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Abstract— A method has been developed for improving sound
source localization (SSL) using a microphone array from an
unmanned aerial vehicle with multiple rotors, a “multirotor
UAV”. One of the main problems in SSL from a multirotor UAV
is that the ego noise of the rotors on the UAV interferes with
the audio observation and degrades the SSL performance. We
employ a generalized eigenvalue decomposition-based multiple
signal classification (GEVD-MUSIC) algorithm to reduce the
effect of ego noise. While GEVD-MUSIC algorithm requires a
noise correlation matrix corresponding to the auto-correlation
of the multichannel observation of the rotor noise, the noise cor-
relation is nonstationary due to the aerodynamic control of the
UAV. Therefore, we need an adaptive estimation method of the
noise correlation matrix for a robust SSL using GEVD-MUSIC
algorithm. Our method uses a Gaussian process regression to
estimate the noise correlation matrix in each time period from
the measurements of self-monitoring sensors attached to the
UAV such as the pitch-roll-yaw tilt angles, xyz speeds, and motor
control values. Experiments compare our method with existing
SSL methods in terms of precision and recall rates of SSL.
The results demonstrate that our method outperforms existing
methods, especially under high signal-to-noise-ratio conditions.

I. INTRODUCTION

Multirotor unmanned aerial vehicles (UAV) are a useful

and universal sensing platform because they have agility and

mobility regardless of the terrain conditions, and of indoor

or outdoor spaces. While recent research on multirotor UAV-

based airborne sensing has focused on visual information

[1]–[3], the visual modality is unsuitable for detecting hidden

and/or overlapping objects. In the research reported here, we

focused on the use of auditory information for sound source

localization (SSL), i.e., the detection of sound sources with

a microphone array and the estimation of the direction of

arrival (DOA) of the target sound with an algorithm.

Auditory detection using a UAV may be possible even

if obstacles hinder visual detection. Additionally, auditory

sensing is useful for detecting people and animals because

they emit vocal sounds to communicate with others. This

means that auditory sensing is beneficial in search and rescue

tasks and environmental monitoring and surveillance [4]–[7].

An example application is shown in Fig. 1.
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Fig. 1: Example application of SSL using a multirotor UAV. The best way
to find a person who fell into a hole may be to detect the cries for help.

The main problem in using a multirotor UAV for SSL is

that the ego noise degrades the SSL performance. This is

because the ego noise has two characteristics in particular:

(1) loudness and (2) nonstationarity. The ego noise of a

multirotor UAV is generated mainly around the motors and

rotors. Since the microphones have to be attached near these

noise sources to prevent a loss of thrust, the noise power is

high. The ego noise is nonstationary because the rotational

speed of each motor dynamically changes in response to

midair position control.

A generalized eigenvalue decomposition-based multiple

signal classification (GEVD-MUSIC) algorithm [8] reduces

the effect of ego noise. The GEVD-MUSIC algorithm uses

a spatial correlation matrix of the noise component to cancel

the noise signal during yielding the DOA spectrum. Since the

noise correlation matrix is assumed to be stationary, adaptive

estimation of the matrix is a critical issue for SSL under

nonstationary ego noise conditions.

There remain several drawbacks in existing SSL methods

using the GEVD-MUSIC algorithm, especially with respect

to estimating noise correlation matrix. The iGEVD-MUSIC

algorithm developed by Okutani et al. [9] regards the spa-

tial correlation matrix of preceding observation as a noise

correlation matrix. Since this algorithm is based on the

assumption that the target sound changes more dynamically

than noise, a stationary target sound might be incorrectly

regarded as noise. Ince et al. [10] proposed an SSL method

using a template database in order to suppress ego noise of a

humanoid robot that stems from its joint motion. A template

is composed of monitoring data from joint sensors and the

spectrum of the ego noise. The noise corresponding to the

joint sensor data that do not exist in the database may be

incorrectly estimated because each template is found using

a nearest neighbor search.
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Fig. 3: Coordinate system of 3D rotation describing UAV’s attitude.

Next we take the square roots of diagonal elements of

Lt, f and concatenate the upper triangular elements of the

column vectors into an M(M+1)/2-dimensional vector, vt, f .

