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Abstract— A major problem for the application of sensori-
motor approaches to robot control is the classification of states.
The typically immense sizes of sensorimotor state spaces render
it very unlikely that exactly the same states are visited by the
robot several times. In order to learn about the consequences of
alternative behaviors in these states, a classification of similar
or related states is necessary. This requires a metric to measure
similarity between states.

Under the premise that the robot should maximize its fitness,
we studied the correlations between sensory data in different
modalities and fitness values. We found that this correlation
structure can serve as a context-dependent weighting of the
importance of individual sensory channels that allows to define
such a metric. In a collision-avoidance scenario we demonstrate
that this results in (i) faster learning of successful actions, (ii)
an acquired differentiation between sensory modalities, (iii) the
possibility to use the full sensors resolution without quantization
or compression, and (iv) a means to enhance sensor failure
resilience.

I. INTRODUCTION

The ability to generalize from previous experiences to
new situations is one of the most important features of
robotic control architectures. This requires to recognize if
a given situation has been encountered before, so that the
knowledge from previous experiences can be used to decide
which action to take. In reinforcement learning [12], for
example, the agent determines the state of the environment
as a function of the sensory inputs. Hence the mapping
between sensory inputs and states determines the agent’s
ability to respond to new inputs. However, sensory data are
stochastic by nature, and not all changes in the state of
the environment can be detected by sensors. This causes a
considerable uncertainty in the state estimation that is tried
to account for by probabilistic models (e.g., POMDP [1]).

In contrast to symbolic or representation-based approaches
to robot control, sensorimotor approaches do not attempt to
construct and maintain internal models of the environment
such as maps, geometric models or scene descriptions. In the
framework of Sensori-Motor Contingency Theory (SMCT,
[8]) and its extension (eSMCs, [4]), states are constituted
by sequences of sensory observations and the movements
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that caused these observations, hence allowing more reliable
state estimation. A key assumption is that relations between
movements and depending sensory changes are characteristic
for the particular environmental conditions (spatial config-
urations, presence of objects etc.) and hence sufficient for
the agent to adjust its behavior. The difficult problem of
constructing high-level symbolic representations of the world
state can be eschewed, which is what makes sensorimotor
approaches an attractive alternative control schema.

At first the problem of generalization seems to be aggra-
vated for eSMCs, as sensorimotor state space is dramatically
expanded by considering movements and recent sequences
thereof in addition to sensory data. Re-visiting the same
state in this sensation-movement-time space is very unlikely
unless some compression measures are taken, e.g. strong
quantization or clustering of sensor values, small movement
repertoires etc. The ability to generalize the experiences from
similar eSMCs is required if learning should be fast, and this
is where our motivation for this study originated. We will
show that the context given by the set of currently exercised
eSMCs allows to weight sensory inputs according to their
relevance for the current situation. This effectively collapses
sensorimotor state space along irrelevant dimensions and
thereby facilitates generalization.

Mastery of eSMCs can be used to explain the different
qualities of sensory experiences in humans [8]. According
to SMCT, touching feels different from seeing not because
the sensory organs are different, or different brain areas
become activated, but because the laws that govern the
changes of the sensory signals when the agent acts are
different. Our study presents a computational model for how
an autonomous agent can find out about the informativeness
of sensory modalities in different situations and consequently
differentiate its senses from an initially synesthetic state.

We study an experimental scenario where the robot learns
to perform minimum-jerk locomotion in a rectangular con-
finement and avoid wall collisions (see Fig.1). The robot is
able to move forward, backward, to the left and to the right.
This is an extension of one of our previous scenarios where
locomotion was only one-dimensional and fewer sensors
were used [4], [5]. Control of the robot’s locomotion works
as follows: Each movement is internally evaluated with
respect to the collision state, motor currents, and acceler-
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Fig. 1. Top view of the experimental scenario consisting of the Robotino(®)
robot and the rectangular confinement (drawn to scale). The following sensor
channels were used: IR1-9: infrared distance sensors, M1-3: motors (current
consumption accessible to the robot), accelerometer (x-, y-, and z-direction,
not shown), bumper (detects collisions, no directional information). IR1 is
at the front.

ations, resulting in a fitness value or utility of the respective
movement. Correlating the preprocessed sensor data with the
utility magnitude yields information about the relevance of
each sensory channel for the fitness of the robot. We used
these correlations to weight the distance between the current
sensorimotor context and all stored eSMCs. Differences in
sensory channels with low correlations are neglected, and
only eSMCs that match the current context in the relevant
sensory channels are used to plan the next actions.

