
Robotic Adversarial Coverage: Introduction and Preliminary Results

Roi Yehoshua, Noa Agmon and Gal A. Kaminka

Computer Science Department

Bar Ilan University, Israel

roiyeho@gmail.com, agmon@cs.biu.ac.il, galk@cs.biu.ac.il

Abstract— This paper discusses the problem of generating
efficient coverage paths for a mobile robot in an adversarial
environment, where threats exist that might stop the robot.
First, we formally define the problem of adversarial coverage,
and present optimization criteria used for evaluation of cover-
age algorithms in adversarial environments. We then present
a coverage area planning algorithm based on a map of the
probable threats. The algorithm tries to minimize the total
risk involved in covering the target area while taking into
account coverage time constrains. The algorithm is based on
incrementally extending the coverage path to the nearest safe
cells while allowing the robot to repeat its steps. By allowing the
robot to visit each cell in the target area more than once, the
accumulated risk can be reduced at the expense of extending
the coverage time. We show the effectiveness of this algorithm
in extensive experiments.

I. INTRODUCTION

The general problem of covering an area by single or multi

robot systems is a fundamental problem in robotics. Besides

its theoretical interest, it has important applications in vari-

ous domains, from automatic floor cleaning and coating in

facilities, such as supermarkets [4] and train stations [9], to

humanitarian missions such as search and rescue and field

demining [8].

The optimal coverage problem can be formulated as a

generalization of the Traveling Salesperson Problem (TSP)

for a continuous domain, and thus is NP-hard [1]. It is

therefore natural to seek efficient algorithms for the coverage

problem.

Previous efforts on the coverage problem have focused

mainly on achieving a covering path with minimal coverage

time under various conditions and assumptions (see Choset

[2] for a comprehensive survey). However, all these works

were intended for non-adversarial settings, where nothing,

outside of the environment itself, is hindering the robot’s

task. Often, however, robots and autonomous vehicles need

to perform coverage missions in hazardous environments,

such as operations in nuclear power plants, exploration of

Mars, and surveillance of enemy forces in the battle field.

Even domestic coverage missions such as floor cleaning

might pose various risks to the robot’s safety.

Hence, our work addresses the problem of planning for a

robot whose task is to cover a given terrain without being

detected or damaged by an adversary. Each point in the

area is associated with a probability of harming the robot

at that point and the probabilities can vary from one point

to another. The objective of the robot is to complete the

given mission—to cover the specified area—as quickly as

possible while maximizing its own safety. We will refer to

this problem as the general adversarial coverage problem.

In this paper we discuss the offline version of this problem,

in which the map of threats is given in advance, therefore

the coverage path of the robot can be determined prior to the

execution of the coverage algorithm.

In the following sections we formally define the offline

adversarial coverage problem and propose an algorithm

for solving it heuristically. The algorithm tries to optimize

both the survivability of the robot and the coverage time

given some predefined objective function. The algorithm we

propose has a polynomial time complexity in the number

of locations to be covered. We evaluate this algorithm in

systematic experiments and show its effectiveness.

II. RELATED WORK

The problem of single and multi-robot coverage has been

extensively discussed in the literature and many approaches

to coverage path planning have been developed.

In the single robot case, an optimal coverage path means

finding a non-redundant path, i.e., a path that visits each cell

in the target area exactly once. Gabriely and Rimon [5] have

introduced the Spanning Tree Coverage (STC) algorithm

that provides optimal coverage path in a uniform grid based

terrain. Their algorithm subdivides the area into disjoint cells

and then follows a spanning tree of the graph induced by the

cells, while covering every point precisely once.

The idea was broadened for a multi-robot system by Hazon

and Kaminka in [6] in the family of Multi Robot Spanning

Tree Coverage (MSTC) algorithms. Their solution, along

with decreasing the total coverage time, achieved robustness

in the sense that as long as one robot works properly, the

coverage of the terrain is guaranteed. They have also shown

that in multi robot teams redundancy might be necessary for

more efficiency. We also accept redundant coverage, but for

safety.

