
Decentralized Robotic Assembly with

Physical Ordering and Timing Constraints

T. Ryan Schoen and Daniela Rus

Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology, Cambridge, Massachusetts, USA

rschoen@mit.edu, rus@csail.mit.edu

Abstract— Our prior work presented a system for decen-
tralized robotic assembly[1]: given a team of robots, a cache of
components, and a desired structure specified as a blueprint, the
algorithm computes a sequence of part deliveries and assembly
steps to achieve the desired structure, while considering physical
dependencies and reachability constraints for the goal structure.
In this paper we introduce a new algorithm that extends
our prior result to incorporate the duration of each assembly
operation. We also extend the algorithm to be adaptive to
the availability of parts. When a part is not available, the
assembly sequence is recomputed. The algorithms are provably
convergent and their execution does not depend on the size of
the robot team. We implement the algorithms using a team of
four youBot robots that can (1) locate and identify parts; (2)
use communication to achieve coordinated hand-off of parts;
and (3) create complex log-cabin style structures.

I. INTRODUCTION

Distributed robotic assembly is increasingly becoming a

focus of robotic efforts[2], as the applications span varied

industries. There are many properties we would like to see

in a robotic assembly system to maximize its usability in

practical situations. It should be completely decentralized,

allowing robots to operate independently with only local

information. This allows scaling of the system to an arbitrary

number of robots or size of assembly. The system should be

robust to failure, such that a point failure in one or more

robots does not prevent the overall structure from reaching

completion. Efficiency should be maximized, utilizing the

robots and parallelizing tasks to the greatest extent possi-

ble. And finally, as the robots are constructing a physical

structure, the system should be aware of the constraints and

physics of the world in which they are interacting. Thus

they can ensure a correct construction and integrate this

knowledge to maximize efficiency.

Our previous work in robotic assembly has focused on

the following aspects. We developed algorithms to equally

split work between robots for parallelism, and controllers to

enable the robots to carry out the construction[3]. These algo-

rithms and controllers were fully decentralized and scalable.

The system was robust to failure among robots[4]. We im-

plemented these algorithms on a system to demonstrate their

practical properties[5]. However, the system did not regard

the physical constraints of the structure while scheduling, one

of the key traits of a complete robotic assembly platform.

In this work, we present new algorithms for a decentralized

scheduling approach to complex assembly that models the

time required by each operation and is adaptive to part avail-

ability. The new algorithms consider the physical constraints

of an assembly and utilize them to tend toward efficiency

and parallelism.

We also redesign our robotic assembly system in this work,

and implement it on a new hardware and software platform.

Each robot can locate and grasp a part from a part cache,

hand that part to another robot (from grasped configuration

to grasped configuration without the need to put the part

down) and add the part to the assembly. We then use this

platform to investigate the full assembly process with our

construction ordering algorithms.

The robotic platform consists of four KUKA youBots,

featuring a holonomic base and a five degree-of-freedom

arm. We use a Vicon motion capture system for localization

and standard Wifi for communication. The algorithms and

software architecture are implemented on Robot Operating

System (ROS), written in C++ and Python. The schematics

for the target structures are provided to the robots in a YAML

blueprint defined in terms of the component parts of the

structure.

A. Related work

Much of our prior work has addressed three-dimensional

assembly[6], [7], [8]. Specific to distributed assembly, our

previous work investigated and developed theoretical al-

gorithms for equal-mass partitioning, coverage, multi-robot

coordination, and parallel assembly[3], [4], [5], [9], [10]. Our

recent work extends these algorithms to integrate physical

constraints[1], but does not consider these constraints while

scheduling.

Several others have investigated similar systems and their

desirable properties. Yasuda et al. described a multi-agent

system with robust error tolerance[11]. Van Brussel et al.

investigated multi-agent systems from the perspective of

distribution in an ever-changing environment[12]. Stochastic

policies for parallel task allocation in robotic swarms were

investigated by [13]. Stochastic algorithms for robotic con-

struction with dependency on raw materials were analyzed

by Matthey[14]. [15] developed methods for evaluating the

complexity of structures, as it applies to their distributed

robotic construction. Three-dimensional construction with

consideration to physical constraints such as gravity and

stacking was achieved by [16], [17], and [18], among others.

2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS)
November 3-7, 2013. Tokyo, Japan

978-1-4673-6357-0/13/$31.00 ©2013 IEEE 5764

II. REVIEW OF PROBLEM FORMULATION: COORDINATED

ROBOTIC CONSTRUCTION WITH CONSTRAINTS

This section summarizes the decentralized construction

model from our previous work[1].

