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Abstract— In this paper, we model the robust loop-closure
pose-graph SLAM problem as a Bayesian network and show
that it can be solved with the Classification Expectation-
Maximization (EM) algorithm. In particular, we express our
robust pose-graph SLAM as a Bayesian network where the
robot poses and constraints are latent and observed variables.
An additional set of latent variables is introduced as weights for
the loop-constraints. We show that the weights can be chosen as
the Cauchy function, which are iteratively computed from the
errors between the predicted robot poses and observed loop-
closure constraints in the Expectation step, and used to weigh
the cost functions from the pose-graph loop-closure constraints
in the Maximization step. As a result, outlier loop-closure
constraints are assigned low weights and exert less influences
in the pose-graph optimization within the EM iterations. To
prevent the EM algorithm from getting stuck at local minima,
we perform the EM algorithm multiple times where the loop
constraints with very low weights are removed after each EM
process. This is repeated until there are no more changes to the
weights. We show proofs of the conceptual similarity between
our EM algorithm and the M-Estimator. Specifically, we show
that the weight function in our EM algorithm is equivalent to
the robust residual function in the M-Estimator. We verify our
proposed algorithm with experimental results from multiple
simulated and real-world datasets, and comparisons with other
existing works.

I. INTRODUCTION

The focus of many existing works [1], [2] on the back-end

pose-graph SLAM problem is on improving the efficiency of

the optimization algorithms. Most of these optimization al-

gorithms assumed that the constraints provided by the front-

end are free from errors, and would fail if this assumption

was violated. For most cases, these errors are from erroneous

loop-closure constraints. Erroneous loop-closure constraints

are the result of wrong place recognitions by the appearance

or vocabulary-tree based approaches and this problem is

aggravated in environments with highly repetitive scenes.

Despite the numerous efforts [3], [4] to improve the accuracy

of the front-end recognition, none of these algorithms is

totally free from false positives. The task of identifying

erroneous loop-closure constraints is always left to the front-

end, and it is only until the recent two years that several

works [5]–[9] demonstrated the ability robustly detect and

disable erroneous loop-closure constraints within the back-

end optimization process.

In this paper, we propose a robust pose-graph SLAM opti-

mization algorithm based on the Classification EM algorithm

[10] to robustly detect and minimize the influences from the
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Fig. 1. (a)-(c) City1000 dataset randomly corrupted with 1, 10 and 100
outlier loop-closure constraints (red lines) leading to wrong convergence
with standard pose-graph SLAM. (d)-(f) Our EM algorithm detects all the
outliers and converges to the correct solution. Green and blue lines are the
correct loop-closure and odometry constraints.

erroneous loop-closure constraints within the optimization

process. In particular, we express our robust pose-graph

SLAM as a Bayesian network where the robot poses and

constraints are latent and observed variables. An additional

set of latent variables is introduced as weights for the loop-

constraints. We show that the weights can be chosen as

the Cauchy function, which are iteratively computed from

the errors between the predicted robot poses and observed

loop-closure constraints in the Expectation step, and used to

weigh the cost functions from the pose-graph loop-closure

constraints in the Maximization step. As a result, outlier

loop-closure constraints are assigned low weights and exert

less influences in the pose-graph optimization within the

EM iterations. To prevent the EM algorithm from getting

stuck at local minima, we perform the EM process multiple

times where the loop constraints with very low weights are

removed after each EM process. This is repeated until there

are no more changes to the weights. We show proofs of

the conceptual similarity between our EM algorithm and

the M-Estimator [11]. Specifically, we show that the weight

function in our EM algorithm is equivalent to the robust

residual function in the M-Estimator. We verify our proposed

algorithm with experimental results from multiple simulated

and real-world datasets, and comparisons with other existing

works. An example of the results from our algorithm is
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shown in Figure 1.

II. RELATED WORKS

Back-end optimizers are usually standard non-linear least

squares methods that try to minimize the sum-of-squares

residuals. The rapid gain of the quadratic error function in

both ends means that any outlier that is present would assert

a strong influence on the optimizer and lead to a wrong

solution. A popular approach to reduce the effect of outliers

within the optimizer is the M-Estimator Huber robust cost

function [11]. The Huber function replaces the quadratic

error function with another error function which is quadratic

in the vicinity of zero but increases linearly when the error is

above a certain threshold known as the Huber kernel width.