Other related robotic tasks in adversarial environments

have been actively studied in the robotics community. For

example, the problem of path planning in uncertain and

adversarial environments has been investigated in [7] and

[10]. The patrol problem, where a multi-robot team needs to

patrol around a closed area with the existence of an adversary

attempting to penetrate into the area, has been discussed in

[3]. The patrol problem resembles the coverage problem in

the sense that both require the robot or group of robots to

2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS)
November 3-7, 2013. Tokyo, Japan

978-1-4673-6357-0/13/$31.00 ©2013 IEEE 6000

visit all points in the given terrain. However, while coverage

seeks to minimize the number of visits to each point (ideally,

visiting it only once), patrolling seeks to maximize it (while

still visiting all points).

The adversarial coverage problem discussed in this paper

is unique in the sense that the adversarial nature of the

environment is expressed in the possibility of physically

harming the robot (rather than harming the utility of a robotic

team, as in [6]). It has an intrinsic complexity that is not

typical to the other problems mentioned, since it presents a

delicate tradeoff between minimizing the accumulated risk

and minimizing the total coverage time. Trying to minimize

the risk involved in the coverage path means making some

redundant steps, which in turn can make the coverage path

longer, and thus increase the risk involved, as well as increase

the coverage time.

III. THE ADVERSARIAL COVERAGE PROBLEM

FORMULATION

The adversarial coverage problem can be defined as fol-

lows. We are given a target area T . The robot’s task is to

plan a path through T such that every point in T is visited

by the robot at least once. However, some points in T have

probability of containing threats, which may stop the robot.

Thus the robot must plan its coverage path such that it

takes into account the likelihood of completing it (i.e., its

survivability).

In particular, given T , three questions may be asked:

1) What is the minimum coverage time for T , and at what

survivability?

2) What is the maximum survivability for T , and at what

coverage time?

3) Given specified levels of survivability and coverage

time, what is the optimal coverage path?

In this paper we focus on a specific instantiation of

adversarial coverage. We assume that the target region T is

decomposed into a regular square grid with n cells, whose

size equals the size of the robot. We also restrict the robot

to move only in four compass directions. For each cell i, we

are given an associated threat probability pi, which measures

the likelihood that a threat is present in a point within the

cell i. If a cell contains a threat and the robot visits this cell,

then it stops and cannot continue its path.

Now let us denote the coverage path followed by the robot

by A = (a1, a2, ..., am). Note that m ≥ n, i.e., the number of

cells in the coverage path might be greater than the number

of cells in the target area, since the robot is allowed to repeat

its steps. We define the event SA as the event that the robot

is neutralized when it follows the path A = (a1, a2, ..., am).
Denote the complement of event E by E.

The probability P (SA) that the robot is able to complete

its coverage path A = (a1, ..., am) can be expressed as:

P (SA) =
∏

i∈(a1,...,am)

(1− pi) (1)

Now, given a coverage path A, let us denote the number of

unexplored cells visited by the robot until it is neutralized by

CA. We will define the survivability of the robot as E(CA),
i.e., as the expected number of unexplored cells that it visits

while following the coverage path A. The term expected

coverage will be used interchangeably with survivability

throughout this paper.

To compute E(CA), we need to consider the sequence of

unexplored cells discovered along the coverage path A. Let

us denote this sequence by (b1, ..., bn). Note that the total

number of cells in this sequence is exactly the number of

cells in the grid (n). For each cell in the sequence bi, we

will denote the sub-path in A that leads from the origin cell

a1 to it by gi. Then, under the threat probability function p,

the survivability of the robot following the coverage path A

can be expressed as:

E(CA) =
∑

i∈(b1,...,bn)

∏

j∈gi

(1− pj) (2)

For example, let us consider the following simple grid,

which is composed of 4 cells: a11, a12, a21 and a22, with

the probabilities for danger pij specified in each cell.

0 0.1

0.2 0.5

Assume that the initial location of the robot is in cell a11.

Then the coverage path with minimal risk in this case is

A = (a11, a12, a11, a21, a22). The sequence of unexplored

cells discovered along this path is (a11, a12, a21, a22). Thus,

the survivability of the robot following path A is:

E(CA) = 1 + 1 · 0.9 + 1 · 0.9 · 1 · 0.8
+1 · 0.9 · 1 · 0.8 · 0.5
= 1 + 0.9 + 0.72 + 0.36 = 2.98

However, the shortest coverage paths are A1 =
(a11, a12, a22, a21) and A2 = (a11, a21, a22, a12). Clearly,

path A1 is safer than A2. The survivability of the robot

following path A1 is:

E(CA1
) = 1 + 1 · 0.9 + 1 · 0.9 · 0.5 + 1 · 0.9 · 0.5 · 0.8

= 1 + 0.9 + 0.45 + 0.36 = 2.71

Therefore, by making one additional step, the robot is able

to raise its expected number of covered cells from 2.71 to

2.98.