We are given a team of robots, divided into two types:

those which deliver parts to the assembly area, and those

which assemble the structure. The robots can communicate

locally with other robots within their communication range.

They are all provided a specification of the assembly to be

constructed, including a specification of its component parts.

The blueprint also contains a representation of two directed

acyclic graphs (DAGs) Gp and Gr which define the physical

dependency and reachability constraints of the structure.

We define a physical dependency between two parts if the

one part cannot be stably placed or assembled until the other

has been, regardless of the state of any other part. Similarly,

we define reachability between two parts if a robot at the

location of one part can reach the other part, regardless of

the state of any other part. With these dependencies we can

form a topological sort of the parts required for assembly.

This provides a loose assembly ordering, but does not address

the issue of ordering for efficiency and parallelism.

This problem formulation allows the construction of any

arbitrary structure, but for simplicity in exposition we will

use two sample structures: a log cabin design and a staircase

as described in Section V.

At a high level, the assembly and delivery algorithms

we employ are identical to those employed by Bolger et

al[5]. The main algorithm is reproduced here in Algorithm 1.

After a random deployment of assembly robots across the

construction site, delivery robots begin to fetch parts from

a source location and bring them to the assembly robot

with the most work to complete, or the most demanding

mass. The assembly robots then use these delivered parts to

construct the target structure. In this work we introduce a new

hardware and software platform as described in Section V,

and employ the novel partitioning and ordering algorithms

described below. These algorithms fundamentally alter the

distribution of demanding mass among the robots, resulting

in a prioritization of assembly parts not found in prior work.

Algorithm 1 Construction Algorithm

1: Deploy the assembly robots

2: Place the assembly robots at optimal task locations

3: repeat

4: delivery robots: carry source components to the

assembly robots

5: assembly robots: assemble the delivered components

6: until task completed or out of parts

III. ADAPTIVE CONSTRUCTION WITH PART

UNAVAILABILITY AND VARYING OPERATION TIMES

Previous work has assumed that the supply of parts is well-

stocked, and that each assembly task requires roughly the

same amount of time. In practice, these assumptions rarely

hold. In this section we present a decentralized adaptive

algorithm where the structure to be created requires different

types of assembly operations and each assembly operation

is parameterized by the time required to execute it. We

also consider the availability of the parts required for the

current assembly step and extend the algorithm to incorporate

adaptation to part availability. If a part is not available, the

construction algorithm recomputes the assembly schedule to

re-focus the operations where it is possible to make progress.

A. Part Supply

In a practical assembly operation with heterogenous parts,

there is not an infinite supply of materials. During the

assembly process the supply of a particular part may run out

and be resupplied later. A robust assembly algorithm should

adapt to this change.

Let the function n(λ) represent the number of parts avail-

able of type λ. We assume that all robots have information

about the number and type of parts available, although for

our purposes it is sufficient to represent n(λ) ∈ {0, 1} as the

presence or lack of parts of type λ.

The first modification to our algorithm ensures that a part

which we lack is not considered “placeable”. We introduce

a boolean variable to represent this information, and mark a

part as unplaceable if it is true.

ξs(v) = (n(λv) = 0) (1)

The two DAGs described in Section II are defined as Gp =
(V,Ep) and Gr = (V,Er), where the nodes v ∈ V represent

the discrete assembly operations to be completed and the

edges Ep and Er represent the physical and reachability

constraints respectively. We introduce two algorithms: one to

be run when a robot receives communication that a supply

of a certain part type has been extinguished, and another

when it receives communication that a part type has been

replenished. These two algorithms are found in Algorithms 2

and 3, respectively.

Algorithm 2 Part has been extinguished

1: Receive communication that n(λ) = 0
2: Eλ

p ← ∅
3: E′

p ← Ep

4: for (vi, vj) ∈ Ep : λvj
= λ do

5: Eλ
p ← Eλ

p ∪ {(vi, vj)}
6: E′

p ← E′

p\{(vi, vj)}
7: end for

8: Ep ← E′

p

Algorithm 3 Part has been replenished

1: Receive communication that n(λ) > 0
2: Ep ← Ep ∪ Eλ

p

The first improvement from this modification ensures that

a part is not considered placeable if its supply has run

5765

out, because an assembly robot will not assign positive

demanding mass to those parts. This prevents delivery robots

from seeking that part.

Second, by removing the physical dependency of extin-

guished parts from the parts they depend on, the assembly

algorithm now weights those depended-on parts less. This is

desired, because part types that are currently extinguished do

not contribute to the pool of available work. Placing physical

dependencies of the lacking parts does not free up more parts

for the assembly robots to place. By pretending that the parts

no longer exist in the assembly blueprint, we ensure we that

we maintain efficient ordering construction.