Taking the square roots ensures positive semi-definiteness of

Qt, f . We assume that the mean of the prior distribution of

Qt, f is the identity matrix because using the identity matrix

means the absence of directional noise in the GEVD-MUSIC

algorithm. The relationship between Lt, f and vt, f is given by

Lt, f =











v2
t, f ,1 vt, f ,2 · · · vt, f ,dv−(M−1)

v2
t, f ,3 · · · vt, f ,dv−(M−2)

. . .
...

0 v2
t, f ,dv











− IM, (5)

where dv = M(M+1)/2.

We compute as the regression result the mean of the

conditional distribution of the dependent variable vT+1, f

given the training data D and a newly observed feature uT+1:

p(vT+1|D,uT+1). (6)

The training data set D is {(ut ,vt, f )}t=1,...,T , which is

collected beforehand in the absence of target sound sources.

We obtain the mean, m(vT+1, f ), as

m(vT+1, f ) = kT
T

(

KT +ρ2IT

)−1
VT

T, f , (7)

VT, f = [v1, f , . . . ,vT, f ], (8)

where ρ2 is the variance of the additive noise in the feature

vectors. In (7), kT and KT are given by

kT =







k1,T+1

...

kT,T+1






, KT =







k1,1 · · · k1,T
...

. . .
...

kT,1 · · · kT,T






. (9)

We abbreviate k(ui,u j) as ki, j. KT is a Gramian matrix. We

use with a little change the Mahalanobis kernel [12], which

is based on a radial basis function kernel:

k(ui,u j) = exp

(

−
γ(ui −u j)

TΣΣΣ−1(ui −u j)

dim(ui)

)

, (10)

where ΣΣΣ−1 is a matrix that has variances on the diagonal. We

normalize the scale of each element of the feature vectors

by using a Mahalanobis kernel.

III. MUSIC AND GEVD-MUSIC ALGORITHMS

The multiple signal classification (MUSIC) algorithm [13]

is a subspace-based DOA estimation algorithm. It decom-

poses an observed noisy signal into the signal subspace

and noise subspace to obtain the spatial spectrum of DOA,

the MUSIC spectrum. A MUSIC spectrum has peak values

corresponding to the directions from which sounds are com-

ing. The noise used here is diffuse noise; directional noise

might create peaks in the MUSIC spectrum. To remove any

peaks created by directional noise, we use a GEVD-MUSIC

algorithm [8] with additional information for noise: a noise

correlation matrix. Let’s take a look at these algorithms in

detail.

We assume the situation is one in which we observe N

target sounds zt, f with M microphones. We consider the

observed signal to be a time-frequency representation, xt, f ,

which is obtained by short-time Fourier transform (STFT):

xt, f = [xt, f ,1, . . . ,xt, f ,M]T, (11)

zt, f = [zt, f ,1, . . . ,zt, f ,N ]
T. (12)

We can write observed noisy signal xt, f with additive diffuse

noise nt, f as

xt, f = A f zt, f +nt, f . (13)

Let A be an M×N steering matrix containing prior knowl-

edge of the microphone array geometry:

A f = [a f ,θ1
, . . . ,a f ,θN

]. (14)

Each column vector of the steering matrix is called a steering

vector and describes the process of signal arrival from a

particular direction. The spatial correlation matrix of the

observed signal, Rt, f , is given by

Rt, f = E
[

xt, f xH
t, f

]

= St, f +σ2
wIM, (15)

St, f = A f zt, f zH
t, f AH

f , (16)

where σ2
w is the variance of the noise, and IM is the M×M

identity matrix. The superscript H is the adjoint operator.

The E[xt, f xH
t, f ] is calculated as the time average of xt, f xH

t, f .

Let λR,i be the i-th largest eigenvalue of matrix Rt, f ,

and eR,i be the corresponding eigenvector. The eigenspace

of Rt, f is decomposed into two orthogonal subspaces: the

signal subspace span(eR,1, . . . ,eR,N) and the noise subspace

span(eR,N+1, . . . ,eR,M). The latter is written as

span(eS,N+1, . . . ,eS,M) = span(a f ,θ1
, . . . ,a f ,θN

)⊥. (17)

We define the spatial spectrum, pt, f , based on the orthogo-

nality of these subspaces as

pt, f = [pt, f ,θ1
, . . . , pt, f ,θA

]T (18)

pt, f ,θi
=

‖aH
f ,θi

a f ,θi
‖

∑M
i=N+1 |a

H
f ,θi

eR,i|
2
, (19)

where A is the number of steering vectors. In this definition,

as the denominator reaches zero when the direction of the

steering vector and the DOA of the target sound are the

same, we obtain the peak value in the spectrum. Since target

sounds ordinarily cover a wide frequency range, we use the

weighted sum of pt, f in a certain frequency band:

pt = ∑
f

wt, f pt, f , (20)
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where wt, f is a weight, which is typically the principal

eigenvalue λR,1.