In order to help us answer the questions raised in the

beginning of this section, we will define the following

weighted cost function that takes both the survivability and

the coverage time factors into consideration. For a given

coverage path A, define

f(A) = −α · E(CA) + β · |A| (3)

where α, β ≥ 0, and |A| is the number of the steps the robot

needs to take in order to complete the coverage path.1 Then

the problem is to find a coverage path A that minimizes the

cost function f(A), i.e., f(A) ≤ f(B) for all coverage paths

B.

1For now, we treat all steps, in any location, to have uniform cost, and
coverage time is measured directly by the number of steps.

6001

When α = 0, the objective translates to finding a minimum

time coverage path regardless of the risk involved. Achieving

this objective will provide an answer to our first question.

When β = 0, the objective translates to finding a coverage

path with a minimal risk, without a limit on the path length.

Achieving this objective will provide an answer to our second

question. Lastly, setting fixed levels for α and β will provide

an answer to our third question.

IV. ADVERSARIAL COVERAGE PATH ALGORITHM

In this section we describe an adversarial coverage path

construction algorithm, Build Coverage Path. The algo-

rithm also creates a spanning tree, connecting all the cells in

the given area, which serves as the skeleton of the coverage

path. The tree is created gradually starting from the initial

position of the robot, such that in each cycle one new cell is

added to the tree. The cell is chosen in a way that minimizes

the probability of the robot being damaged along the path

(s, ..., t) leading from the robot’s current position s to the

new cell’s position t, while keeping it as shortest as possible

(taking both α and β terms defined in the objective function

into consideration).

For that purpose, we use Dijkstra’s algorithm for finding a

minimal path between the robot’s current position and all the

possible neighbors of the cells the robot has already visited

until now. The following subsection describes how to define

a suitable edge weighting that will represent both the risk

involved in traversing each edge and the time cost of making

the transition.

A. Defining Graph Weights

In each cycle of the algorithm, we need to find a path

(s, ..., t) from the robot’s current position to a new cell in

the grid that minimizes the risk of visiting each cell along

the path, i.e., we need to find a path from cell s to cell t

such that
∏

i∈(s,a2,...,t)

(1− pi) ≥
∏

j∈(s,b2,...,t)

(1− pj) (4)

for all paths (s, b2, ..., t) leading from s to t.

We will first show how to convert this problem to a

problem of finding a shortest path. Since the logarithm is a

monotonically increasing function of its argument, the above

expression is equivalent to:

∑

i∈(s,a2,...,t)

(−log(1−pi)) ≤
∑

j∈(s,b2,...,t)

(−log(1−pj)) (5)

Now, define a directed graph G = (V,E), where the set

of nodes V is the set of cells in the target area. Define wij ,

the weight of the edge (vi, vj), as follows:

wij =

{

−log(1− pj) if cells i and j are adjacent

∞ otherwise
(6)

By defining the weights of the edges as in Eq. (6), we can

convert the minimum risk path problem into the problem of

finding a shortest path.

Since we want to consider also the path length, we will

include two constant terms in the link weight that are

dependant on α and β given in the objective function. So

the weight of the edge (vi, vj) becomes:

wij =

−cα · α · log(1− pj) + cβ · β
if cells i and j are adjacent

∞ otherwise

(7)

The meaning of this formula is that the weight of each

edge in the graph becomes lower as the probability to survive

traversing this edge is higher (this is the term defined by

−α · log(1−pj)) and the cost of making one step in the grid

is lower (this is the term defined by β).

In section V we first determine the terms cα and cβ used

by the algorithm. Then we describe extensive simulations

of Build Coverage Path with our chosen cα and cβ .

B. Building a Coverage Path

The pseudocode for the algorithm is given in the following

procedure.

Algorithm Build Coverage Path(G)

Input: Graph G = (V,E), where V is the set of nodes

representing the cells in the grid and E is the set of

edges connecting each cell in the grid to its neighbors

with the weight as defined in formula (7).