In this algorithm we did not modify the reachability graph,

Gr. This is done so that even though we are ignoring the

extinguished parts in the dependency graph, we do not place

parts that would block the placement of the extinguished part

once the part supply has been replenished.

B. Assembly Time

Our previous algorithms have assumed that all assembly

operations take the same amount of time to accomplish,

which is rarely true in practice. For example, one can imagine

an assembly where one task is twice as valuable as another to

complete in order to maximize parallelism and efficiency; our

prior algorithms would choose the former task to complete

first. However, if the first task takes three times as long to

complete than the other, then the second task is actually

more desirable to complete first. It will make additional work

available sooner.

Once we introduce the concept of assembly time, we are

no longer interested in the ability of task completions to make

work available; instead, the quantity of interest is a task’s

ability to make additional work available divided by the

amount of time it takes to complete that task. Mathematically,

we introduce this into the algorithm by altering the scoring

function described in our previous work. It has the critical

property that it produces higher priority for those parts

that would make the most work available (tending toward

parallelism) and is in the hardest-to-reach area first (tending

toward efficiency). It now takes the form:

score(f(·), X) =
∑

x∈X

(

2
f(x)
τx

)−cX

(2)

where τx represents the amount of time required to com-

plete task x and the function f(x) represents the number of

other nodes that will be affected by completing a task (for

example, by fulfilling physical dependencies). By dividing

f(x) by the time required to complete that task, we now

weight assembly tasks according to their actual value to the

process.

Theorem 1: The controller modified by timing constraints

will converge to a complete structure if possible.

Proof: The original controller converges to a complete

structure if possible, per the proof in [1]. This proof, which is

not duplicated here for space reasons, is based on the struc-

ture of the dependency DAGs and the mass function, both of

which are independent of the exponent
f(x)
τx

. Therefore the

modification of this parameter does not alter convergence,

and the controller will converge to a complete structure if

possible.

IV. SIMULATION RESULTS

To test the effectiveness of our algorithms, we modified

the assembly simulator used in [1] to take part supply into

account. In this simulation, the wireframe of a plane must

be constructed prior to placement of the panels that make

up the plane’s body. By artificially modifying the supply of

these parts, we can observe the effects of our algorithmic

changes.

We ran the simulation on the airplane assembly seen in

Figure 1 using six assembly robots and six delivery robots.

At t = 20 the supply of plane fuselage panels is extinguished.

At t = 80 the supply is replenished so that the assembly can

be fully constructed. The simulation was run twenty times:

ten times using the original algorithm, and ten times using

the modified part supply algorithm. The results from each

set of ten were averaged together.

A graph of average demanding mass over time is found in

Figure 2. The vertical lines at t = 20 and t = 80 show when

the supply of plane panels was extinguished and resupplied,

respectively. As expected, both algorithms perform roughly

the same until t = 80. The difference up until this point is not

the amount of work being done, but that with the modified

algorithm the robots are more intelligently choosing which

work to do in order to efficiently parallelize the work once

the part supply is replenished.

It follows that the behavior diverges after t = 80. The

original algorithm produces a slightly larger spike in avail-

able work - this is expected, since the unmodified weighting

function would have caused the dependencies of plane panels

to be assembled. Thus, when panels are resupplied there is

a large and immediate need for them. However, under the

original algorithm, there are undiscovered bottlenecks in the

assembly process that have not been addressed. This results

in a much longer overall completion time.

In contrast, the modified algorithm weighted the depen-

dencies of the plane panels low (since they did not free up

additional work to complete), and instead focused on other

sources of bottlenecks. This leaves a large amount of avail-

able, parallel work to be completed. Once the plane panels

are resupplied, the robots can place the panels’ dependencies

and the panels themselves. The modified algorithm finishes

the construction task much faster than the original algorithm.

V. EXPERIMENTAL SYSTEM

A. Mobile manipulator

The platform on which we have chosen to implement our

algorithms is a team of four KUKA youBots. The youBot,

seen in Figure 3, consists of a holonomic base capable of

omnidirectional movement and a five degree-of-freedom arm

with two-finger gripper[19]. The robots are equipped with

an onboard PC running Ubuntu Linux. The mini ITX PC

board also contains embedded Wifi to allow the robots to

5766

communicate with one another, although we have augmented

them with Netgear WNCE2001 Wifi adapters for increased

communication integrity.

(a) At t = 20 the fuselage panels have run out. Much
of the structure is left to complete.