In the MUSIC algorithm, directional noise can be in-

correctly identified as the target sound because noise is

assumed to be relatively small and diffuse. To enable target

sounds to be distinguished from directional noise, we use

a GEVD-MUSIC algorithm. Instead of standard eigenvalue

decomposition (SEVD) as used in the MUSIC algorithm,

generalized eigenvalue decomposition (GEVD) of Rt, f is

used with noise correlation matrix Qt, f :

Rt, f e′R,i = λ ′
R,iQt, f e′R,i, (21)

where λ ′
R,i is the i-th largest generalized eigenvalue of matrix

R, and e′R,i is the corresponding generalized eigenvector. In

most cases, since Qt, f is Hermitian and positive definite, Qt, f

is decomposed as

Qt, f = ΦΦΦH
t, f ΦΦΦt, f . (22)

Equation (21) is identical to the eigenvalue decomposition of

R′
t, f after spatial whitening of directional noise using ΦΦΦt, f .

R′
t, f = ΦΦΦ−H

t, f Rt, f ΦΦΦ−1
t, f =

M

∑
i=1

λR′,ieR′,ie
H
R′,i. (23)

The way this whitening works is as follows.

When noise nt, f in (13) is directional, spatial correlation

matrix Rt, f is obtained as

Rt, f = St, f +Qt, f (24)

instead of as shown in (15). Substitution of (24) into (23)

yields

R′
t, f = ΦΦΦ−H

t, f St, f ΦΦΦ−1
t, f + IM. (25)

Since the rank of the first term, ΦΦΦ−H
t, f St, f ΦΦΦ−1

t, f , is N, we obtain

the spatial spectrum using generalized eigenvectors e′R,i in a

manner similar to that discussed above. Thus, we verify the

spatial whitening using GEVD.

IV. EVALUATION

We conducted several experiments to evaluate the perfor-

mance of our SSL method. We used acoustic signal and

monitoring data as input data, and we obtained MUSIC

spectra and DOA estimations as output.

A. SSL System Construction

We constructed the SSL system as shown in Fig. 4. We

used an AR.Drone1 as the multirotor UAV. It has several

kinds of built-in sensors: a 6-degrees of freedom inertial

measurement unit, ultrasound telemeters, and cameras for

ground speed measurement. The data collected by these

sensors are called navigation data, which is abbreviated as

navdata. We equipped the AR.Drone with a microphone

array and a RASP-242 signal processing unit, as shown in

Fig. 5. The microphone array had eight MEMS microphones

1ardrone.parrot.com
2www.sifi.co.jp

���������	
���
���������
��
�
����
���	�

�������

��	�������� �����
�� ��
��
	!�� 
���"
���
��
����

	
������#����$#�%�����	
���
�&

'��(��)	�
���������	����������)	 �����

�)	��	!�� 
���"���������������*�
+���,��-

����

	!�� 
���"����#���
$�)	�����'��(&

��./���	�
�����
0������1���
�,�


�����������
2 ����		/�3�� �04%���#	5,

����!����#����$��./��&

Fig. 4: SSL system used for evaluation.

Fig. 5: Sensing unit consisting of an AR.Drone, a RASP-24 signal
processing unit and a microphone array, which had eight
microphones at the locations marked by red circles.

facing outward that were equally spaced in a circular frame-

work. We reduced the weight of the AR.Drone by removing

unneeded components because it originally lacked the ability

to carry the signal processing unit and microphone array.

We used as the recording system the HRI-JP Audition

for Robots with Kyoto University (HARK)3 and the Robot

Operating System (ROS)4. HARK is a collection of modules

for robot audition that enabled us to publish a ROS topic

containing a multichannel acoustic signal recorded using

the signal processing unit. ROS is used as a platform for

operating many kinds of robots. Using this software, we

collected the acoustic signals corresponding to the navdata.