The linear gain of errors above the Huber kernel width helps

to reduce the influence of outliers within the optimizer. The

Huber function is implemented as an option within the state-

of-the-art SLAM solver g2o [2]. However, it has been shown

in [5] that the Huber function is only capable of reducing

the effects of outliers and not removing them completely in

pose-graph SLAM thus causing pose-graphs with erroneous

loop constraints to converge to wrong solutions (see Section

IV-A for our explanations on Huber robust cost).

In [5], Sünderhauf et al. introduced the so-called switch

variables to each loop constraints. The switch variable is

used as a parameter in the weight for the cost function

of the loop-closure constraint and lies within the range of

[0, 1]. The switch variable for an erroneous loop constraint

would result in a low weight for the cost function of

the loop-closure constraint thus reducing or removing the

effect of the wrong loop constraint within the optimization.

The weighting function is chosen arbitrarily as a sigmoid

function. In a further work [6], Sünderhauf et al. suggested

experimentally that a linear function is a better choice than

the sigmoid function. A penalty cost is introduced for each

switch variable to prevent a trivial solution of zero weight

for all loop constraints and the penalty term was chosen

empirically. Standard non-linear least squares optimizer such

as the Levenberg-Marquardt algorithm is used to jointly

optimize both the pose-graph SLAM and switch variables.

In a more recent work [9], Agarwal et al. showed that the

joint optimization of the pose-graph SLAM and the switch

variable is equivalent to iteratively re-evaluating the switch

variable with the Geman-McClure function. In contrast, we

show that solving the problem with Classification EM allows

us to naturally select the weight as a function of the error

between the robot poses and observed loop-constraints, in

particular the Cauchy function, thus avoiding the needs to

arbitrarily assign the weighting function and penalty term.

We also show in Section V-A.1 that our algorithm outper-

forms [5].

In [7], Latif et al. proposed the RRR algorithm which

detects and removes wrong loop-closure edges by evaluat-

ing the “goodness-of-fit” from the non-linear least squares

pose-graph optimization using the χ2 test. The loop-closure

edges are segmented into clusters according to its spatial

arrangements. Intra-cluster consistency check is done by

multiple pose-graph optimizations with respect to each single

cluster while disabling the rest. Individual loop-closure edge

that does not pass the χ2 for individual edge is removed.

Similarly, a cluster is removed if it does not pass the χ2

test for a cluster. The algorithm tests for inter-cluster consis-

tency after the intra-consistency checks. Clusters are further

grouped into subsets of clusters and multiple pose-graph

optimizations are carried out to test for joint consistency

of each subset of clusters. Subsets of clusters which are

found to be jointly consistent from the χ2 test for subsets

of clusters and passing a threshold test are grouped as

goodSet while those found to be jointly inconsistent are

grouped as rejectSet. The joint consistency checks are

repeated for the remaining subsets of clusters which passed

the joint consistency check but failed the threshold test. The

final subsets of clusters in the goodSet are all the correct

loop-closure edges. Extensive experimental results showed

the reliability of the RRR algorithm. However, the need to

perform multiple pose-graph optimizations during the intra-

and inter-consistency checks makes the algorithm slow. In

addition, the algorithm makes fix assignments of the wrong

loop-closure edges and there is no chance of re-verifying

them further in the intra- and inter-consistency checks.