(b) At t = 80, the fuselage panels are resupplied. The
assembly robots have constructed much of the framework
of the fuselage, but were unable to place any fuselage
panels in the past 60 timesteps.

(c) The plane has been fully assembled at t = 102 with
the resupplied fuselage panels.

Fig. 1. The plane assembly used in simulation contains a fuselage, two
wings, and a tail section, each of which is composed of many individual
parts. The parts are color-coded to indicate which of the six assembly robots
placed each part (e.g., red parts were placed by robot 1, green by robot 2).
There are a variety of structural dependencies between parts, making the
construction order complex. The plane is shown at (a) t = 20, (b) t = 80,
and (c) completion at t = 102.

Our previous platform allowed for easy navigation and the

manipulation of our custom-built objects at ground level[5].

However, it suffered from a lack of precision and a relatively

small workspace that inhibited efforts to build structures in

three dimensions.

In contrast, the KUKA youBot enables a much larger

workspace with more degrees of freedom. The minimum

Fig. 2. The average demanding mass over time of ten simulations using the
original algorithm (blue) and ten simulations using the modified algorithm
(red). At t=20 the supply of plane panels is extinguished; at t=80 the supply
is replenished.

Fig. 3. An assembly robot places the final part on the three-dimensional
tower. The tower is composed of six layers of the log cabin construction,
or three of the simple squares from Section VII. This tower is the result of
trial #1 from Table II.

speed of the holonomic base is small enough to allow for

minute adjustments. Because of these factors, in this work we

present a three-dimensional structure that would have been

impossible to construct using our previous platform.

B. Localization

Localization for the youBots is provided by a 12-camera

Vicon motion capture system, which can track position and

orientation to millimeter and milliradian precision respec-

tively. Retroreflective markers allow the system to identify

robots and objects in the workspace.

In our experiments, the robotic base and manipulator were

separately marked. The base was tracked for navigation,

collision avoidance, and rough navigation toward a goal

location. The arm was tracked for fine position adjustments

and precise manipulation.

The poses of both the bases and arms are broadcast

wirelessly to the robots at 10Hz using the tf interface for

ROS, as described below.

5767

C. Software and communication

The software architecture runs within the Robot Operating

System (ROS). There are several nodes, depicted in Fig-

ure 4, that run simultaneously. At the lowest level, there are

hardware-specific nodes to control the robotic arm and base

through ROS wrappers for the youBot driver. These in turn

are given commands by the planner, which directs the overall

flow of the assembly process. The planner is in constant

communication with the blueprint node, which maintains the

state of the assembly process and the goal structure. The

blueprint node coordinates with the partitioner node, where

the heart of the algorithm exists. The partitioner ensures

an efficient assembly order evenly split among the robots.

Finally a Vicon node interacts with the Vicon motion capture

system to provide position information to the partitioner and

planner, which use the data to spatially partition the work

and issue execution commands appropriately.

Our system takes advantage of the distribution and com-

munication infrastructure in ROS. All nodes are run in a

decentralized manner on the appropriate robot, with the

exception of the Vicon system which is necessarily central-

ized. Communication is performed through ROS channels or

“topics”. All nodes are designed to function with an arbitrary

number of robots, although the experiments described here

will only focus on two or four in order to demonstrate the

specifics of the system.

���� ��� ��	
�

�
����� �������
���

�
�������

����

�
�
��

����
� �
����

�
�
���	����
��

��	
�

������

��
��

��
�

�

��
��
��
�

��
��
��
�

�

��
��
��
�

�
������� ��
���
��

�

��
��
��
�

�

����

�

�
�
��

�
��

�
	��

��

�
��

�

��

�
�
�
�

	

�
�
�
�
�

�
��

	

�
�
�
�
� �

�
���

�

�
�
��

�
����
�����

Fig. 4. System architecture and information flow. Each oval represents a
separate ROS node, and the arrows indicate messages being passed between
nodes (or in some cases, between robots).

D. Blueprints and parts

Structures are specified using the YAML markup language.

A blueprint file is a list of parts, each of which contains

a unique identifier, a pose in the target structure, and any

dependencies the part may have or provide. Using this simple

but robust description, an arbitrarily complex structure can

be specified.

As a simplified structure, we decided to build squares in

an approach similar to how a log cabin is constructed. Two

parallel parts are stacked on alternating sides. Six layers of

this structure are shown in Figure 3. The parts are constructed

out of lightweight foam, and consist of a long flat section

with two diamond-shaped supports on either end and a raised

gripping area in the center.

