly with non linear opti-
mization have become the most popular approaches for solving
SLAM and Bundle Adjustment problems: using a non linear
least squares (NLSQs) description of the problem, these math
tools serve to formalize the minimization of an error cost
function that relates state variables through relative sensor
observations. The simplest case just considers as state variables
the locations of the sensor/robot in the environment deriving
in a pose graph subproblem. In general, the cost function is
based on the L2 norm whose principal iterative solutions exploit
the sparse connectivity of the corresponding Gaussian Markov
Field (GMRF) or the Factor Graph, whose adjacency matrices
are given by the fill-in of the Hessian and Jacobian of the cost
function respectively.

In this paper we propose a novel solution based on the
L1 norm as a back-end to the pose graph subproblem. In
contrast to other NLSQs approaches, we formulate an iterative
algorithm inspired directly on the Factor Graph structure to
solve for the linearized residual ‖Ax−b‖1. Under the presence
of spurious measurements the L1 based solution can achieve
similar results to the robust Huber norm. Indeed, our main
interest in L1 optimization is that it opens the door to the set
of more robust non-convex Lp norms where p ≤ 1. Since our
approach depends on the minimization of a non differentiable
function, we provide the theoretical insights to solve for the L1

norm. Our optimization is based on a primal-dual formulation
successfully applied for solving variational convex problems in
computer vision. We show the effectiveness of the L1 norm to
produce both a robust initial seed and a final optimized solution
on challenging and well known datasets widely used in other
state of the art works.

I. INTRODUCTION

During the last recent years, graphical models and non

linear optimization based algorithms have become the core

of many state of the art SLAM and Bundle Adjustment

approaches. In both contexts, the goal is to estimate a set

of state variables representing the location of robot/sensor

positions along a trajectory and the pose of geometric

elements characterizing the environment structure. The most

common way to formally define the problem is through a

non linear least squares (NLSQs) formulation: given as input

the set of relative measurements between state variables, the

goal is to minimize an error cost function. A solution delivers

the best state variable estimation for the cost function in a

MAP sense. Graphical models aim to graphically interpret

the stochastic relations between state variables and noisy

observations. Lets consider the pose graph subproblem in
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Fig. 1: On the left, a Factor Graph for a pose graph SLAM

subproblem. A GMRF graph for the same problem structure

(right)

which the set of state variables x represent the locations of

the sensor/robot in the environment and z the measurements

obtained from odometry readings or relative transformations

calculated from scan matching. Figure 1 shows two common

Graphical models used to represent a pose graph. On the left

we have a Factor Graph model which is a bipartite graph with

links between two types of nodes: first, nodes representing

state variables x (blue circles); second, nodes (red squares)

that explicitly codify the constraints z between the previous

state variables. On the right of the figure we have a Gaussian

Markov Random Field (GMRF) with a unique type of node

representing the state variables whereas the links show the

probabilistic relations that appear between the variables due

to the indirect effect of the observations [1]. For typical pose

graph problems in which the observations only link pairs of

state variables both types of models turn out to produce very

similar graph representations as can be observed in the figure.

Commonly, GMRF and Factor Graph solutions are based

on minimizing an L2 norm function of the residuals ‖r(x)‖22.

A local quadratic approximation of the function is usually

carried out by linearizing the residual errors r ≈ Ax − b.

Iterative methods as gradient descend, conjugate gradient,

Gauss-Newton or Levenberg Marquardt are used as minimiz-

ers [2], being Gauss-Newton and Levenberg Marquardt the

most common algorithms. An important and beautiful insight

is the relation between the fill-in pattern of the matrices

involved during the optimization and the structure of the

Graphical models previously discussed. It can be shown that
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the adjacency matrix of the GMRF is given by the fill-in

pattern of the Hessian matrix of the cost function whereas

the fill-in of the Jacobian reveals the structure of the Factor

Graph [3]. For each iteration, the minimization turns out to

be a factorization problem that exploits the sparse structure

of the Hessian (e.g. Cholesky Factorization) or the Jacobian

(e.g. QR Factorization).