The Max-Mixture model was proposed by Olson et al. in

[8] as a replacement to the Corrupted Gaussian model (Gaus-

sian Mixture model) as the robust cost function. The Max-

Mixture model consists of a front-end loop-closure and null

hypotheses. The front-end loop-closure hypothesis represents

the distribution of the inlier loop-closure constraints and the

null hypothesis represents the distribution of the outlier loop-

constraints. Each loop-closure constraint is verified against

the hypotheses iteratively within the optimization loops and

the weight associated with the most likely hypothesis is used

to scale the Jacobian, residual and information matrix from

that loop-closure constraint. In other words, the hypothesis

testing acts as an “selector” to the weighting of the loop-

closure constraint. The Max-Mixture model requires the

specification of the covariance of the outlier distribution for

the null hypothesis which is difficult to quantify since the

outlier distribution is usually unknown. It was also shown

in [8] that the algorithm fails when the outlier to inlier ratio

becomes too high. We show examples of this failure case in

Section V-A.2 and verify experimentally that our proposed

algorithm has a higher tolerance to high outlier to inlier ratio.

III. ROBUST SLAM WITH EM

Our robust back-end pose-graph SLAM can be rep-

resented by the Bayesian network shown in Figure 2.

X = [x1, x2, ..., xn]
T are the robot poses and Z =

[z12, ..., zi,i+1, zi,j ]
T , j 6= i+1 are the odometry constraints

zi,i+1, and loop-closure constraints zi,j . For brevity, we will

drop the notation j 6= i+ 1 in the rest of the equations and

assume that the indices {i, j} always comes with this condi-

tion. The variables W = [..., wi,j ], w ∈ [0, 1] are the weights

to the loop-constraints zi,j . The values in W determines the

weight of the loop-constraints in the optimization. X and W

are latent variables and Z is an observed variable. Formally,
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Fig. 2. Bayesian network representing the pose-graph problem. wi,j is the
weight for the loop constraint zi,j in the optimization.

the problem of pose-graph optimization involves finding the

Maximum a Posterior (MAP) solution of p(X|Z) and this

means marginalizing out the latent variable W as given in

Equation (1).

p(X|Z) =

∫

W

p(X,W |Z) dW (1)

One possible way to find the MAP solution to p(X|Z)
is to use the EM algorithm. The EM algorithm is an

iterative algorithm that iterates between the Expectation and

Maximization steps. In the Expectation step, the current Xk

is used to find the posterior distribution of the latent variable

W given by Equation (2a). This posterior distribution is then

used to find the next Xk+1 by maximizing the complete log

likelihood given by Equation (2b) in the Maximization step.

p(W |Xk, Z) (2a)

Xk+1 = argmax
X

∫

W

p(W |Xk, Z) ln p(X|W,Z) dW (2b)

The main drawback of the EM solution is the computation

of p(W |Xk, Z) grows exponentially with the size of W and

becomes intractable. As suggested by [12], an alternative

solution would be to use the Classification EM algorithm

[10]. In the Expectation step given by Equation (3a), we

compute W k+1 by maximizing p(W |Xk, Z) instead of

evaluating p(W |Xk, Z) explicitly. With W k+1 known from

the Expectation step, Xk+1 can be found by maximizing the

log-likelihood ln p(X|W k+1, Z) as given by Equation (3b)

in the Maximization step. The Maximization step can also be

written into a minimization problem by appending a negative

sign to the log-likelihood and this turns the problem into the

usual pose-graph SLAM optimization.

W k+1 = argmax
W

p(W |Xk, Z) (3a)

Xk+1 = argmax
X

ln p(X|W k+1, Z)

= −argmin
X

ln p(X|W k+1, Z)
(3b)

A. Expectation Step

The task in Equation (3a) is to find the correct values of

wi,j ∈ [0, 1] given the current estimate of the robot poses Xk

and observations Z. Applying Bayes rule on p(W |Xk, Z)

and assuming that all observations Z are independent, we

have the following relation:

p(W |Xk, Z) ∝ p(Z|W,Xk) =
∏

ij

p(zi,j |wi,j , x
k
i , x

k
j )

∝
∏

ij

exp{−wi,j(h(x
k
i , x

k
j )− zi,j)