To demonstrate our part supply algorithm, we will make

use of styrofoam cubes to build a staircase. For part hetero-

geneity, we have split the cubes into two groups and color-

coded them accordingly. The red cubes represent the finished

“tops” of the staircase, whereas the blue cubes represent the

unfinished “foundation” of the staircase, perhaps made out of

concrete in a real assembly process. The assembled staircase

has three stairs - one red cube, one red cube on top of one

blue cube, and one red cube on top of two blue cubes.

VI. IMPLEMENTATION

A. Navigation

A motion planner described in [20] is employed for rough

navigation. It uses a combination of a grid-based global

planner and an equivalence class-based local planner to

calculate a smooth and safe path to the goal. A static map

assigns high cost to the part cache and target construction

area, such that the robots only approach them as needed to

retrieve or place parts.

For any navigation task, the robots switch to a second

controller upon reaching the general vicinity of the goal.

This controller uses simple proportional feedback control on

the base velocity given the position of the arm in order to

precisely position the robotic manipulator for the next step

in the task.

B. Manipulation

In our previous work, we took advantage of smart parts

and a gripper with an infrared sensor in order to locate and

accurately grasp component parts[5]. To better generalize to

all robotic assembly tasks, we have removed these constraints

from our new system. In these experiments neither the parts

nor the manipulators were equipped with any sensing or

vision. Additionally, the parts were not marked with the

retroreflective markers. Instead, the robots relied on consis-

tent part source location.

To assist in manipulation, we added small sandpaper discs

on the inside of the youBot fingers. This prevented the parts

from slipping or changing orientation. We also added these

sandpaper discs onto the colored cubes used in the part

supply algorithm, to further prevent slipping.

C. Handoffs

An important innovation of the manipulation system that

is enabled by the youBot hardware is communication-based

direct handoff for transferring parts between robots without

having to place the parts on the ground as in [1]. The

intuition behind the handoff algorithm is as follows. The

5768

delivery robot moves to the cell of the assembly robot for

part handoff. At this location, the robot uses its pose and

model of its own hardware to calculate the location of the

part, and the grasping location on the part. This information

is broadcast to the assembly robot, which navigates to the

same cell and calculates its position and the configuration of

its manipulator so as to to position its gripper in the handoff

location. Next, the assembly robot grasps the part and then

communicates this state to the delivery robot which then

releases the part. Both robots then move away from each

other and continue their respective tasks. An image of part

handoff just before the delivery robot releases the part can

be seen in Figure 5.

This direct handoff capability increases the speed and

accuracy of the assembly operation. The solution is robust

and is explored further in Section X.

D. Ordering

As described in Section II, our ordering relies on two

DAGs Gp and Gr represented in the assembly blueprint.

These respectively indicate the physical dependencies and

reachability constraints of the target assembly. Given the

structure of these graphs and a scoring function, we can

weight individual parts by their contribution to the paral-

lelism and efficiency of the overall task[1]. Assembly robots

therefore choose the parts with the largest weight to assemble

next, ensuring that the robots are greedily opening up the

most future work to be done.

To save complexity and time over trials, the ordering of

parts in the assembly process is calculated prior to execution.

In practice this could be performed either offline or online,

depending on the requirements of the task and the volatility

of the assembly blueprint. The algorithms and approaches

are the same regardless of the choice.

E. Delivery

After retrieving a part from the source, a delivery robot

begins listening to broadcasts coming from assembly robots.

These broadcasts contain each assembly robot’s demanding

mass for each part type. The delivery robot chooses the

assembly robot with the highest demanding mass for the part

type it has retrieved, and moves toward that robot.

Once the delivery robot is within appropriate range of

the assembly robot, it hands the part to the assembly robot

(Figure 5). Again, since the parts and grippers are not

equipped with any sensors, both robots must be precise in

their handoff.

F. Assembly

Finally, assembly is performed using the same precise

techniques for a stable, accurate placement of the individual

parts. Assembly repeats until the structure is complete or

parts are no longer delivered via the delivery robots.

G. Robust Fault Recovery

Our algorithms and implementation allowed for robust

recovery in the face of single- or multi-robot failures. Several

Fig. 5. Image of a delivery robot performing a delivery. Since the robots do
not have vision and the assembly parts are not tracked by the Vicon system,
the placement and communication of part coordinates must be precise.