In this paper we propose a novel solution based on the L1

norm as a back-end for solving a pose graph. We formulate

an iterative algorithm based on the Factor Graph structure

of the problem that solves in each step the L1 norm of

the linearized residual ‖Ax − b‖1. Our contributions are

summarized as follows:

• We formulate a novel back-end for Factor Graph SLAM

based on the L1 norm that is robust and effective in

removing strong spurious data. Although the results are

similar to the ones obtained using the Huber norm, the

importance of the L1 norm is that it can be used as an

intermediate step to implement more robust non-convex

Lp norms with p ≤ 1 [4].

• We provide the theoretical insight for minimizing a

non differentiable function like the L1 norm which

is derived from well supported convex optimization

theory. The optimization makes use of the primal-dual

algorithm successfully applied in vision problems.

• Our solution method is easy to implement since requires

simple calculations based on matrix-vector multipli-

cations. We do not need to calculate the Hessian of

the cost function or apply a reordering algorithm. In

addition, we still exploit the sparseness of the Jacobian

using the efficient SuiteSparse library for the matrix-

vector multiplications.

• We propose a very simple and robust algorithm to

produce a fast and good initial seed for the non linear

L1 optimization.

In the next section, we review the most important works

that solve the pose graph problem as well as we expose the

theoretical works which support our optimization technique.

In section III we review the NLSQs and we give a description

of the primal dual optimization for non differentiable convex

problems. Based on this theory, we propose an efficient

method to solve ‖Ax − b‖1 which is at the core of our

method. Section IV describes a fast initialization algorithm to

obtain a good seed for the L1 optimization. Our novel contri-

bution to minimize the pose graph based on the L1 is detailed

in section V. The effectiveness of the proposed algorithms is

thoroughly evaluated on well known real datasets in section

VI. Comparisons against the very popular g2o optimizer are

provided. Finally in section VII we draw the conclusions and

future work.

II. RELATED WORK

The most prominent works on pose graph optimization

over the past few years [3], [5], [6], [7] highlight the

importance of representing the whole estimation process

as a Graphical model. These works show that the SLAM

problem can be cast as a graph of relations between the

involved state variables (the inferred data) and the obser-

vations (the evidence). The combination of an optimization

algorithm and its graphical representation is a well known

paradigm in the computer vision community in which it has

been widely studied to solve the similar Bundle Adjustment

problem [8]. In the robotics field, the work presented in

[3] establishes a clear connection of GMRFs and Factor

Graphs to the non linear SLAM problem. The solutions are

based on matrix factorizations of the Hessian (GMRF) or the

Jacobian (Factor Graph) of the cost function. For GMRF the

Cholesky decomposition using CHOLMOD routines [9] is

the common work-horse for factorizing the sparse Hessian.

In [3] a QR factorization is used for the Jacobian while [10]

introduces preconditioned conjugate gradient for large scale

problems. The works in [5], [6] provide new contributions

for incremental solutions. Similarly, [11], [12] find a similar

way to explain the non linear optimization in terms of a

Maximum Likelihood estimation. All this works forms the

basis for the g2o popular library [13] used in pose graph

optimization. Vision applied to robotics [14], [15], [16] has

brought other efficient algorithms mainly based on the rules

dictated in [17].

All previous works share in common the way of ad-

dressing the required optimization. They all deal with the

L2 norm for the minimization of the residuals using a

traditional NLQS formulation. It is well known that the

L2 norm is not robust to the presence of spurious data.

This fact has motivated the development of robust front-end

stages in charge of disscarding spurious links in the graph.

Recently, new interesting efforts have been made to robustify

the back-end stage either changing the cost function [18],

or introducing switching variables to reduce the effect of

spurious links [19]. These new approaches are also based on

the L2 norm.

The idea of using a robust norm for the cost function

has already been applied in many computer vision problems.

For instance, the Huber norm is commonly used in Bundle

Adjustment approaches to strength the optimization against

the presence of spurious data [20]. In fact, the g2o library has

as well included this norm as an option in its optimization

process. Similarly, image processing applications make use

of robust norms or prior regularizers such as the L1 norm

or the Total Variation [21]. The main problem of these new

norms and priors is their non-differentiable nature. Fortu-

nately, the L1 norm belongs to the set of convex functions

for which there is a well supported set of math tools from

convex optimization theory and variational methods [22].