A simple example may illustrate the context-dependent
sensory differentiation. When the robot moves forward, the
correlation between its frontal distance sensor and the utility
will be high, because low distance readings frequently go
along with collisions, while high distance readings mostly
result in a good (i.e., high) utility. For a rear distance
sensor such a correlation does not exist, and the correlation
coefficient will be low!. Weighting the Euclidean distance
between the actual and stored feature vectors by the cor-
relations for each distance sensor yields low distances for
memories that match the front distance well, irrespective of
the rear distance. This is a sensible behavior, because these
memories are relevant for planning the next action. These
eSMCs could be associated, for example, with previous
experiences of a collision when the forward movement was
continued, and an escape when a turn was taken on time.
The interesting point is that without weighting the Euclidean
distance by the correlation coefficients, differences in the
front and rear sensors would have equivalent effects on the
distance measure. For a given position and corresponding
sensor readings the robot would consider memories with
deviations in the rear distance as relevant as those with
deviations in the front distance, and hence may not become
aware of imminent collisions.

'When moving backwards the opposite is true: The rear distance sensor
will have a high correlation, while the one of the front sensor will be low.

Our approach has a number of ramifications. The weighted
matching we just described always yields those eSMCs that
fit the current context best. This allows to use knowledge
from situations that are similar to the current one, effectively
constituting a method for generalizing across sensorimotor
contexts. This generalization ability allows the exploitation
of knowledge about the consequences of behavioral alter-
natives early on during the exploration phase. In addition,
arbitrary resolutions of the sensory channels can be used:
Even if the particular values are not matching exactly pre-
vious observations, the most similar eSMCs can be used to
recognize the current context. And finally, for failing sensors
the correlation between sensor readings and utilities becomes
very low, what makes this sensor to be ignored henceforth
in the search for matching eSMCs.

II. METHODS

A. Overview of the eSMCs model

We extend the computational model of eSMCs that we
introduced in [3] and used in previous studies with a one-
dimensional action space [4], [5]. The model builds on
discrete movements m and sensory observations in .S sensory
channels o = [07...0g] resulting from m, and consid-
ers sequences thereof over a finite history, [mo(t)mo(t —
1)...mo(t—h)]. We call this an eSMCs of history or context
length h. At each instant of discrete time ¢ the robot records
eSMC:s of all history lengths from O up to a fixed horizon H.
In addition, it computes the utility of its state at this instant as
a function of some internal parameters, and stores it together
with the set of eSMCs for all history lengths h = 0... H.
The utility function is a weighted sum of the state of the
collision detector (bumper, [0, 1]), the average motor current
([0, 2]), the maximum increment in motor current ([0, 2]), and
the acceleration change ([—2, 2]):

u = —bumper — Z 0.2motorgwg — Z 0.2motor;y.
motors

— 0.2max(|Aaccel|)

z,Y,z

motors

This utility function has its global maximum in the trivial
state of resting. Therefore the robot was not given the option
to stop moving.

The robot stores for each eSMCs the movement m(t + 1)
that was executed next and the vectors of sensory observa-
tions o(¢+ 1) resulting from this movement. This allows pre-
diction and action planning by forward chaining eSMCs. The
utility of an eSMC reflects the aptness of the corresponding
movement sequence for achieving a goal. This evaluation
allows the agent to direct behaviors towards a goal, and
we call such a movement sequence an action [6]. In our
implementation eSMCs effectively constitute indexes into a
memory of utilities and subsequent movement-observation
pairs. For a detailed and more formal description we refer
the reader to [3], [4], [5].
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B. Sensor-utility correlations and a distance measure for
eSMCs

For each movement sequence © = [m(t)...m(t—h)],h €
[0, H], we compute the correlation coefficient between each
sensory channel and the utility «™(¢) by

((0s(t = 7) = {0s(t = 7)) (U™ (t) — (u™)))

o (os(t — 1)) o(u™)

r(s,T) =

Angular brackets denote expectation over repetitions of the
same action sequence, and o is the standard deviation.