Trial
Runtime Assembly Delivery Success

(M:SS) utilization utilization (Y/N)

1 6:04 83.4% 64.5% Y
2 5:59 86.5% 65.9% Y
3 6:09 80.7% 64.6% Y
4 6:22 86.5% 63.7% Y
5 6:24 87.8% 63.6% Y
6 5:58 86.8% 63.7% Y
7 6:05 88.3% 65.6% Y
8 6:20 87.0% 66.2% N
9 6:12 87.6% 64.4% Y

10 6:17 85.9% 65.1% Y

Avg 6:11 86.1% 64.7% 90%

TABLE I

SUMMARY OF ROBOT ASSEMBLY TRIALS FOR A SQUARE

times during demonstrations we experienced a failure of

one or more robots; we were able to remove that robot

from the assembly floor and continue the demonstration to

completion.

This type of failure fortunately or unfortunately did not

occur during the experiments that we describe. In order to

highlight this aspect of our algorithms, we intend to explore

experiments with artificially induced failures in the future.

VII. TWO-DIMENSIONAL EXPERIMENTAL RESULTS

A. Overall results

Ten full assembly trials were attempted with a blueprint of

a simple square structure (two layers of the structure found

in Figure 3), using just two robots. Each trial consisted of

four delivery-assembly iterations. Each iteration involved a

delivery robot retrieving a part from the source, delivering

it to the assembly robot, and transmitting its location to the

assembly robot; the assembly robot in turn retrieves the part

from the broadcast location, moves to the assembly location,

and places the part on the assembly. There were therefore

many possible points of failure, especially given that the parts

were retrieved and manipulated without vision.

The results are summarized in Table I. Assembly and

delivery utilization is defined as the percent of time that the

assembly or delivery robot, respectively, was busy with a

task as opposed to waiting.

Over all ten trials, there was only one failure. This

occurred when the assembly robot dropped a part after

5769

retrieving it from delivery but before placement on the final

structure. This was likely due to a low battery which caused

there to be insufficient force in the gripper; the battery was

replaced for the last two trials and no further issues were

seen.

In the other nine trials, there were no significant failures

and all structures were completed without intervention.

B. Runtime and efficiency

The average runtime over the trials was 6 minutes and

11 seconds, with a standard deviation of 9.6 seconds. An

activity log for a typical run can be found in Figure 6. The

solid bars indicate when each robot was busy with a task,

and the lack of a bar indicates that the robot was waiting.

The chart shows that the assembly robot was busy for nearly

the entire assembly process, whereas the delivery robot was

busy for significantly less time. Indeed, over all trials the

average assembly utilization was 86.1% whereas the average

delivery utilization was 64.7%. This suggests that the optimal

assembly to delivery robot ratio for this task is roughly two

to three, although it is unlikely that the marginal utilization

of additional robots is strictly linear. This is examined more

later.

In our prior work, the average utilization across all robots

was roughly 54%[21]. In the trials with the new platform,

the overall utilization was 75.4%. This decrease in idle time

is desirable, because it minimizes wasted resources.

� �� ��� ��� ��� ��� ��� ��� ���

��	
��
�

�

	���

�����

�
���
��

�����

Fig. 6. Robot activity over time in trial 4. Solid blocks of color indicate
when a robot was busy with a task, as opposed to idle.

Surprisingly, there is very little correlation between the

assembly utilization and delivery utilization (r=0.08). This

suggests that the efficiency of one robot is not impacted as

much by the length of time it is waiting for another robot

to finish a task, but is perhaps influenced by how quickly it

is able to finish its own work - and therefore how much it

must wait for the next step in the process.

VIII. THREE-DIMENSIONAL RESULTS

A. Overall Results

Our next task uses the same “log cabin” style, but with

six layers instead of two. An example of this structure can

be seen in figure Figure 3. This new assembly process

requires a total of twelve delivery-assembly iterations per

trial. There can also be stability complications, as parts form

the foundation for more parts; an early misplacement can

cause the entire structure to fall. These trials also increased

complexity by using four robots instead of two. Two robots

#
Runtime Assm. 1 Assm. 2 Del. 1 Del. 2 Succ.

(M:SS) utiliz. utiliz. utiliz. utiliz. (Y/N)

1 9:16 84.8% 90.1% 95.4% 86.3% Y
2 8:53 88.9% 87.3% 96.6% 96.1% Y
3 8:46 89.9% 88.7% 93.0% 94.2% Y
4 10:29 83.3% 86.8% 90.9% 94.4% Y
5 12:34 87.8% 87.9% 82.0% 92.7% Y
6 10:33 87.2% 87.9% 96.7% 93.9% Y
7 8:42 89.7% 87.2% 97.9% 94.0% Y
8 11:23 93.0% 84.9% 81.5% 93.7% N

Avg 10:05 88.1% 87.6% 91.8% 91.9% 87.5%

TABLE II

SUMMARY OF FOUR-ROBOT ASSEMBLY TRIALS FOR A TOWER.

were designated as delivery robots, and the other two as

assembly robots.

