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Abstract— Keeping balance is the main concern for hu-
manoids in standing and walking tasks. This paper endeavors
to acquire optimal ankle stabilization methods for humanoids
with passive and active compliance and explain ankle balancing
strategy from the compliance regulation perspective. Unlike
classical stiff humanoids, the compliant ones can control both
impedance and position during task operation. Optimal com-
pliance regulation is resolved to maximize the stability of the
humanoids. The linearized model is proposed to obtain the
optimal ankle impedance for stabilizing against impacts. The
nonlinear model is proposed as well and compared with the
linear one. The proposed methods are validated by experiments
on an intrinsically compliant humanoid using passivity based
admittance and impedance controllers both in joint and Carte-
sian space.

I. INTRODUCTION

During operation in an unstructured workspace the highest

priority for a humanoid is to keep its balance while standing

on one or two feet. The relatively high center of mass

position and the small sized feet make postural balancing,

subject to external disturbances, not a trivial task.

Three types of balancing strategies are well known for

humans [1] [2], [3] which are namely: ankle, ankle-hip and

stepping strategies who use these skills in an individual

or combined manner depending on the disturbance. Similar

methods have been utilized in humanoids. Regulation of

ground contact force distribution via torque control for

balancing purposes has been used in [4], [5] and applied

to Sarcos robot and also [6] implemented on the biped

developed at DLR. All these robots are equipped with decen-

tralized torque controllers allowing the active regulation of

Cartesian Impedance. In [7] modulation of distributed contact

forces to maximize the robot stability can be explained as

a desired Cartesian impedance. Regulation of impedance

during balancing is also evident in humans [8]. The effect of

foot impedance, particularly how the ankle stiffness affects

robots stability has been also studied during walking [9]. In

addition, it has also been explored for improving the energy

efficiency during walking [10]. It is well known that passive

elasticity can absorb impacts and reduce contact forces with

no time delay response. The work in [11] explores the use of
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Fig. 1. Full body CoMan and its kinematics model

passive elastic elements for improving the robot stability and

tried to identify suitable range of passive stiffness to achieve

this goal.

These works show the effective regulation of the foot

impedance has a significant effect on postural control. In

most of the above cases the impedance parameters was exper-

imentally tunned. However, selection of the impedance refer-

ence is still an open question. Emerging variable impedance

actuation technology demands for suitable compliance pro-

files. As a response to this need several works explored opti-

mal control policies to derive effective impedance trajectories

for various tasks such as throwing or kicking where achieving

the maximum velocity at ultimate time was used as the

performance index [12] [13]. The contribution of this paper

is to provide insights on how to generate effective ankle

impedance profiles for the humanoid balancing problem

using optimal control strategies. It is shown that for a range

of impacts even a fixed value of passive stiffness in ankle

can be adequate for optimal balancing performance. The

optimal value of ankle impedance is derived analytically

and numerically based on different cost functions in both

linear and nonlinear models to minimize the center of

pressure and mass deviation. This optimal value is used in

the ankle balancing strategy on the Compliant HuManoid

CoMan robot [14]–[16] (see Fig. 1). Theoretical results are

verified by experiment and simulation [17]. Furthermore, the

condition which ankle strategy fails is also discussed.

The paper is organized as follows. Section II introduces

CoMan humanoid and its model. Section III elaborates the

compliant ankle strategy while section IV presents experi-

mental results. We conclude the study in section V.

II. COMAN HUMANOID MODELING

In this work we use the one degree of freedom (DOF)

inverted pendulum model with the mass m and moment of

inertia Ic around the COM, as shown in Fig. 2 to model

CoMan humanoid platform [14] which its lower body is used
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TABLE I

PARAMETERS BASED ON LOWER BODY OF COMAN

m: mass of the lower body; 16.5Kg
Ic: inertia tensor around the COM; ≃ 0.9537Kgm2

I: inertia tensor around the ankle pivot; I = Ic +ml2

l: nominal pendulum length from the COM to the pivot; 34 cm
θ: desired angular position of ankle
q: angular position of the link
Ka, Da: ankle stiffness/damping of active impedance