These correlation coefficients allow the computation of an
importance-weighted distance d between two eSMCs given
by the same action sequence 7 and the sensory observation
vectors o’ and o/ by

h S
d(eSMC;,eSMC;) = Z Z |r™(s,7) (o(7) — ol(7))]|
7=0s=1
Differences in sensory channels with a high correlation to the
utility are weighted stronger and considered more important
than those in channels that bear a low correlation.

In every iteration the distances d between the current set
of eSMCs of all history lengths and all stored eSMCs with
corresponding history length and movement sequence are
computed. If a particular movement sequence 7" has not
been carried out before, which is likely for larger history
lengths h, the data structures for recording expectations
and standard deviations are initialized, and the correlation
coefficients are set to 1. Note that the range of sensory feature
values o should be normalized if all channels should equally
contribute to the distance metric. To allow for changes in
the relevance of individual sensory channels over time, we
compute all correlations in a sliding temporal window of 100
repetitions of the respective movement sequence.

C. Action selection

The distance measure allows to determine the eSMCs in
the robot’s memory that match the currently experienced
sensorimotor context best. These eSMCs and their associated
utilities are used to assess the outcomes of behavioral alter-
natives from previous experiences as described in [5]. The
main idea is to use the information about the immediately
following movement-observation pair that is stored for each
eSMCs for generating predictions about sensorimotor events
several steps ahead in time by forward chaining. Each
prediction step is comprised of a movement, a set of possible
sensory outcomes, and the associated utilities, and each
sequence of prediction steps is considered a potential action.
The cumulative utility of an action is given by the sum of
the utilities of the individual movements,

T

u(m) = Z u(m(t + At)),

At=1

with T' the prediction horizon. The most promising action
candidate is the one with the highest utility:

7 = argmax u(m)

movement-observation history
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Fig. 2. Schematic overview of the eSMC-based robot control architecture.

The utility of the most promising action u(7) is transformed
into a probability p = u(#)/T +1, and 7 gets into execution
with this probability. Otherwise a new behavior is explored.
In this manner actions of high utility are readily executed,
while the likelihood for exploring alternatives is higher when
the utility of the best known action is moderate. The robot
follows the action plan until each movement was executed
or the action is updated by new predictions. In order to curb
the combinatorial explosion, only the 10 eSMCs with the
closest match to current context are considered for generating
predictions, and the prediction horizon is limited to 7" = 2.

We added one heuristic for the case when no action plan
is available. This may happen because all movements of
the last action plan have been carried out, due to lack of
eSMCs that match the current context, or during a random
switch to the exploration of new actions. This heuristic lets
the robot continue the movement from the previous time
step with a probability that is proportional to the utility that
resulted from that movement. Otherwise a random movement
is initiated. This lets the robot start with a momentum-
driven behavior, which becomes gradually differentiated. The
repetitive movements enable matches of larger context sizes
already from the beginning of the learning phase with a
notable effect on the learning rate. A schematic of the robot’s
control loop is shown in Fig. 2.

III. RESULTS

We let the robot roam around the rectangular confine-
ment, recording eSMCs and exploring the consequences of
different behaviors. The trajectory in the left panel in Fig.
3 shows that during the first 1.5 minutes (180 epochs)
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Fig. 3. Example trajectories of the robot at the begin of learning (left)

and after substantial exploration (right panel). Z-axis is used to resolve
movements over time, color represents orientation with regard to the main
axis of the rectangular confinement.

the robot spends most of the time exploring adequate re-
actions to wall collisions. Continued interaction with the
walls also frequently changes the robot’s orientation. The
momentum heuristic in the action selection provides for
straight movements between opposite walls. After about 1.5
minutes the robot increasingly becomes aware of imminent
collisions and reacts with avoidance actions. The spiraling
movements are not yet the energetically optimal solution,
though. After about 70 minutes (8.400 epochs) the robot has
learned energy-efficient collision-avoidance movements (see
right panel of Fig. 3).