Otherwise, all aspects of the assembly process are the

same as described in Section VII. The results from the three-

dimensional construction are summarized in Table II.

In all of the trials except the last, the structure was

completed successfully with no errors. On the last trial, there

was a timing issue where both assembly robots attempted to

place parts simultaneously and the parts collided. The rest

of the assembly process continued as planned, although the

two collided pieces had to be re-placed manually to support

the remainder of the structure. This may have also led to

variability in the metrics for that trial, as both assembly

robots experienced difficulty placing these parts accurately

due to the other robot’s movements. The delivery robots

needed to wait for this interaction to finish before delivering

more parts, decreasing their utilization and lengthening the

time of the overall process.

B. Runtime and Efficiency

Average assembly utilization across both robots was

87.9% and average delivery utilization was much higher at

92.8%. This suggests that the relationship between number

of robots and the amount of work is not simply linear, but

perhaps more complicated. It would seem that for large-scale

assemblies the number of delivery robots should be roughly

equal to the number of assembly robots, with perhaps slightly

more assembly robots to raise the assembly utilization above

90%.

IX. EXPERIMENTAL RESULTS WITH PART

UNAVAILABILITY

In order to test our part unavailability algorithm, we used a

blueprint of a simple set of stairs. There are three steps, and

each step has one, two, or three parts respectively. The top

part on each step is a “finished” top part, which we represent

with a red cube. All of the cubes underneath top parts are

“foundation” parts, represented with a blue cube.

We ran three control trials of the assembly process in

which parts did not run out. In these trials, the assembly

robot first completes the shortest stair, then the middle stair,

and then the tallest stair. We then ran three experimental trials

in which after the assembly robot places the first red part,

the supply of red parts runs out. The assembly robot adapts

5770

Trial
Type Runtime Assembly Delivery

(M:SS) utilization utilization

1 Control 8:44 91.5% 96.5%
2 Control 8:56 88.6% 95.8%
3 Control 8:35 87.7% 94.8%
1 Exp 8:18 87.3% 94.9%
2 Exp 8:55 87.4% 98.0%
3 Exp 9:28 89.2% 97.0%

Avg Control 8:45 89.2% 95.7%
Avg Exp 8:54 88.0% 96.6%

TABLE III

SUMMARY OF TWO-ROBOT ASSEMBLY TRIALS OF STAIRS.

and places all of the foundation parts. When the red parts

are resupplied the assembly robot completes the structure.

A summary of our results for the two sets of trials can be

found in Table III. As can be seen, there was no significant

difference in time or utilization between the two trials. This

indicates that the assembly robots adequately adapted to the

loss of part supply and did not lose efficiency.

X. HANDOFF EXPERIMENTAL RESULTS

Over our recorded trials, there were 114 attempts of direct

handoffs of the log cabin parts between robots, 112 of which

succeeded (98.2% success rate). Assuming that each handoff

is an independent event with this probability of failure, the

probability of a 6-layer log cabin construction with no errors

in handoffs is 83.8%.

The first failure was due to high network latency, such that

the location of the delivery robot was miscommunicated to

the assembly robot. The second failure was due a loose grip

on the part by the assembly robot; while the assembly robot

navigated to the target location, the orientation of the part

slipped and was therefore not placed correctly.

XI. CONCLUSION

In this paper we extended our assembly ordering algo-

rithms to account for two real-world scenarios: heterogenous

timing constraints and a lack of available parts. We presented

a new distributed robotic system that takes advantage of our

algorithmic developments for involving physical constraints

to order the assembly process. The system reflects many

of the ideal characteristics of a robotic assembly platform,

including scalability, parallelism, and physical knowledge of

the environment in which it operates. We used this system

to perform fundamental delivery and assembly tasks with a

low rate of failure, and analyzed the utilization and efficiency

of the robots involved in the process. We hope to apply

these techniques to further assembly tasks of more complex

assemblies requiring many more robots.

XII. ACKNOWLEDGEMENTS

This project has been supported in part by The Boeing

Company, the U.S. National Science Foundation, Emerging

Frontiers in Research and Innovation (EFRI) grant #0735953,

and MURI SMARTS grant #N0014-09-1051. We are grateful

for this support.