Kp: ankle stiffness constant of passive spring; 400 Nm
rad

Dp: ankle passive damping constant; ≃ 2.5 Nm·s
rad

K, D: resultant stiffness/damping of the COM around ankle
d1: upper limit of xcop based on the robot foot size; 11.5 cm
d2: lower limit of xcop based on the robot foot size; 4.5 cm
ξ: damping ratio of the ankle impedance

Fig. 2. Schematic model of the linearized inverted pendulum. Left: Free
body diagram of the robot in sagittal plane; Right: Ankle torque represented
by compliance.

for the experimental validation. In Fig. 2, the origin of the

local reference frame OB is located in the midpoint of right

and left foot local reference frames. The origins of these

coordinate systems are placed in the projection of the ankles

pitch and roll intersection points to the ground. Frame OB

coincides with inertial coordinate OW on the ground if feet

stay in full contact with the ground.

In this model q represents the pendulum angle while

Fext is the sagittal disturbance which can be an impact or

a constant force applied perpendicularly to the pendulum.

Finally, τ denotes the torque around the ankle. The effective

stiffness K and damping D of the model at the center of mass

level is the result of the combined passive Kp, Dp and active

Ka, Da stiffness and damping in joint space. By applying
∑

(τo) = Iq̈ we can now derive the dynamic equation of

motion:

−τ + l · Fext +mglsin(q) = (Ic +ml2)q̈. (1)

The parameters used in the modeling and formulas in this

paper are defined in Table I. The center of pressure of robot,

xcop, is:

xcop =
τ

m(g + z̈)
, (2)

where z = lcos(q) is the center of mass height.

III. COMPLIANT ANKLE STRATEGY

A. Optimal Constant Compliance- Linearized Model

The dynamic equation of motion (1) is linearized around

q = 0 assuming that the sagittal range of motion is confined

to −10◦ < q < 10◦. Taking into account that
∫ ǫ

0
Fextdt =

mq̇0, where q̇0 is the initial velocity, the impact force in (1)

can be considered as an initial COM velocity as a result

of the impact . ǫ the ideal impact time → 0+. Considering

u = τ as the control input x1 = q and x2 = q̇ as the system

states (1) can be written in state space form as follows:














ẋ = Ax+Bu,

A =

(

0 1
mgl
I

0

)

, B =

(

0
− 1

I

)

,

x1(0) = 0, ẋ1(∞) = 0, x2(0) = v0, ẋ2(∞) = 0,

(3)

where I = Ic +ml2 is the moment of inertia around pivot

point. K and D are the resultant torsional stiffness and

damping respectively due to the series active impedance

controller and the passive elasticity. Therefore K =
KaKp

Ka+Kp

with the upper bound of the total stiffness being limited

by the level of passive stiffness Kp. In addition, in the

linearized model the position of the COP xcop in (2) can

be approximated by τ
mg

. The z̈ term has minor effect on

the xcop. Since xcop inside the convex polygon is sufficient

condition for whole body stability, an optimization cost

function can be defined as:

J1 =

∫ ∞

0

x2
copdt =

∫ ∞

0

τ2

(mg)
2 dt =

∫ ∞

0

u2

(mg)
2 dt. (4)

J1 reduces the problem to a standard minimum effort

Linear Quadratic Regulator (LQR) problem resulting in the

algebraic Riccati equations and control input which is linear

feedback of the states [18].
{

−Q−ATKr −KrA+KrBR−1BTKr = 0,

u = −R−1BTKrx = (mg)2

I
(Kr12x1 +Kr22x2),

(5)

where Q = 0 and R = 1
(mg)2

. Kr is the Riccati matrix

which is symmetric with three independent elements Kr11,

Kr12 and Kr22. This matrix must be positive semidefinite to

ensure a stable system. Solving the Riccati equations gives

the optimal value of overall stiffness and damping which is

the resultant of both active and passive impedance:

Kr12 = 2I·l
mg

, Kr22 = 2I
mg

√

I·l
mg

. (6)

This feedback design can be implemented by a real

physical compliance like a series elastic actuator (SEA) or a

variable elastic actuator (VSA). The ankle torque will be:

τ = K(q − θ) +Dq̇, (7)

where θ is the free length of spring and is considered constant

θ = 0. In analogy to torsional stiffness and damping equation

(7), the optimal stiffness and damping can be derived from

(6) with minimal xcop deviation:

K = 2mgl, D = 2mg
√

I·l
mg

. (8)

Therefore, the optimal stiffness and damping are constant

as a function of the physical properties of the robot. The

value of K is twice the minimum value of stiffness, mgl,
which ensures asymptotic stability for the robot, mgl <
K ≤ Kp. This level of optimum stiffness can be interpreted

as follows. The normal pendulum creates torque around

the pivot which originates from the gravity torque, mglq.

To achieve the same stabilizing effect with the inverted

pendulum a spring that generates equivalent torque of mglq
when perturbed from the equilibrium is required. In the case

of the inverted pendulum model the spring should generate
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Fig. 3. Position, q[rad] and velocity, q̇[rad/s] of ankle sagittal joint due
to initial velocities from 0.2 to 0.7rad/sec by incremental of 0.1rad/sec
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Fig. 4. xcop and τ/mg deviation of robot after impact due to initial
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additional torque to counterbalance the gravity torque mglq.

In overall, a spring with stiffness of 2mgl as in (8) is

required to stabilize the inverted pendulum similar to normal

pendulum.

The natural frequency of the inverted pendulum system

with the constant optimal value of stiffness (8) is ωn =
√

mgl
I

. Accordingly D
I
= 2ξωn which results in a critically

damped system with ξ = 1. The ξ is damping ratio of second

order vibration systems, 0 ≤ ξ < ∞.

Simulation results for different initial COM velocities

using the optimal stiffness and damping values given by (8)

are presented in Fig. 3 and Fig. 4. The position and velocity

of ankle sagittal joint are plotted in Fig. 3.

Since in static case, the projection of the center of mass

on the ground should be inside the foot polygon, introducing

a penalty on the ankle deflection q might also be considered.

Another cost function can be formulated as follow:

J2 =

∫ ∞

0

(x2
cop + δx2

com)dt, (9)

where the δ denotes the center of mass deviation weight. The

xcop has basically static and dynamic part. To understand this

concept, center of pressure is derived using (1) and (2) as a

function of q, q̇ and q̈:

xcop =
mglsin(q)− Iq̈

m(g − lq̈sin(q)− lq̇2cos(q))
. (10)

This equation can be linearized around the upright position

assuming that qq̈ ≃ 0. The xcop can be substituted by the

linearized form of (10). Substituting (10) into (9), yields:

J2 ≃
∫ ∞

0

((1 + δ)(lq)2 + (
I

mg
)2q̈2) dt. (11)

The COM projection to the ground, xcom is the position

component of the xcop which is lq. Therefore, δ > 0 in

(9) and (11) can be explained as giving more weight to the

position deviation reduction of center of pressure. Also δ < 0
will give more weight to the acceleration term of J2. The δ
can not be less than −1 which can cause a negative optimal

cost function. Equation (9) will gives rise to the Q and R in

the algebraic Riccati equations (5) equal to:

Q =

(

δl2 0
0 0

)

, R = 1
(mg)2

. (12)

Solving (5) using (12) yields:

Kr12 = Il(1+
√
1+δ)

mg
, Kr22 = I

√
2Kr12

mg
. (13)

The general formula for the optimal stiffness, damping and

damping ratio in this case by using (5), (7) and (13) are:














K = mgl(1 +
√
1 + δ),

D = mg
√

2 I·l(1+
√
1+δ)

mg
,

ξ =

√
(2(1+

√
1+δ))

2
√√

1+δ
.

(14)

This suggests that introducing the penalty on COM, δ > 0
which is equivalent to giving more favor to the position

component of COP reduction in (11) results in larger stiffness

and damping than δ = 0 or ξ = 1. Introducing a positive

δ implies to an under damped systems with ξ < 1. It

was predictable since giving more weight to the position

part of COP in (11) will get more freedom to the transient

dynamics. The under damped systems has more dynamic

transient freedom than over damped ones. lim
δ→∞

ξ =
√
2
2 . It is

the minimum damping ratio which only consider the position

component of xcop reduction and leads to a stable system.