The advantage of convex problems over non convex ones is

that a global optimum can be calculated with high accuracy

in reasonable time, independently of the initial guess. In our

work we implement as optimization kernel a primal-dual

algorithm that has been successfully used to solve convex

and non-differentiable optimization problems that appear in

several image processing applications [23]. This algorithm

is shown to converge in O(1/k) where k is the number of

iterations. In [24] it is shown that this rate of convergence

is optimum for convex optimization problems with saddle
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point structure.

III. MINIMIZING ‖Ax− b‖1

The standard method to solve many robotics and computer

vision problems is based on a NLSQ algorithm. The goal is

to find a solution

x∗ = arg min
x

F (x) (1)

by minimizing a function F : Rn → R of the form

F (x) =
∑

i,j

‖r(xi, xj , zij)‖
2
2 = ‖r(x)‖22

where r(x) : Rn → Rm is a nonlinear residual vector that

measures the discrepancy of the relative relation between

a pair of state variables xi, xj ∈ x and their gathered

observation zij ∈ z. A local approximation of the cost

function is calculated by linearizing the set of residuals. The

solution is then found iteratively by solving the L2 norm of

the linearized residuals ‖Ax− b‖22.

The goal of this paper is to substitute the L2 norm by the

more robust L1 norm in the optimization and iteratively solve

for the linearized residual ‖Ax−b‖1. In order to tackle the

non-differentiable nature of the L1 norm we will make use

of the primal-dual optimization formulation.

A. Primal-Dual general problem

For completeness reasons this subsection gives a brief

review of the Primal-Dual general problem for convex func-

tions with saddle-point structure. A more detailed description

can be found in [23]. The basic structure of the primal

problem is given by

min
x∈X

F (Kx) +G(x) (2)

where K : X → Y is a linear map between two finite-

dimensional vector spaces X and Y equipped with an inner

product 〈 · , · 〉 and norm ‖ · ‖ = 〈 · , · 〉
1
2 .

We transform the original primal problem in Eq. (2) to

a saddle point problem by obtaining the Legendre-Fenchel

transformation of the convex function F ,

min
x∈X

max
y∈Y

〈Kx, y〉+G(x) − F ∗(y) (3)

where G : X → [0,+∞) and F ∗ : X → [0,+∞) are proper,

convex, lower semi-continuous (l.s.c) functions. Equation (3)

is known as the primal-dual problem of (2) with dual variable

y, and F ∗ is the convex conjugate of F obtained from the

Legendre-Fenchel transformation.

If these problems have a solution (x̂, ŷ) ∈ X × Y they

must satisfy the following necessary conditions,

Kx̂ ∈ ∂F ∗(ŷ) (4)

−(K∗ŷ) ∈ ∂G(ŷ)

where ∂F ∗ and ∂G are the subgradients of the convex

functions F ∗ and G. K∗ is known as the adjoint operator

of K. If F ∗ and G are differentiable these conditions are

equivalent to equal the gradients w.r.t x and y of equation

(3) to zero.

Algorithm 1 primal-dual

1: {Initialization of variables:}
2: τ, σ > 0, θ ∈ [0, 1]
3: (x0, y0) ∈ X×Y

4: x̄0 = x0

5: while k ≤ N do

6: {Update xk ,yk,x̄k}
7: yk+1 = (I+ σ∂F ∗)−1(yk + σKx̄k)
8: xk+1 = (I+ τ∂G)−1(xk − τK∗yk+1)
9: x̄k+1 = xk+1 + θ(xk+1 − xk)

10: end while

Algorithm 1 shows the iterative method used to solve the

primal-dual problem. Parameters τ ,σ and θ are set according

to the norm of matrix K. Lines 7 and 8 in the algorithm are

calculated by solving the so called resolvent operator given

by:

y = (I+ σ∂F )−1(ỹ) = arg min
y

{
‖y − ỹ‖2

2σ
+ F (y)}

B. Primal-Dual solution for minimizing ‖Ax− b‖1

Our objective is to solve the following minimization

problem:

min
x

‖Ax− b‖1

comparing this equation with Eq.(2) we can see the following

equivalences: K ↔ A, F (Ax) = ‖Ax−b‖1 and G(x) = 0.