TQ−1

i,j (h(x
k
i , x

k
j )− zi,j)}

(4)

where Qi,j is the error covariance of the loop constraint

observation zi,j and h(.) is the observation model. Putting

Equation 4 back into Equation 3a and taking the negative

log-likelihood, the Expectation step becomes

W k+1 = argmin
W

∑

ij

wi,j ||h(x
k
i , x

k
j )− zi,j ||

2
Qi,j (5)

However, a trivial solution of W = 0 exists for the minimiza-

tion of Equation 5. In order to circumvent this problem, we

introduce a penalty term −C2(lnwi,j − wi,j) to Equation

5, which penalizes the cost as wi,j goes to 0. This turns

Equation 5 into

W k+1 = argmin
W

∑

ij

wi,j ||h(x
k
i , x

k
j )− zi,j ||

2
Qi,j

−C2(lnwi,j − wi,j)

(6)

where C is a constant. It is important to note that we do

not chose the penalty term arbitrarily, but it is chosen such

that the cost function in Equation 6 becomes convex with the

values for wi,j that gives the minimal cost bounded between

the range of [0, 1] as the Mahalanobis distance ||h(xk
i , x

k
j )−

zi,j ||
2
Qi,j

changes. Differentiating Equation 6 and setting it

to 0 gives us

wk+1

i,j =
C2

C2 + ||h(xk
i , x

k
j )− zi,j ||2Qi,j

(7)

which is the Cauchy function where C is a constant that

corresponds to the half maximum at wk+1

i,j = 0.5. Figure

3 shows the Cauchy weighting function at C = 0.01m. The

value of C determines the range of the Mahalanobis distances

to be considered as inliers. It becomes apparent from the

Cauchy function that the weight gradually decreases from

a maximum value of 1 to 0 with increasing error and this

means that the loop-constraints are down-weighted gradually

as the errors increase. We shall see from the results in Section

V that this smooths out loop-constraints which are correct

but corrupted with noises. In addition, the near-zero values

at both ends of the Cauchy function serve the purpose of

suppressing the bad effects from the outlier loop-constraints.

B. Maximization Step

From the Bayesian Network shown in Figure 2, we have

the following relation:

p(X|W k+1, Z) ∝
∏

i

p(zi,i+1|xi, xi+1)

︸ ︷︷ ︸

Odometry Constraints

∏

ij

p(zi,j |w
k+1

i,j , xi, xj)

︸ ︷︷ ︸

Loop Constraints

(8)
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Fig. 3. The Cauchy weighting function with C = 0.01.

where p(zi,i+1|xi, xi+1) and p(zi,j |w
k+1

i,j , xi, xj) are the

odometry and loop constraints. Assuming that X and Z are

random variables that follow the Gaussian distribution, we

can write

p(zi,i+1|xi, xi+1) ∝ exp(−∆zTi,i+1P
−1

i,i+1
∆zi,i+1) (9a)

p(zi,j |wi,j , xi, xj) ∝ exp(−wk+1

i,j ∆zTi,jQ
−1

i,j ∆zi,j) (9b)

where Pi,i+1 is the error covariance of the odometry ob-

servations zi,i+1. wk+1

i,j is the weight variable found from

the Expectation step. It acts as a scaling factor to the

information matrix Q−1

i,j of the loop constraint since it takes a

value ranging from [0, 1]. Therefore, a lower weight implies

lower influence of the loop-constraint. ∆zi,i+1 and ∆zi,j
are defined in Equation (10) and these are the error terms

between the observed relative pose z and the predicted

relative pose from the observation model h(.).

∆zi,i+1 = h(xi, xi+1)− zi,i+1 (10a)

∆zi,j = h(xi, xj)− zi,j (10b)

Putting Equations (8), (9) and (10) into Equation (3b), we

obtain

Xk+1 = argmin
X

∑

i

||h(xi, xi+1)− zi,i+1||
2
Pi,i+1

+

∑

ij

wk+1

i,j ||h(xi, xj)− zi,j ||
2
Qi,j

(11)

We solve for Xk+1 as a standard non-linear least squares

problem given by

JTΛJδ = −JTΛǫ (12a)

Xk+1 = Xk + δ (12b)

where J is a Jacobian matrix that consists of the Jacobian

of h(xi, xi+1) and h(xi, xj). ǫ is the error term given by

∆zi,i+1 and ∆zi,j . Λ is the weight for the non-linear least

squares and it is a diagonal matrix formed by the information

matrices P−1

i,i+1
and Q̂−1

i,j = wk+1

i,j Q−1

i,j . It is important to

note that, unlike standard non-linear least squares, we do

not solve Equation 12 iteratively until convergence. Instead,

we solve Equation 12a and update Equation 12b only once

within the Maximization step. As mentioned in [12], [13],

making an one step update in the Maximization step prevents

the EM optimization from getting stuck at local minima and

improves the convergence rate.