The color code in Fig. 3 shows that the orientation of
the robot with regard to the main axis of the confinement
changes by interacting with the walls. Pushing against a wall
when the contact point between the circular periphery and the
wall is not aligned with the force vector generates a torque
that rotates the robot. Different orientations feature different
sets of eSMCs, however. As a consequence, the robot’s
sensorimotor space has an orientation dimension, despite the
fact that it does not dispose of actions that directly change
orientation. This may explain the apparently long learning
time until the robot can generally avoid collisions.

A. Faster learning

Strictly speaking the speed of learning is determined by the
number of experiences or iterations per time the robot makes,
and this is not changed by the distance metric we introduce.
The metric provides however a means for generalization,
allowing the robot to make use of experiences from similar
situations and hence to show a behavior that makes the
impression as if it learns faster indeed. Parameters that char-
acterize the success of the robot’s actions are shown in Fig. 4,
and controllers using the correlation-based eSMCs matching,
a simple Euclidean distance-based matching, and the exact
matching are compared. The plots clearly show that the
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Fig. 4. Characterization of the robot’s behavior when eSMCs for action

planning are matched using the correlation-based distance metric (black
curves), the Euclidean distance metric (blue curves), and exact matches
(green curves). Curves show averages in a sliding window of 10 minutes

robot controlled by the correlation-based eSMCs matching
can minimize its motor current and the collision rate already
during the first 10 minutes of exploration. This required to
switch the movement direction more frequently. Over time
the robot learns to avoid unnecessary turns. The constantly
low turning rate for the exactly matching eSMCs controller
reflects the effect of the momentum heuristics in the action
selection schema. Since this controller does not generalize,
it does not switch movement directions in collision-prone
situations that it has not experienced previously, resulting in
the higher collision rate. The performance of the controller
that uses the Euclidean distance to find similar eSMCs lies
between the other two controllers. Depending on whether the
non-matching sensory channels are relevant for the particular
situation or not, the knowledge in the eSMCs with the lowest
Euclidean distance may be appropriate or not for avoiding
or escaping collisions.

The last panel in Fig. 4 shows how the number of
similar eSMCs matching each situation grows over time.
This reflects the growing sensorimotor knowledge which the
robot acquires. The maximum correlation-based distance of
similar eSMCs in each context does not seem to change much
between the beginning and the end of the shown exploration
period. The number of eSMCs, however, grows from about
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10 in the beginning to more than 30 at the end, indicat-
ing that the action planning can draw on gradually more
specific context knowledge. Using the Euclidean distance
metric, approximately the same number of similar eSMCs are
available. Since they may mismatch in sensory channels that
are relevant in the current situation, the information about
behavioral alternatives may be unreliable. Hence the agent
is not able to select correct actions to the same extent as with
the correlation-based similarity measure. In agreement with
observations in our previous studies the number of exactly
matching eSMCs grows significantly slower.

B. Differentiation between sensory modalities

Analysis of the correlations for the different sensory
channels in the various action contexts after substantial
exploration time reveals the relevance of each channel for
selecting appropriate actions in each context. Fig. 5 shows
examples of three representative movement sequences after
about 80 minutes of learning eSMCs. When the robot has
moved forward for 3 times steps (first row), the most relevant
sensors predicting the utility of the current situation were the
frontal distance sensors (IR1,2,9) two time steps ago (left
panel). In the current time step their importance is lower
(right panel), in favor of a higher importance of the collision
detector and the motor currents (M1 and M3 are used for
moving forward/backward). The relevance of these channels
in the previous time step is in between (middle panel).

When moving backwards (second row), the most relevant
distance sensors are the ones at the back (IR5,6), and the
accelerometer signal (accelX) is reversed?.