Therefore the primal-dual problem is stated as

min
x

max
y

〈Ax− b,y〉 − F ∗(y)

where the dual conjugate F ∗ is the indicator function defined

as:

F ∗(y) =

{

0, ‖y‖∞ ≤ 1

∞, ‖y‖∞ > 1
(5)

For this particular problem, the solution for the primal and

dual variables at each k iteration is sketched in algorithm 2.

To speed up the convergence we use a diagonal precondi-

tioning for σ and τ explained in [25] in lines 2 to 5. The

resolvent operator for the dual variable is given in line 13

whereas for the primal variable the resolvent operator is just

the identity (since G(x) = 0). Notice that the algorithm is

based on simple sparse matrix-vector products.

IV. L1-INITIALIZATION FOR POSE GRAPH SLAM

Initialization for non linear optimization is crucial to

achieve convergence. A robust back-end solution must pro-

vide an accurate initial seed independently of the norm used

during global iterations. We use the primal-dual algorithm to

generate an accurate seed that will be used later on as input to

the L1 minimizer. In order to achieve the major effectiveness

of the primal dual algorithm, we propose to decouple the

rotation and translation variables. The advantage of this

scheme is the convex nature of the resulting cost functions.
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Algorithm 2 x∗ = primal dual L1(A, b, x0)

1: { Calculate preconditioners }
2: τj =

1∑
m
i=1

‖Aij‖
σi =

1∑
n
j=1

‖Aij‖
3:

4: T = diag(τ) with τ = (τ1, . . . τn)
5: Σ = diag(σ) with σ = (σ1, . . . σm)
6:

7: {Initialize x0
n×1, y0m×1, θ ∈ [0, 1] }

8: x̄0 = x0, y0 = 0
9: while k ≤ N do

10: { Update Dual }
11: yk+1 = yk + Σ · (Ax̄k − b)
12:

13: yk+1
i =

ỹ
k+1

i

max(1,‖ỹk+1

i
‖)

∀yi ∈ y

14:

15: { Update Primal }
16: xk+1 = xk − T ·ATy

17:

18: x̄k+1 = xk+1 + θ(xk+1 − xk)
19: xk = xk+1

20: end while

21: return x∗ = xk

Algorithm 3 details the initialization process. First, the Jaco-

bian and gradient for the angle linear system Jφφ = gφ are

computed. In this step only the measured relative orientations

are involved thus producing a Jacobian pattern whose rows

are trivially expressed as Jij = [0 . . . − 1 . . . 0 . . . 1 . . .].
An initial correction of the angles is carried by calling the

primal dual L1 algorithm as a subroutine. This delivers a

set of improved initial orientations φ∗. A similar procedure

is applied to solve the translation subproblem Jtt = gt. By

fixing the orientation to the partial solution φ∗, the decoupled

translation problem becomes also convex obtaining an initial

solution t∗.

V. L1 NORM BASED OPTIMIZATION FOR POSE GRAPH

SLAM

Global optimization updates using the L1 cost function are

also carried out in a primal-dual sense. Similar to the Gauss

Newton method, we provide an iterative method shown in

algorithm 4. At the current linearization point, we build the

Algorithm 3 getInitialSeed(FG)

1: { orientation seed }
2:

3: [Jφ,gφ] = buildSetupOrientation(FG)
4: φ∗ = primal dual L1(Jφ, gφ, φ0)
5: x = fixPhi(x, φ∗)
6:

7: { translation seed }
8:

9: [Jt,gt] = buildSetupT ranslation(FG)
10: t∗ = primal dual L1(Jt , gt, t0)

Jacobian matrix and gradient vector of our pose factor graph

given the state vector xk and the set of relatives observations

z. The calculation of the gradients and Jacobians is exactly

the same as for the L2 norm based optimization. The state

vector is updated using the composition transformation as in

the g2o optimizer.