C. Summary

Algorithm 1 Pose-graph SLAM with Robust Loop-Closure

Require: Poses X , observations Z, loop vertex pairs I
Ensure: Corrected poses X , Weight variables W .

1: W ′ = 0; W = 1; I ′ = I;

2: while |W −W ′| > ν do

3: W ′ = W ;

4: // Classification EM iterations

5: k = 0; Xk = X;

6: while | δ |> η do

7: // Expectation Step

8: for all loop vertex pairs {i, j} ∈ I ′ do

9: Compute wk+1

i,j with Equation 7;

10: end for

11: // Maximization Step, {i, j} ∈ I ′

12: Form Λ with P−1

i,i+1
and Q̂−1

i,j = wk+1

i,j Q−1

i,j ;

13: Compute J and ǫ with Xk and Z;

14: Solve for δ in JTΛJδ = −JTΛǫ;
15: Update Xk+1 = Xk + δ;

16: k = k + 1;

17: end while

18: // Remove loop constraints with low weight

19: for all loop vertex pairs {i, j} ∈ I do

20: Compute wk
ij with Equation 7;

21: if wk
ij < ω then

22: Remove loop vertex pair {i, j} from I ′;

23: end if

24: end for

25: X = Xk; W = W k;

26: end while

27: return X , W ;

Algorithm 1 shows the pseudo code of our pose-graph

SLAM with robust loop-closure. Lines 8 to 10 are the

Expectation step where the weights wk+1

i,j are computed

based on the current pose Xk. It is important to note that

the weights wk+1

i,j are not kept fixed but are update within

the EM iterations based on the current pose Xk. Lines 12

to 16 are the Maximization step where the pose update

Xk+1 is computed from the weights wk+1

i,j and current pose

Xk. Intuitively, our algorithm re-evaluates the weights wk+1

i,j

based on the current poses Xk and observations Z, and

scales the updated poses Xk+1 according to these weights

at every iteration. The scaling is done in Line 12 where the

loop-closure information matrices Q−1

i,j are scaled with the

weights wk+1

i,j . We repeat the EM process until there are no

more changes to the weights in Line 2. Lines 19 to 24 check

and remove loop constraints with very low weights, i.e. high

confidence to be outliers from the next EM process. The

repeated EM process and removal of loop constraints with

very low weights help to prevent local minima where the

EM algorithm terminates before all outlier loop constraints

are removed.
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IV. RELATION WITH M-ESTIMATORS

Our proposed algorithm can also be viewed as solving

an iteratively re-weighted least-squares problem where the

weights are re-evaluated from the error between the robot

poses and observed loop-constraints ∆z = h(.)− z at every

iteration. We shall see that our algorithm which is based on

EM turns out to be conceptually similar to the M-Estimators.

The M-Estimators reduces the effect of outliers by replacing

the usual squared error ∆z2 term with a robust cost function

ρ(∆z). In the context of a robust pose-graph optimization,

we have the following

Xk+1 = argmin
X

∑

i

∆z2i,i+1 +
∑

ij

ρ(∆zi,j) (13)

where the first term is the odometry constraint and the second

term is the loop-constraints. Let us look at the second term

where the solution to the minimization is given by solving

for X after differentiating the second term and setting it zero.