If only the xcom deviation as a static approximation of xcop

is considered then the limit of the center of mass will be:

−sin−1(d2/l) < q < sin−1(d1/l). (15)

On the other hand, δ < 0 results in ξ > 1 which implies to

over damped systems and causes less stiffness and damping

than the critical damped system (ξ = 1). In these systems the

proportion of transient dynamics is less than under damped

systems. Therefore, giving more weight to acceleration of

COP in (11) minimize the dynamic movements. The pure

static motion can be reached by killing the acceleration part

of COP while lim
δ→−1

ξ = ∞. In this case lim
ξ→∞

K = mgl.

The ξ = 1 gives shortest settling time. Consider δ = −1 in

(11) then the cost is the minimization of the functional q̈2.

The optimal control for this problem does not stabilize the

system but produces a zero cost when the initial velocity

is zero and the initial position is not zero. In this case

the system remains in static equilibrium since the controller

produces torque to counteract the gravity. For zero initial

position and nonzero velocity, the optimal control will not

produce a zero cost, although it will drive the system to

zero velocity and acceleration, the position will be left at
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a nonzero value. Therefore, the controller will bring COM

to a static equilibrium over time. However the closed loop

system is still not stable because there is a zero eigenvalue.

B. Variable Optimal Compliance-Linearized Model

So far, for small impacts, no limits are placed on the

control input and states since xcop stays inside the feet

polygon. However, this is not the case for large impact

forces. Considering the foot size and boundary positions d1
and −d2 and the fact that xcop should be always inside

the foot polygon the following limits for the ankle torque

can be derived −d2 < τ
mg

< d1 or −mgd2 < u <
mgd1. According to minimum Pontryagin principle [18], the

optimal input u∗, regardless of the optimization cost function

(J1 or J2) and any values of δ, is:










u∗ = mgd1 u > mgd1,

u∗ = u −mgd2 < u < mgd1,

u∗ = −mgd2 u < −mgd2.

(16)

Considering (16), max(q̇0) =
mgd1

D
. This is derived from

(7) for zero q and θ. If the optimal damping D from

(8) is used, maximum initial velocity will be max(q̇0) ≃
0.74rad/sec. This initial velocity causes the maximum xcom

deviation of q = 3.83◦ which is in the limit (15). Initial

velocities larger than max(q̇0) will simply force the xcop to

the boundary causing the robot to tip over around edge.

The optimal controller is a state feedback scheme which

can be implemented by the stiffness and damping gains K
and D respectively as shown in (7). Therefore, it becomes

clear that the initial jump of xcop as seen in Fig. 3 is

because of the torque generated by the damping component

due to initial velocity q̇0 while the COM position at the

beginning is zero the spring component does not produce

any torque. By including the xcop regulation in the optimal

control problem the damping gain can be decreased during

time to prevent exceeding the torque limits and keep the xcop

within the support polygon. As the natural frequency of the

linearized inverted pendulum is

√

K−mgl
I

therefore, stiffness

and damping are related as:

D = 2ξI

√

K −mgl

I
. (17)

For high impacts it is necessary to regulate control gains

online based on q and q̇ according to (16). From (17) first

K is obtained which gives the second equation in (18) and

then substituting K in (7) for θ = 0 gives the first equation

in (18)

q

4ξ2I
D2 + q̇D +mglq = τmax, K =

D2

4ξ2I
+mgl, (18)

where τmax is equal to either mgd1 or −mgd2 as in (16).

For applying the control law (16) ξ is assumed to be constant

before and after control signal reaches to its limit. When the

input reaches to the extremum torques, impedance values

using (18) will vary depending on q and q̇ and this is what

called variable optimal compliance. Equation (18) creates a

varying gains feedback control because stability criteria for

     
0

0.1

0.2

0.3

 

 

q
[r
a
d
]

Position q

0 0.5 1 1.5 2
−0.5

0

0.5

1

1.5

Time [s]

q̇
[r
a
d
/
se
c]

 

 