1) Let T ← ∅ be the spanning tree

2) Let π ← ∅ be the coverage path

3) Let H ← ∅ be the subgraph of G that contains all

the neighbors of nodes in π

4) Let s be the node representing the initial location

of the robot

5) Add node s to T , π and H

6) Mark s as visited

7) While not all the cells in the grid are covered

a) Add the neighbors of s that are marked as

not visited to H

b) Compute Dijkstra (shortest path) from s to

each node in the subgraph H

c) Let v be the node in H with the shortest

distance from s that was not visited yet

d) Add v and the edge connecting it to the tree

to T

e) Add the path s v to π

f) Mark v as visited

g) s← v

8) return T and π

The idea behind the algorithm is that it gradually builds

a spanning tree of uncovered cells that it discovers, while

keeping track of the path used to discover those cells. The

spanning tree is built by a depth-first-like procedure: Scan

for uncovered neighboring cells (Line 7a), find a shortest

path from the robot’s current position to one of those cells

(Lines 7b-c), build a tree edge to it (Line 7d) and continue

with this cell (Line 7g).

6002

The time complexity of Build Coverage Path algorithm

is O(V 2lgV), since the graph is sparse (|E| = O(|V |)), thus

running Dijkstra (shortest path) on the entire graph takes

O(V lgV), and the algorithm runs Dijkstra |V | times.

V. EVALUATION

We evaluate the algorithm empirically, to illustrate the

effects of its parameters, and to understand the scope of

its success. In subsection A, we use a specific, randomly-

generated map, to illustrate the operation of the algorithm

under various parameter settings. In subsections B-D we

report on the statistical analysis based on multiple randomly-

generated maps with various parameters, such as map size,

cost values, etc.

A. Description of the World

We considered a target area consisting of 20× 20 square

cells. For half of the grid cells pi = 0. For the other half,

we generated random numbers with a uniform distribution

in the range [0.0, 0.25] and assigned them to pi. The origin

is cell (1, 1), which is always a safe cell (p11 = 0).

In the maps we used 5 different shades of

purple to represent the following intervals of pi:

[0, 0.05), [0.05, 0.1), [0.1, 0.15), [0.15, 0.2) and [0.2, 0.25).
Darker shades represent higher values of pi (more dangerous

areas). See Figure 1 for an example of the world.

Fig. 1. An example of the world. Darker regions represent more dangerous
areas.

First, we wanted to test the algorithm when the coverage

risk is not penalized and only the coverage time is taken into

account (i.e., α = 0). As expected, in this case the robot

walks around the area in straight lines until it covers the

whole area. Running the algorithm on a randomly selected

map resulted in a path with expected coverage of 3.65% and

total length of 399 steps. The spanning tree for this path can

be seen on the left side of Figure 2.

Next, we wanted to test the algorithm when the coverage

time is not penalized and only the coverage risk is taken into

account (i.e., β = 0). In this case, in each cycle the robot

is trying to find the safest cell on the board to continue its

path from. Running the algorithm on the same map resulted

in a path with expected coverage of 39.32% and total length

of 2012 steps, i.e., on average the robot visits each cell in

the grid about 5 times. The spanning tree for this path in the

same world can be seen on the right side of Figure 2.

Fig. 2. Left - spanning tree when the risk is not penalized (α = 0). Right
- spanning tree when the coverage time is not penalized (β = 0).

B. Determining cα and cβ

Now, we discuss the general case where α > 0 and β > 0.

We first need to determine the optimal coefficients cα and cβ
for finding a minimal cost value. Let’s start with a specific

case where α = 1 and β = 0.1, i.e., when the cost function

is

f(A) = −E(CA) + 0.1 · |A|

Figure 3 shows the cost function value f(A) for different

values of cα and cβ in the interval [0, 1]. The results are

averaged on 30 randomized maps.

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

−50

0

50

100

c
α

c
β

c
o

s
t

fu
n

c
ti
o

n

Fig. 3. Cost function values for α = 1 and β = 0.1

Generally speaking, we can see that for a given cα, the

cost function decreases as cβ increases, until it reaches a

minimum value somewhere around cβ ≈ 0.2cα, and then it

increases again.

The global minimum cost value is achieved when cα = 0.7
and cβ = 0.1. For these coefficients, the robot achieves an

expected coverage percentage of 28.21% while keeping the

total coverage length at 836 steps on average, i.e., by visiting

each cell about twice than it should have, the robot is able

to increase its expected coverage percentage from 3.65% to

28.21%.