∑

ij

w(∆zi,j)∆zi,j
∂(∆zi,j)

∂X
= 0 (14)

where w(∆zi,j)∆zi,j is obtained from differentiating the

robust cost function ρ(∆z) and multiplying it by ∆zi,j . It

can be immediately observed that solving Equation 14 is the

same as optimizing the following

argmin
X

∑

ij

w(∆zi,j)∆z2i,j (15)

Putting the results from Equation 15 back into Equation 13,

we get

Xk+1 = argmin
X

∑

i

∆z2i,i+1 +
∑

ij

w(∆zi,j)∆z2i,j (16)

which is also an iteratively re-weighted least-squares where

w(∆zi,j) is the weight evaluated from the error εi,j at

every iteration similar to our method given in Equation

11. This means that Lines 5 to 17 of Algorithm 1 can

also be implemented as an M-Estimator with ρ(∆z) =
∫
w(∆z)∆z d(∆z), where w(∆z) is given by the Cauchy

function in Equation 7.

A. Why Huber Robust Cost Fails?

The obvious question that follows after proving that our

algorithm based on EM is conceptually similar to the M-

Estimators is why does the commonly used robust Huber

cost function fails for pose-graph optimization with outliers

while our proposed algorithm works? The answer is in the

choice of the weight function. Figure 4 shows a plot of the

Huber weight function with a kernel width C = 0.01m. We

see that the Huber weight function assigns a considerable

weight to the loop-constraints with high errors on both ends

of the plot. This means that the outlier loop-constraints are

still exerting considerable influences from the Huber weight

on the pose-graph optimization thus rendering it to failure.
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Fig. 4. The Huber weighting function with C = 0.01.

In comparison, the Cauchy weight function proposed in this

paper assigns near-zero weight thus suppressing outliers with

high errors.

V. RESULTS AND EVALUATIONS

We implement our algorithm with the Google Ceres solver

[14] and evaluate it with multiple simulated and real-world

datasets. Here, simulated datasets refer to datasets where the

outlier loop-constraints are simulated and real-world datasets

refer to datasets with loop-constraints obtained from real

robots and sensors. C = 1.0m for all datasets except for

the ParkingGarage, Carpark01 and Carpark02 datasets where

C = 0.01m.

A. Simulated Datasets

TABLE I

SIMULATED DATASETS USED FOR EVALUATIONS

Dataset 2D/3D Vertices Loop-Edges

City10000 2D 10000 10688
Intel 2D 943 894
Manhattan3500 (Olson) 2D 3500 2099
Manhattan3500 (g2o) 2D 3500 2099
Sphere2500 3D 2500 2450
ParkingGarage 3D 1661 4615

Similar to [6], we make the evaluations of our robust pose-

graph algorithm with six different Open-Source pose-graph

datasets shown in Table I. We obtained the first five datasets

from Vertigo SLAM 1 and the ParkingGarage dataset from

g2o. The Intel and ParkingGarage datasets were collected

from real robots while the remaining datasets were simulated.

We simulate outliers loop constraints to corrupt the datasets

based on the four different policies mentioned in [6] - (a)

Random Constraints, (b) Local Constraints, (d) Randomly

Grouped Constraints and (e) Locally Grouped Constraints.

The simulation of the outliers are done using the script which

is provided by Vertigo SLAM. We compare our algorithm

with previous approaches - (a) Switchable Constraints [6]

and (b) Max-Mixture model [8] based on the Open-Source

implementations Vertigo SLAM. Note that we classify a

loop-closure constraint as outlier if the error is larger than a

given threshold after optimization.

1http://openslam.org/vertigo.html
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 5. Results from the ParkingGarage dataset comparing our method (top row) with the Switchable Constraints method (bottom row). (a)-(e) 1000
Random Constraints, (b)-(f) 1000 Local Constraints, (c)-(g) 50 sets of 20 Randomly Grouped Constraints, and (d)-(h) 50 sets of 20 Locally Grouped
Constraints.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 6. Results from the City10000 dataset comparing our method (top row) with the Max-Mixture model (bottom row). (a)-(e) 1000 Random Constraints,
(b)-(f) 1000 Local Constraints, (c)-(g) 50 sets of 20 Randomly Grouped Constraints, and (d)-(h) 50 sets of 20 Locally Grouped Constraints.