Closer inspection of the correlations for the distance
sensors during these two actions shows non-zero, inverse
correlation coefficients for the sensors opposite to the move-
ment direction. This results from episodes when the robot’s
orientation was turned to about 90°, i.e. like in Fig. 1. In this
configuration the robot moved forward and backward along
the short axis of the confinement, and both walls, at the front
and at the back, were in range of the distance sensors all the
time.

The last row in Fig. 5 shows the correlation structure
when the robot changes movement from forward to right. As
expected the most relevant distance sensors are the ones at
the right periphery of the robot (IR7-9), and the correlation
weighting shifts from the more frontal part to the lateral
region over time.

C. Data resolution and the size of sensorimotor space

When matching the current sensorimotor context to stored
eSMCs using the proposed distance metric, exact correspon-
dence of the sensory feature values is not required. If the
robot has explored a given action before, the correlation-
based weighting schema yields the corresponding sensory
experiences ordered by their similarity to the current sensory

2The absence of any correlation for motor M2 on backward movements at
times ¢ and ¢t —1 came as a surprise. We conjecture that the differing control
of M2 in forward and backward movement commands is a peculiarity of
the robot’s odometry.
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Fig. 6. Behavioral parameters (cf. Fig. 4) after learning eSMCs for 80
minutes when distance sensor readings were quantized to 3 (blue curve)
and 10 levels (black curve). Despite the much larger sensorimotor space for
10 levels per distance sensor, the behavior is qualitatively the same, with
an even somewhat lower collision rate.

features. This should allow using arbitrary resolutions of
the sensory features, because the distance-based matching
will always find similar eSMCs among the stored eSMCs,
irrespective of their absolute distances to the current context.

We tested this hypothesis using 10 different levels for each
of the 9 distance sensors instead of only 3. These high-
resolution distance readings provide the robot with a much
more precise estimate of its position with respect to nearby
walls. At the same time it makes it extremely unlikely that
the robot returns to exactly the same position associated with
one of the stored distance patterns. The correlation-based
matching yields eSMCs from places in the vicinity of the
robot’s current position. It is important to note that this does
not mean ordinary Euclidean vicinity, but task- or context-
dependent vicinity. When going forward, for example, the
most similar eSMCs with regard to the frontal distance
sensors will be considered, while the distances at the back
are disregarded.

In Fig. 6 we show that the distance-based matching
succeeded in identifying stored eSMCs with relevance for
action planning even though exact matches could not be
expected in the high-dimensional distance feature space (10°
vs. 39).

D. Detecting and compensation sensor failures

In the trained robot a transient malfunction of one of
the distance sensors was simulated by replacing the sensor
readings with random values. We consider this type of failure
much harder to detect than a simple shut-down of a sensor.
Fig. 7 (left panel) shows that the correlations of the failing
sensor with the utility of eSMCs of all history lengths
drop to around zero, effectively disabling the use of this
sensor for matching the current state with stored eSMCs.
After the sensor resumed function, the correlations return

2816



Forward at time t-2

Forward at time t-1

Forward at time t

= 0.5 H 1 0.5 1 0.5
| ] 0
K = | 1 Wi [l .
§ 0 e '_‘uuuu'_‘ 0 =T ] 0 -
o
5 -0.5 -0.5 -0.5
o
-1 -1 -1
Backward at time t-2 Backward at time t-1 Backward at time t
= 05 0.5 HH 1 0.5
2
3 il i = 0ol i s
] == [ ] [ I [ = [ [ =
o
£ -0.5 -0.5 -0.5
o
-1 -1 -1
Forward at time t-2 Right at time t-1 Right at time t
- 05 H 05 1
: Hil ] ] ]
s, I 0 o= o] N
: H- ] | EE= HN
g'—O.S -0.5
o
T . S . — .
5583 s EECEEEEEE SESESEREaEEIEEEER SESE53EREEEEEER
E595888 ES59888 ES59888
2EEEC@® 2EEEC®® 3EEEC®®

Fig. 5. Correlation structure of all sensory channels for three example movement sequences: moving forward (top row), moving backwards (middle row),
and switching from moving forward to moving right (bottom row). For the sensor positions see Fig. 1.
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Fig. 7. After training, the robot was run for another 50 minutes with a

simulated sensor malfunction in IR1 between 10 and 30 minutes. Shown
are correlations between IR1 sensor features and utilities in eSMCs of
different history lengths for moving forward (left panel) and time courses
of parameters that reflect the robot’s behavior (right panel).

to their previous levels. The simulated sensor malfunction
transiently increases the robot’s turning probability, but does
not significantly affect the parameters that determine the
fitness of the robot (right panel).