The spanning tree generated for the example world using

the coefficients cα = 0.7 and cβ = 0.1 is shown on the

6003

left side of Figure 4. In this case the expected coverage

percentage was 35.06% and the total path length was 885.

Fig. 4. Left - spanning tree for α = 1 and β = 0.1. Right - spanning tree
for α = 0.1 and β = 0.1.

C. Experimental Results, cα = 0.7, cβ = 0.1

Next, we wanted to test the algorithm’s performance on

different values of α and β. We used α values in the range [0,

1] and β values in the range [0, 0.2]. In all the experiments,

we set the coefficient values to cα = 0.7, cβ = 0.1. We

repeated the experiments for 30 randomized maps.

Figure 5 shows the expected coverage percentage for

different values of α and β. As expected, for a given level of

α, as the value of β gets higher, the robot is willing to take

more risky moves in order to shorten the coverage path, thus

the expected coverage percentage is lower. Conversely, for

a given level of β, as the value of α gets higher, the robot

is taking more cautious steps, thus the expected coverage

percentage is greater. For a fixed ratio between α and β we

get similar coverage percentages.

0
0.2

0.4
0.6

0.8
1

0

0.05

0.1

0.15

0.2
0

10

20

30

40

αβ

E
x
p

e
c
te

d
 C

o
v
e

ra
g

e
 %

Fig. 5. Expected coverage percentage for different values of α and β

Figure 6 shows the coverage path length for different

values of α and β. For a given level of α, as the value

of β gets higher, the time factor gets more significance and

thus the coverage path becomes shorter at the expense of

increasing the risk. Conversely, for a given level of β, as the

value of α gets higher, the risk factor gets more significance

and thus the robot makes more redundant steps in order to

reduce the risk involved, which makes the coverage path

longer.

0
0.2

0.4
0.6

0.8
1

0

0.05

0.1

0.15

0.2

0

500

1000

1500

2000

2500

α
β

T
o

ta
l
P

a
th

 L
e

n
g

th

Fig. 6. Total path length for different values of α and β

Examining the spanning trees for various α and β values

supports this observation. On the left side of Figure 4 we

have seen the spanning tree for the example world when

α = 1 and β = 0.1. The right side of the same figure shows

the spanning tree for the same map when α = 0.1 and β =
0.1. In this case, the expected coverage percentage was 6.5%
and the total path length was 550.

As can be seen, the tree on the left side contains more

twists and turns than the tree on the right side. For example,

the area with safe cells in the upper center region (including

the cells in rows 3 and 4 from column 6 to column 13) is

contiguous in the spanning tree for α = 0.1, as the robot

is willing to move through the dangerous cell (3, 11), while

the same area is split in the spanning tree for α = 1, as the

robot is trying to avoid cell (3, 11) in its first pass through

this area.

D. Testing on different terrains

Next, we wanted to test the behavior of the algorithm

under various terrain conditions. We start by examining the

effect of the safe cells ratio on the coverage paths found by

the algorithm (in previous experiments a safe cell ratio of 0.5
was used). Figure 7 shows the expected coverage percentage

and the coverage path length as a function of the safe cells

ratio. In all the runs we set α = 1 and β = 0.1 and used the

coefficients cα = 0.7 and cβ = 0.1. As before, the results

are averaged on 30 randomized maps.

As can be seen in the figure, the expected coverage

percentage graph is monotonically increasing. The increasing

slope of the graph is low at the beginning, until the safe cells

ratio reaches the level of approximately 0.65. At that level,

the graph starts to behave like a linear graph. This is due to

the fact that when there is a high percentage of safe cells

in the grid, the robot is able to cover most of the safe cells

before attempting to cover the dangerous ones, thus there is

a linear match between the coverage percentage and the safe

cells percentage above a certain level of safe cells in the grid.

6004

However, the path length graph increases until it reaches

a maximum level when the safe cells ratio is approximately

0.65, and then it starts to decrease. This can be explained by

the fact that above a certain level of safe cells in the grid, the

robot is able to increase its coverage ability while reducing

the number of redundant steps that it makes along the path,

and thus the coverage path gets shorter.