1) Comparison with Switchable Constraints: It was

shown in [6] that the Switchable Constraints method fails

with the ParkingGarage dataset. We re-create the results

with the Vertigo SLAM for comparisons. Figure 5(a) and

5(e) shows the results from our algorithm and Switchable

Constraints method. The dataset is corrupted with 1000

Random Constraints shown as red lines. The correct loop-

closure constraints are shown as green lines. Note that the

z-axis in the figures are scaled up to have a clearer view

of the results. We can see from Figure 5(a) that the pose-

graph converges to the correct solution with our method.

All the outlier loop constraints are correctly identified. The

pose-graph however fails to converge to a correct solution

with the Switchable Constraints method in Figure 5(e). In

particular, the failure occurs at the connections between

different levels of the parking garage where there are more

wrong than correct loop constraints. Similar failure for the

Switchable Constraints method is observed in Figure 5(g)

when the dataset is corrupted with 50 sets of 20 Randomly

Grouped Constraints. In contrast, Figure 5(c) shows the

correct convergence of the pose-graph with our algorithm.

Results from Figure 5(b) and 5(f), and Figure 5(d) and 5(h)

show that both our algorithm and the Switchable Constraints

method work well for 1000 Local Constraints and 50 sets

of 20 Locally Grouped Constraints outliers. The reason for

the success of our algorithm on the ParkingGarage dataset

is because our method iteratively discriminates against the

outliers by the weights computed from the errors as the pose-

graph converges. In comparison, the Switchable Constraints

method optimizes for the switch values within the non-

linear least squares without taking the errors into account

and this proves to be detrimental at the connections between

different levels of the parking garage where correct loop-

closure constraints are scarce.
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2) Comparison with Max-Mixture Model: It was men-

tioned in [8] that the success of the Max-Mixture model

depends on the outliers to inliers ratio. The Max-Mixture

model fails when this ratio becomes too high. Figure 6(a) and

6(e) show the results from the City10000 dataset corrupted

with 1000 Random Constraints with our algorithm and Max-

Mixture model. The red lines are the outlier loop constraints

and green lines are the correct loop constraints. Figure 6(a)

shows a correct convergence of the pose-graph with our

method. All the outliers are correctly detected. Figure 6(e)

shows the wrong convergence of the pose-graph with the

Max-Mixture model. Failures to converge to the correct

solutions are also observed for the Max-Mixture model with

the City10000 dataset corrupted 50 sets of 20 Randomly

Grouped Constraints and Locally Grouped Constraints in

Figures 6(g) and 6(h). The Max-Mixture model converges

to the correct solution with the City10000 dataset corrupted

with Local Constraints shown in Figure 6(f). In contrast, our

algorithm correctly detects all the outliers and converged

to the correct pose-graph with outliers generated from all

the four different policies. The results from this comparison

suggest that our algorithm is able to suppress the influence

from the outliers better than the Max-Mixture model even

when the outliers to inliers ratio is high.

3) Relative Pose Metric Errors: We run our algorithm on

all the datasets shown in Table I corrupted with simulated

outliers. For each dataset, we generate 10 times each with

1000 outliers based on the four different policies, i.e. 6

x 10 x 4 corrupted datasets with 1000 outliers each. We

compare the results from our algorithm with the results from

the outlier-free datasets since we do not have the ground

truth. The relative pose metric error from [15] is computed.

Our algorithm had successfully detected the outliers and

converged to the correct solutions for all the datasets with

100% success rate. The maximum relative pose metric error

from all results is 3.84×10−5. Figure 7(a) shows an example

of the Manhattan3500 (Olson) dataset corrupted with 1000

Random Constraint outliers stuck at a local minima after the

first EM process. Figure 7(b) shows the correct convergence

after the third EM process.

(a) (b)

Fig. 7. Manhattan3500 (Olson) dataset corrupted with 1000 Random
Constraint outliers. (a) Local minima after the first EM process with 5 outlier
constraints wrongly classified. (b) Correct convergence after the third EM
process.