Velocity q̇

q̇0

q̇0

Fig. 5. Position, q[rad] and velocity, q̇[rad/s] of ankle sagittal joint due
to high impacts equivalent to initial velocities from 0.7 to 1.5rad/sec by
incremental of 0.1rad/sec

     
0

0.05

0.1

 

 

X: 0.963

Y: 0.115[m
]

τ
mg
xCOP

0 0.5 1 1.5 2

−8

−6

−4

−2

0

2
x 10

−3

Time [s]

[m
]

 

 

τ
mg

− xCOP

q̇0

q̇0

Fig. 6. xcop and τ/mg deviation of robot after impact due to initial
velocities from 0.7 to 1.5rad/sec by incremental of 0.1rad/sec

the constant feedback is not valid for linear time varying

systems. Since the first equation of (18) has two solutions

always the closet to the previous one should be chosen.

Equation (17) indicates that stiffness can not be set bellow

mgl and damping less than zero.

Fig. 5 to Fig. 7 present simulation results for 0.7 < q̇0 <
1.5. The fixed optimal values were computed from (16)

for δ = 0 resulting ξ = 1. Regulation of compliance was

then implemented on the basis of (18). Fig. 6 shows that

difference between xcop and τ/mg becomes bigger for large

ankle angles however τ/mg is still a good approximation of

xcop. Also this figure indicates that using (18) the xcop can be

maintained within its limits of d1 = 11.5cm. Fig. 7 illustrates

that the largest initial velocity that the system can cope is

1.52rad/sec which leads to the minimum possible stiffness,

mgl. The larger the initial velocity the bigger deviation of

stiffness and damping from its constant value in (8). For

the maximum initial velocity q̇0 = 1.52rad/sec, the ankle

stiffness has to be decreased significantly resulting in the

longest settling time. Fig. 5 shows that the maximum initial

velocity can deviate ankle to 19.52◦ within the limit of (15),

−7.6◦ < q < 19.77◦.

C. Optimal Compliance- Nonlinear Model

Based on Fig. 5, q̇0 > 1.2 will lead the linear system to

nonlinear regions. Also there are different kinds of external

forces like smooth force or constant pushes which will

increase the ankle deflection making the linear model invalid.

For a wide range of disturbances a more general nonlinear

model shall be considered. To do so the (1) and (2) are used.

The new cost function in this case will be:

J3 =

∫ ∞

0

x2
copdt =

∫ ∞

0

τ2

(mg +mz̈)
2 dt, (19)
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where z̈ = −l( lmg
I

sin2(x1) − u
I
sin(x1) +

l·Fext

I
sin(x1) +

x2
2cos(x1)). The objective is to minimize the Hamiltonian

function:

H =
u2

(mg +mz̈)
2 + λ1ẋ1 + λ2ẋ2, (20)

where λ1, λ2 are costate variables. To minimize H for an

unbounded optimal problem it is enough to solve:


















ẋ1 = x2,

ẋ2 = mglsin(x1)
I

− u
I
+ l·Fext

I
,

∂H
∂x1

= −λ̇1 = Au2

(mg+mz̈)3 + λ2
mglcos(x1)

I
,

∂H
∂x2

= −λ̇2 = 4mlx2u
2cos(x1)

(mg+mz̈)3 + λ1,

(21)

where A = 2ml( 2lmg
I

cos(x1)sin(x1) + (−u
I

+
l·Fext

I
)cos(x1) − x2

2sin(x1)). The initial condition

for solving these system of differential equations are

x1(0) = 0, x2(0) = 0, λ1(∞) = 0, λ2(∞) = 0. Equation

(21) can be solved by numerical integration.

Equations (21) and (22) should be solved numerically as

a set of simultaneous differential and algebraic equations to

compute control input, u∗ while the input is not saturated

otherwise (16) should be considered.

∂H
∂u

= 0 =
2u(mg+mz̈)−( 2ml

I
sin(x1))u

2

(mg+mz̈)3 − λ2

I
. (22)

Fig. 8 shows the solution of (21) while the control limit

(16) is considered. In this plot only the solution for q̇0 =
1.3 is depicted and the difference between the linear and

nonlinear model is shown. It indicates that even for the large

impacts the linear model and the proposed variable stiffness

and damping method is enough for this type of disturbance.