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

safe cells ratio

E
x
p

e
c
te

d
 C

o
v
e

ra
g

e
 %

0 0.2 0.4 0.6 0.8 1
200

400

600

800

1000

safe cells ratio

T
o

ta
l
P

a
th

 L
e

n
g

th

Fig. 7. Expected coverage percentage and coverage path length for different
safe cells ratios

Next, we wanted to examine the behavior of the algorithm

on various coverage area sizes. We ran the algorithm on

various grid sizes in the range between 10×10 and 40×40.

All the other parameter settings remained the same. Figure 8

shows the expected number of covered cells and the coverage

path length as a function of the area size.

For all area sizes, the observed length of the coverage

path is approximately twice the number of cells in the

grid. The expected number of cells covered by the robot

is monotonically increasing until it reaches a plateau around

140 cells. This number is assumed to be determined by the

maximum number of unsafe cells the robot is able to cover

without being catastrophically damaged.

VI. CONCLUSIONS AND FUTURE WORK

In this work we have discussed the adversarial coverage

problem and its various aspects. First, we have suggested

optimization criteria for the evaluation of coverage algo-

rithms in adversarial environments. These criteria take into

account both the survivability of the robot and the total

coverage time. Next, we described an algorithm for finding

a coverage path that tries to minimize a predefined cost

function which is based on these criteria. We have conducted

systematic experiments with our implementation in order to

measure the algorithm’s effectiveness. The results show that

the algorithm works well in different environments and world

sizes. Lastly, we have examined the coverage paths generated

by the algorithm and compared their structures.

There are several areas we plan to pursue in future work.

First, we would like to consider other types of terrains, such

0 200 400 600 800 1000 1200 1400 1600
50

70

90

110

130

150

grid size

E
x
p

e
c
te

d
 #

 o
f

c
o

v
e

re
d

 c
e

lls

0 200 400 600 800 1000 1200 1400 1600
0

1000

2000

3000

4000

grid size

T
o

ta
l
P

a
th

 L
e

n
g

th

Fig. 8. Expected number of covered cells and coverage path length for
different grid sizes

as terrains with obstacles and non-rectangular areas. Second,

we would like to investigate theoretically different scenarios

of the problem and search for algorithms that can solve it

with proven optimality bounds. In addition, we are interested

in extending the algorithm to handle online coverage, in

which the coverage has to be completed without the use

of a map or any a-priori knowledge of the area. Finally, we

would like to extend the algorithm for multi-robot systems.

Using multiple robots for coverage has the potential for more

efficient coverage and greater robustness; even if one robot is

totally damaged, others may take over its coverage subtask.

REFERENCES

[1] E. M. Arkin and R. Hassin. Approximation algorithms for the ge-
ometric covering salesman problem. Discrete Applied Mathematics,
55:197-218, 1994.

[2] H. Choset. Coverage for robotics - a survey of recent results. Annals

of Mathematics and Artificial Intelligence, 31(1-4):113-126, 2001.
[3] Y. Elmaliach, N. Agmon and G. A. Kaminka. Multi-robot area

patrol under frequency constraints. Proceedings of IEEE International

Conference on Robotics and Automation, pages 385-390, April 2007.
[4] H. Enders, W. Feiten, and G. Lawitzky. Field test of navigation system:

Autonomous cleaning in supermarkets. In IEEE Int. Conf. on Robotics

and Automation, pages 1779-1781, 1998.
[5] Y. Gabriely and E. Rimon. Spanning-tree based coverage of contin-

uous areas by a mobile robot. Annals of Mathematics and Artificial

Intelligence, 31:77-98, 2001.
[6] N. Hazon and G. A. Kaminka. Redundancy, efficiency and robustness

in multi-robot coverage. In Proceedings of the IEEE International

Conference on Robotice and Automation(ICRA), pages 735-741, 2005.
[7] M. Likhachev, A. Stentz. Goal Directed Navigation with Uncertainty

in Adversary Locations. IEEE/RSJ International Conference on Intel-

ligent Robot Systems (IROS-07), pages 4127-4134, 2007.
[8] J. D. Nicoud and M. K. Habib. The pemex autonomous demining

robot: Perception and navigation strategies. In IEEE/RSJ International

Conference on Intelligent Robot Systems, pages 1:419-424, 1995.
[9] H. Yaguchi. Robot introduction to cleaning work in the east japan

railway co. Adv. Robotics, 10 (4):403-414, 1996.
[10] M. Zabarankin, S. Uryasev and P. Pardalos. Optimal risk path algo-

rithms. Applied Optimization, 66:273-296, 2002.

6005