Algorithm 4 Factor Graph Optimization

1: {Given a factor graph FG(V , E)}
2: x0 = getInitialSeed(FG)
3: while k ≤ Ng do

4: [J,g] = buildSetup(xk, z)
5: dxk = primal dual L1(J, g, xk)
6: xk+1 = xk ⊕ dxk

7: end while

VI. RESULTS

We provide a fast and reliable C++ implementation of our

L1 based Factor graph algorithm running on an Intel Core

i7-2630QM CPU at 2.9GHz. Our back-end module allows us

to use the L1 and L2 based cost functions for primal-dual

and NLSQ optimizations respectively. Our implementation is

based on the SuiteSparse library with efficient sparse matrix-

vector operations for L1, and a fast Cholesky factorization

solver with reordering for L2. We have tested our L2

NLSQs solver against the g2o software obtaining the same

efficiency. Nonetheless, we have run g2o in the expriments

to assure the thoughtfulness of the evaluation and to provide

fair comparisons with the most popular state of the art

optimizer. The algorithms proposed in this paper are run

on three well known real datasets widely used: Intel,

Manhattan3500 and City10k. The simplicity of the L1

calculations also allows us to carry out more challenging

evaluations on larger simulated Manhattan worlds with 10k

and 50k nodes.

Our first experiment evaluates the ability of the primal

dual algorithm to obtain good initial seeds. Algorithm 3 is

executed to find an improved set of angles from which we

calculate a set of improved translations. Figures 2a and 2b

show the evolution of the cost function per iteration for the

big Manhattan10k dataset. In both cases, we intentionally

over iterate the algorithm using 1e+5 primal-dual iterations

until the convex function gets its lowest costs and reaches

the optimal minimum. The results empirically show that

a maximum of 1e+4 iterations are required to achieve

the searched solution. Notice the O(1/k) cost reduction

behavior predicted by the theory. Figure 2c shows also the

evolution of the cost function during the non-linear global

optimization (algorithm 4) with 10000 outer updates and

400 inner primal-dual iterations. Again, we have performed

much more iterations than the strictly necessary to get the

basin minimum. According to the results, at least 30 outer

iterations are required to obtain a solution for the non linear

problem. We can avoid the use of a fixed number outer

iterations by using similar stop criteria on the gradient norm

20



2000 4000 6000 8000 10000

100

200

300

400

500

600

700

800

L
1 c

os
t

iterations

0 500 1000
20

40

60

80

100

120

L
1 c

os
t

iterations

(a)

2000 4000 6000 8000 10000

0.5

1

1.5

2

2.5

3

x 10
5

L
1 c

os
t

iterations

200 400 600

0.5

1

1.5

2

x 10
4

L
1 c

os
t

iterations

(b)

2000 4000 6000 8000 10000

0.5

1

1.5

2

x 10
5

L
1 c

os
t

iterations

20 40 60

3.05

3.1

3.15
x 10

4

L
1 c

os
t

iterations

(c)

Fig. 2: Results obtained after the execution of our L1 based primal dual algorithm. The plots show the cost evolution per

number of total iterations on the Manhattan10k dataset. (a) Cost vs iterations for convex angle correction. (b) Cost vs

iterations for convex translation correction. (c) Global cost vs outer iterations for the complete non-linear optimizations. For

each plot, a close up picture is taken to show that the minimum cost is achieved during the first iterations.
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Fig. 3: Optimized maps with L1 based Factor graph SLAM.

Intel (top-left). Manhattan3500 (top-right). City10k (bottom-

left). Manhattan10k (bottom-right).

TABLE I: Initial and final L1 costs

L1 solution
Initial cost Final Cost

Manhattan3500 5940 1319,53
Manhattan10k 5.2064e+07 30206,5
Intel 1513,17 982,051
City10k 2.78513e+06 4021,95
Manhatan50k 7.14591e+08 117734

and cost values as in g2o. Figures 3 and 4 show the final

maps obtained for the 5 datasets. In Table I we summarize

the initial and final L1 costs for the evaluated datasets. Figure

5 depicts for the Intel dataset the output sequence for each

step of the optimization. To clearly show the effect of the

initial seed algorithm we generate a very noisy data as input

to the optimizer. The improved seed was obtained after 1000

primal-dual iterations for both angles and translations. The

final L1 non-linear optimization required 5 outer iterations

with 500 primal dual inner iterations.