It justifies that (18) and (8) can be used instead of solving

nonlinear equations for impacts.

However, the final solution for the control signal depends

on Fext. Equation (8) can only be used for impacts. This

suggests that the optimal ankle torque for other types of

disturbances should be derived by solving (21).

IV. EXPERIMENT

The parameters of CoMan lower body are listed in Table

I. Two types of compliance regulators based on impedance

[19] and admittance [20] schemes are available in the robot.

The stiffness of the passive compliant joints are 520, 420,

390Nm/rad respectively for ankle, knee and hip. Experi-

ments were performed only on the lower body of the robot.

Stabilization by ankle compliance under range of impacts

have done.

       
0

0.05

0.1

x
C
O
P
[m

]

 

 

0.5 1 1.5 2 2.5 3
−0.01

0

0.01

Time [s]

x
C
O
P
[m

]

 

 

xcop error

Linear Model xcop

Nonlinear Model xcop

Fig. 8. Up: xcop after impact due to initial velocity of 1.3rad/sec for
linear and nonlinear model. Down: then difference between the xcop of
linear model with variable ankle impedance (18) and the nonlinear model
(21)

      

0

0.05

0.1

x
C
O
P
[m

]

 

 

Non Optimal

Optimal

0 0.5 1 1.5 2 2.5

0

0.05

0.1

Time [s]

q
[r
a
d
]

 

 

Non Optimal
Optimal

Fig. 10. Comparison of experimental results of constant stiffness and
damping for optimal (K = 2mgl ξ = 1 δ = 0) and non optimal (K =
1.27mgl ξ = 1.528) case and impact equivalent roughly to initial velocity
of 0.7 rad/sec.

To apply a repeatable impact, a 5Kg weight suspended

by a rope from a fixed frame is released from a specified

height and collides with the wooden beam mounted on the

waist of the robot. The xcop and q deviation due to impact

equivalent to q̇0 = 0.7 is shown in Fig. 10. The value of ankle

optimal impedance is constant, K = 110.0682Nm/rad and

D = 25.0964Nm · s/rad based on (8).

It is clear from Fig. 10 that xcop approaches to the limit

11.5 cm and it decrease quickly after the impact for the

optimal case. For instant a non optimal case is depicted

in this plot. It is the over damped case (K = 1.27mgl
ξ = 1.528) and it is obvious that settling time is much larger

than optimal one. The real impact in practice is not same as

ideal impulse. For that reason the xcop rises in a very short

time and then decreases quickly while in the ideal case the

xcop jumps suddenly due to impact. Fig. 11 shows the large

impact experiment which is equivalent to q̇0 = 1.0. The xcop

rises to the limit and fluctuates near the limit since the ankle

compliance is variable based on (18). Then it decreases to

the constant value according to (8) until the robot reaches the

equilibrium. Fig. 12 plots the online update of stiffness and

damping. The difference between this figure and Fig. 7 is due

to the difference between real and ideal impact, inaccuracy

in the modeling and responding delay of controller. The

fluctuation of xcop is due to the passive compliant elements

in the waist of robot which are not controlled by admittance

controller (see Fig. 10). However, the method is still effective

and can maintain the balance of robot.

V. CONCLUSION

The optimal ankle’s compliance of humanoids was found

for low to high level of external impacts. It shows that
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Fig. 9. Optimal compliance stabilizer (8) under impact experiment. The impact occurred in the first snapshot from the left.
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Fig. 11. Experimental results for variable stiffness and damping and impact
equivalent roughly to initial velocity of 1.0 rad/sec and ξ = 1.
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Fig. 12. Experimental results for variable stiffness and damping and impact
equivalent roughly to initial velocity of 1.0 rad/sec and ξ = 1.

optimal balancing torque can be generated by a passive or

an active compliance regulator. The effect of introducing

xcop deviation in the cost function and its interpretation as

a damping ratio ξ was addressed. A stabilization method

was proposed to regulate the ankle compliance online for

high level of impacts. The limitation of the ankle balancing

strategy is determined. This is a criteria for ankle strategy

failure which imposes the use of other balancing methods.
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