REFERENCES

[1] D. Stein, T. R. Schoen, and D. Rus, “Constraint-aware coordinated
construction of generic structures,” in Proc. of IEEE/RSJ International

Conference on Intelligent Robots and Systems, 2011 (submitted).
[2] J. Markoff, “Skilled work, without the worker,”

The New York Times, 18 August 2012. [Online].
Available: http://www.nytimes.com/2012/08/19/business/new-wave-
of-adept-robots-is-changing-global-industry.html?pagewanted=all

[3] S. kook Yun, M. Schwager, and D. Rus, “Coordinating construction
of truss structures using distributed equal-mass partitioning,” in Proc.

of the 14th International Symposium on Robotics Research, Lucern,
Switzerland, August 2009.

[4] S. Yun and D. Rus, “Adaptation to robot failures and shape change
in decentralized construction.” Institute of Electrical and Electronics
Engineers, 2010.

[5] A. Bolger, M. Faulkner, D. Stein, L. White, S. kook Yun, and D. Rus,
“Experiments in decentralized robot construction with tool delivery
and assembly robots,” in Proc. of IEEE/RSJ International Conference

on Intelligent Robots and Systems, 2010.
[6] S. kook Yun, D. A. Hjelle, H. Lipson, and D. Rus, “Planning the

reconfiguration of grounded truss structures with truss climbing robots
that carry truss elements,” in Proc. of IEEE/RSJ IEEE International

Conference on Robotics and Automation, Kobe, Japan, May 2009.
[7] ——, “Planning the reconfiguration of grounded truss structures with

truss climbing robots that carry truss elements,” in Proc. of IEEE/RSJ

IEEE International Conference on Robotics and Automation, Kobe,
Japan, May 2009.

[8] S. kook Yun and D. Rus, “Optimal distributed planning for self
assembly of modular manipulators,” in Proc. of IEEE/RSJ IEEE

International Conference on Intelligent Robots and Systems, Nice,
France, Sep 2008, pp. 1346–1352.

[9] S. kook Yun, “Coordinating construction by a distributed multi-robot
system,” Ph.D. dissertation, MIT, 2010.

[10] S. kook Yun and D. Rus, “Distributed coverage with mobile robots
on a graph Locational optimization and equal-mass partitioning,” in
Workshop on the Algorithmic Foundations of Robotics, 2010.

[11] T. Yasuda, K. Ohkura, and K. Ueda, “A homogeneous mobile robot
team that is fault-tolerant,” Advanced Engineering Informatics,
vol. 20, no. 3, pp. 301 – 311, 2006, ¡ce:title¿Design
of Complex Adaptive Systems¡/ce:title¿. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1474034606000048

[12] H. V. Brussel, J. Wyns, P. Valckenaers, L. Bongaerts, and P. Peeters,
“Reference architecture for holonic manufacturing systems: Prosa,”
Computers in Industry, vol. 37, no. 3, pp. 255 – 274, 1998.

[13] S. Berman, Á. M. Halász, M. A. Hsieh, and V. Kumar, “Optimized
stochastic policies for task allocation in swarms of robots,” IEEE

Transactions on Robotics, vol. 25, no. 4, pp. 927–937, 2009.
[14] L. Matthey, S. Berman, and V. Kumar, “Stochastic strategies for

a swarm robotic assembly system.” in Proc. of IEEE International

Conference on Robotics and Automation. IEEE, 2009, pp. 1953–
1958.

[15] M. A. Hsieh and J. Rogoff, “Complexity measures for distributed as-
sembly tasks,” in Proc. of the 2010 Performance Metrics for Intelligent

Systems Workshop (PerMIS09), Baldimore, MD, USA, Sept 2010.
[16] K. Petersen, R. Nagpal, and J. Werfel, “Termes: An autonomous

robotic system for three-dimensional collective construction,” in Proc.

of Robotics: Science and Systems, Los Angeles, CA, USA, June 2011.
[17] J. Werfel and R. Nagpal, “Three-Dimensional construction

with mobile robots and modular blocks,” Int. J. Rob. Res.,
vol. 27, no. 3-4, pp. 463–479, 2008. [Online]. Available:
http://www.eecs.harvard.edu/˜rad/ssr/papers/ijrr08-werfel.pdf

[18] P. White, V. Zykov, J. Bongard, and H. Lipson, “Three dimensional
stochastic reconfiguration of modular robots,” in Robotics: Science

and Systems, Cambridge, 2005, pp. 161–168.
[19] Locomotec. (2012, Jan.) Kuka youbot store. youbots. [Online].

Available: http://www.youbot-store.com/category/53-youbots.aspx
[20] R. A. Knepper, S. S. Srinivasa, and M. T. Mason, “Hierarchical

planning architectures for mobile manipulation tasks in indoor en-
vironments,” in Proc. of International Conference on Robotics and

Automation, May 2010.
[21] D. Stein, March 2012, interview with author of [5].

5771