Although our algorithm usually requires a larger number

of L1 iterations to achieve a correct map compared to

g2o, each iteration requires less time due to the simple

sparse matrix-vector multiplications involved. On the con-

trary, CHOLDMOD based solvers as g2o use much more

time per iteration to solve a Newton step. In table II we

summarize the time in seconds for each iteration for the

different algorithms. For the Manhattan50k dataset, which

contains 50000 nodes and 700000 edges, the g2o algorithm

gets stacked solving the first iteration while the proposed

L1 algorithm is able to achieve a solution. In fact, the

table shows the CHOLMOD dependency on the graph struc-

ture. The City10k map is solved in just 0.12s while the

Manhattan10k, which contains the same number of nodes

but a different edge distribution takes 2.31s per iteration. An

TABLE II: Time per iteration in seconds

L1 solution L2-g2o solution
Angle Traslation Global

Manhattan3500 0,0009 0,002 0,003 0,016
Manhattan10k 0,003 0,0075 0,011 2,31
Intel 0,0003 0,0006 0,001 0,0067
City10k 0,003 0,0076 0,013 0,12
Manhattan50k 0,015 0,033 0,056 ??

incremental version of the proposed algorithm was tested

against the incremental g2o solution. In Figure 6 we show

the time per iteration required by g2o and our method

to solve the City10k dataset. Notice that the behavior of

our algorithm remains unaltered with the number of nodes

whereas the g2o changes depending on the reordering applied

by CHOLMOD. For more than 5000 nodes the running

times of both algorithms is very similar. Finally, we show

the robustness of the L1 based Factor Graph algorithm in

presence of strong spurious data. Unlike [19], our algorithm

is able to achieve an accurate result when the datasets

contain spurious links even when there is no prior distinction

between potentially erroneous links from scan matching and

more reliable odometry links. In Figure 7 bottom, we show

an optimized map of the Manhattan3500 and Intel

datasets where 2 and 10 links have been randomly added

respectively. These links connect far away robot positions
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Fig. 4: Final pose graph obtained on a very large Manhattan world with 50k nodes and 70k observations.
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Fig. 5: Graph optimization sequence for the Intel dataset. (a) Initial seed with added noise. (b) Result after seed initialization

(light-cyan) and final L1 optimization (dark-blue). (c) Comparison of L1 based solution (blue) vs. L2 g2o solution (red).

whereas the corresponding spurious measurements tells the

algorithm that the distance is zero. A total of 10000 iterations

are executed for angle and translation initialization with no

global optimization obtaining good results. The input noisy

data is depicted in green. Random spurious data corresponds

to the red links.

VII. CONCLUSIONS AND FUTURE WORK

The current work presents a novel Factor Graph algorithm

for pose graph SLAM based on minimizing an L1 norm

cost function instead of the traditional NLSQs scheme. We

introduce into the SLAM literature a primal-dual optimiza-

tion algorithm able to cope with non differentiable functions

like the L1 norm in reasonable time. To solve the non-

linear and non-differentiable optimization, we propose a

double iterative algorithm: On the one hand, an inner iterative

subroutine is executed to find the L1 norm solution of a linear

system; On the other hand, an outer iteration is performed,

as in traditional Gauss Newton methods, that linearizes the

residuals and builds the linear system that will feed the inner

loop. As additional contributions, we propose a simple an

efficient algorithm to calculate a very good seed for the

non-linear optimization based on decoupling the orientation

and translation variables to obtain two convex minimization

problems easily solved using the same paradigm. Since

the primal-dual formulation proposed only performs sparse

matrix-vector products, the algorithm is specially suited to

calculate accurate solutions on very large graph datasets in

which state of the art optimizers can not perform well. We

have also shown the ability of the proposed optimization

method to reject strong spurious data.

This work opens a bunch of future lines of research. First,
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Fig. 6: Time per iteration for an incremental problem wih

the City10k dataset.

Fig. 7: Brief evaluation of the graph SLAM algorithms under

the presence of spurious data. On the left, Manhattan3500

with 2 strong spurious links (red). On the right, Intel dataset

with 10 strong spurious links (with strong we mean the

spurious measured distance is zero although the real distance

between the nodes is big).

our next step consists on evaluating more robust Lp norms

(with p ≤ 1) whose implementation depends, as intermediate

step, on the presented L1 norm. In addition, the primal

dual formulation introduced allows us to combine different

norms in the optimization functional that can be useful to

derive new algorithms which can implicitly tackle the data

association problem. Finally, we also think that other fields

of robotics research where optimization of non-differentiable

functions is required can be drastically favored with this new

formulation.
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