B. Experimental Conditions

We recorded the noise of the AR.Drone for approximately

200 s during hovering and 400 s during moving in an

anechoic chamber. We used one-fifth of each flight for test

data and the rest for training data. The test data, which

contained the target sound and noise, was made by using a

simulation mixture. As prior knowledge of the microphone

array geometry, we computed 72 steering vectors using a

time-stretched pulse response.

The sampling rate of the acoustic signals was 16,000 Hz,

and the navdata was obtained per 60 ms on average. As we

obtained a time frame of the acoustic signals per 16 ms after

STFT, the navdata were linearly interpolated to fill the gaps

of these sampling rates. The STFT frame length was 512

samples, and the shift length was 256 samples. We used a

Hann window.

3winnie.kuis.kyoto-u.ac.jp/HARK/
4www.ros.org
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The spectrogram of the AR.Drone noise shown in Fig.

6 revealed that the noise energy was unevenly distributed

across the frequency zones and tended to be concentrated in

the low-frequency zone.

C. Frequency Response

First we evaluated the SSL performance by changing the

signal to noise ratio (SNR) and the frequency of the target

sound, which was assumed to be a pure tone. The perfor-

mance was evaluated by using the F-values at the equilibrium

point, which is defined as the point where precision equaled

recall. The precision and recall of the MUSIC spectra P,

which has pt as column vectors, were calculated using

Pre(P) =
#{(t,θ) | pt,θ ≥ ξ and p′t,θ = 1}

#{(t,θ) | pt,θ ≥ ξ}
, (26)

Rec(P) =
#{(t,θ) | pt,θ ≥ ξ and p′t,θ = 1}

#{(t,θ) | p′t,θ = 1}
, (27)

where ξ is the threshold for P, and p′t,θ is an element of a

reference spatial spectrum that has 1 in the correct DOA of

each target sound. The # denotes the number of elements in

a set.

Fig. 7 shows that the lower the SNR, the more difficult

it was to detect a target sound with a low frequency. This

result agrees with the spectrogram of the noise shown in Fig.

6 and thus suggests that noise likely masked target sounds

that had a low frequency.
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Fig. 8: F-values of equilibrium points under various SNR conditions.
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Fig. 9: F-values of DOA estimations by VBHMM-based thresholding
under various SNR conditions.

D. Performance with Simulated Data

We experimentally compared the performance of our

method with those of the existing methods. We generated two

sets of test data by simulation using both the hovering noise

and the moving noise. These sets contained three kinds of

target sound data: human speech, pure tone, and white signal.

Here, white means having a constant power spectral density

in the frequency domain, not spatially. These target sounds

arrived from different directions repeatedly. We compared

our method to three existing methods. One uses an ordinary

MUSIC algorithm, without spatial whitening of the noise.

One uses the GEVD-MUSIC algorithm with a constant noise

correlation matrix, which is the time average of the test data.

The other uses the iGEVD-MUSIC algorithm, which regards

the preceding observation as noise.
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We evaluated the performance on the basis of two criteria:

the F-value of the equilibrium points described above and

the F-value using variational Bayesian hidden Markov model

(VBHMM)-based thresholding [14]. These results are shown

in Figs. 8 and 9. The DOA estimations are obtained from the

MUSIC spectra (Fig. 10).

Fig. 8 shows that our method created clearer peaks in the

MUSIC spectra than the other methods. It is reasonable to

suppose that under high SNR conditions, the other methods

falsely suppress target sound components due to using in-

correct noise correlation matrices. The F-values obtained by

VBHMM-based thresholding show that our method slightly

increases the number of correct DOA estimations under high

SNR conditions (Fig. 9).

V. CONCLUSION

We have developed a method that improves SSL using

a multirotor UAV equipped with a microphone array. The

problem with a multirotor UAV is nonstationary ego noise

emitted during its flight. Our method uses Gaussian process

regression of the noise correlation matrix along with data

collected by self-monitoring sensors. The regression result

of the noise correlation matrix used in a GEVD-MUSIC

algorithm as additional information on directional high-

power noise.

Experimental results demonstrated that our method im-

proves SSL performance, especially under high SNR con-

ditions. Future work includes improving the accuracy of

regression by optimizing feature selection, increasing the

training data set, and evaluating SSL performance using real-

world data.
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