IV. DISCUSSION AND RELATED WORK

In this study we presented a correlation-based metric for
eSMCs and explored its application for autonomous robot
control. The main contribution is a model for autonomous
learning of sensory differentiation in robots. It allows to
select a subset of sensory channels with the highest rele-
vance in a given situation. This effectively constrains high-
dimensional sensorimotor spaces to relevant subspaces and

facilitates the search for previously made similar experiences
that can be used for action planning.

Learning in high-dimensional sensorimotor spaces is
treated in reinforcement learning as a value function approx-
imation problem. In the majority of existing methods (see
[12] for an overview) the action context is not sufficiently
taken into account, though. Engaging context information in
value function approximation methods bears some potential
to speed up learning and to arrive at more context-specific
value estimates.

A hierarchical neural network model that uses sensor-
reward correlations for action selection is described in [9].
It uses the correlation between sensory features and rewards
to bias the top-down propagation of states towards actions
that promise good rewards. The correlations are not context-
specific, though, and the structure across sensory channels
is not analyzed. Our study shows that this correlation struc-
ture reflects an agent’s knowledge about the importance of
different sensory modalities in different tasks and that the
agent can acquire this knowledge autonomously. This allows
to employ the eSMCs-based controller in different robotic
embodiments and hence makes it a kernel in the sense of
[2]. The only parameter is the size of the temporal window
over which the correlations are computed, controlling the
robot’s adaptation time to changes in the sensor properties.

An important feature in this respect is the possibility to
handle sensor failures. In our approach failing sensors are
not simply shut off. They are used to the extent they yield
useful information and are re-enabled automatically if they
resume function.
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Apart from learning sensory differentiation our approach
can be considered as a method for approximating a value
function. Tile coding is a solution to this problem which
is used in the context of reinforcement learning [11]. The
value function is approximated by a weighted superposition
across a set of tilings with different offsets, and the value
of individual tiles is updated with samples that the agent
generates. Adaptive tile coding does not require to specify
number and resolution of tilings in advance and adjusts these
parameters to the properties of individual value functions
[13]. The main difference to our approach is that samples
of the value function are used to update information in
corresponding tiles, whereas our approach simply keeps all
samples and determines the set of nearest neighbors at
the selected location in sensorimotor space at the time the
approximation is needed.

The results of our analysis of the correlation structure
may be considered surprising in so far as they do not show
a differentiation into physically distinct sensor classes, but
that sensors are combined in a context-dependent manner.
For moving forward, for example, the robot pays attention
to the collision detector, the current consumption of the
two driving motors, and the frontal distance sensors, while
accelerations and signals from the rear distance sensors are
ignored. The different combinations of sensors monitored in
different contexts can be considered as “perceptual modali-
ties”, which may give a better account of human perception
than explanations building on the anatomical or physiological
differences of the senses [7].

Using the Pearson correlation coefficient in this study
should be seen as just an example of measuring the relevance
of sensory channels for the agent’s fitness. This measure
is certainly limited for it captures only linear relations. It
may be appropriate for the sensor types that were used
(distance, current, acceleration etc.), and that have mostly
linear properties. The aptness for sensors with rather non-
linear characteristics, e.g. pixels of a camera image, will be
investigated in future studies. We expect that the correlation
structure will not account for a detailed vision system, but
may be useful for low resolution vision in simple envi-
ronments, when single colors or brightness gradients bear
sufficient information for the agent. Alternative measures like
mutual information, transfer entropy, or causality measures
may be better suited to capture more complex relations
between sensors, actuators, and utilities. Transfer entropy, for
example, can reveal directed, non-linear relationships in sen-
sorimotor space that are mediated by the environment [10].
Developing our approach in this direction seems promising.
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