B. Real-World Datasets

We also make evaluations of our algorithm on two real-

world datasets - Carpark01 and Carpark02. These datasets

were collected with cameras mounted on a car which was

driven approximately 3.5km and 1km around two differ-

ent parking garages. The pose-graphs for both datasets

are formed using the wheel odometry readings. The loop-

closures constraints are computed with a vocabulary-tree

based [16] place recognizer and geometric verification. The

Carpark01 dataset consists of 3997 vertices and 1352 loop-

closure edges. The Carpark02 dataset consists of 2180 ver-

tices and 642 loop-closure edges. Both datasets are equipped

with the GPS/INS readings as the ground truth. Figures 8(a)

and 8(b) show the pose-graphs of the two datasets before

loop-closure. In contrast to the simulated datasets, the real-

world datasets possess very few outlier loop-constraints in

grossly wrong locations because the place recognizer and

geometric verification are usually capable of identifying and

removing these outliers. Instead, we observed that the main

source of error comes from the uncertainties in the estimation

of the relative poses for the loop-constraints. Figures 9(a)

and 10(a) show the pose-graphs from the two datasets after

non-robust loop-closures. It can be seen that in addition to

a few outliers that caused huge errors in the pose-graph,

the uncertainties in the estimation of the relative poses for

the loop-constraints caused small kinks to appear in the

pose-graph. Figures 9(b) and 10(b) show the results from

the Max-Mixture model [8]. Figures 9(c) and 10(c) show

the results from the Switchable Constraints [6]. The plots

clearly show that both methods detected the outliers but are

unable to smooth out the uncertainties that are present in

the loop-constraints. In comparison, Figures 9(d) and 10(d)

show that our algorithm is able to handle the uncertainties in

the estimation of the relative poses for the loop-constraints

because the pose-graphs after loop-closure clearly align with

the GPS/INS ground truth for both datasets.

(a) (b)

Fig. 8. Pose-graph before loop-closure. Loop-constraints are shown in
green. (a) Carpark01 dataset. (b) Carpark02 dataset.

C. Runtime Performance

TABLE II

CONVERGENCE TIME COMPARISONS

Runtime (secs)
Dataset Non-Robust EM

City10000 2.2701 2.2926
Intel 0.0813 0.0819
Manhattan3500 (Olson) 0.9900 1.0047
Manhattan3500 (g2o) 0.6662 0.6675
Sphere2500 16.6994 17.1384
ParkingGarage 4.43296 4.49716
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Fig. 9. Results from Carpark01 dataset. (a) Pose-graph after non-robust
loop-closure. (b) Pose-graph after Max-Mixture model loop-closure. (c)
Pose-graph after Switchable Constraints loop-closure. (d) Pose-graph after
loop-closure with our algorithm.
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Fig. 10. Results from Carpark02 dataset. (a) Pose-graph after non-robust
loop-closure. (b) Pose-graph after Max-Mixture model loop-closure. (c)
Pose-graph after Switchable Constraints loop-closure. (d) Pose-graph after
loop-closure with our algorithm.

Table II shows the time taken for each dataset to con-

verge to the correct solution with the non-robust pose-graph

optimization and our algorithm. Both non-robust pose-graph

optimization and our algorithm are implemented with Google

Ceres solver [14]. The tests were run on a Intel Core2 Quad

CPU @ 2.40GHz x 4 computer and the datasets were not

corrupted with any outlier. It is important to note that our

algorithm still computes the weights in the Expectation steps

because it does not have any prior information that none of

the loop constraint is an outlier. Our algorithm is able to

correctly identify that all loop-closure constraints are correct

and converges to the correct solution for all the datasets. We

observe from Table II that our algorithm incurs a very slight

increase in runtime as compared to the non-robust pose-graph

optimizations.

VI. CONCLUSION

We showed in this paper that the robust pose-graph loop-

closure problem can be modeled with the Bayesian network

and solved with the EM algorithm. We further proved that

our robust pose-graph loop-closure algorithm with EM is

conceptually similar to the M-Estimator and our choice of

the Cauchy function has a better capability in suppressing the

effects from outliers than the commonly used Huber cost

function. We showed that our algorithm performed better

than the existing algorithms - (a) Switchable Constraints

and (b) Max-Mixture Model by showing results from both

simulated and large-scale real-world datasets.
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