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Abstract— The increasing use of mobile robots in social
contexts makes it important to provide them with the ability
to behave in the most socially acceptable way possible. In this
paper we investigate the problem of making a robot learn how
to approach a person in order to increase the chance of a
successful engagement. We propose the use of Gaussian Process
Regression (GPR), combined with ideas from reinforcement
learning to make sure the space is properly and continuously
explored. In the proposed example scenario, this is used by the
robot to predict the best decisions in relation to its position in
the environment and approach distance, each one accordingly
to a certain time of the day. Numerical simulations show a
significant performance improvement when compared with a
random technique. The robot is able to improve performance
after just one day of interaction (a few dozens of trials),
and achieves the maximum expected value for the proposed
approach within sixty days.

I. INTRODUCTION

It is widely expected that the use of mobile robots in

different parts of society will be commonplace in the near

future. This change from controlled environments (e.g.,

factories) to unconstrained environments where people are

constantly present (e.g., home, public places, hospitals, etc.)

will require robots to behave in “socially acceptable” ways.

This need for socially acceptable behavior crosses many

domains (e.g., can I make noise now? how fast can I move

and people still feel safe? can I cross in front of someone?

behind?). While behavior in a social space co-occupied by

humans brings a number of issues, the direct interaction with

people is particularly challenging, as the state of mind of

the person is hard to estimate — and may change with the

interaction itself. Thus, even a simple decision as whether to

initiate interaction is challenging. The simplest approach is

to be conservative and never initiate interaction. Depending

on the role played by the robot this may be acceptable. For

example, for a receptionist robot in a building, it may be

acceptable to wait for humans to start the interaction. However,

in many cases (e.g. a seller robot in a store) the robot is the

one responsible for approaching and initiating the interaction.

Engagement is the process by which different parts have

a perceived connection to each other during an interaction

[1]. It is clear that many factors affect the likelihood of a

person engaging with the robot. Some of these factors may be

outside the robot’s control (e.g., time of day, size/appearance
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of the robot, etc). Others may be clearly within the robot’s

control. For example, the robot can choose how close to

get to the person before trying to engage; how loud to talk;

whether to approach from the front or from the side; the best

location to wait for people; whether to say Hi, or Hello, etc.

Furthermore, these are so variable that we should not expect

an operator to be able to accurately estimate the influence of

any of them during the robot’s setup. Therefore, our main

question is whether it is possible (and how) to make the

robot learn how to choose each of the variables under its

control, in order to influence people and increase the chance

of successfully initiate/maintain an interaction.

With that purpose, in this paper we describe a learning

framework that will permit a robot to change its behavior

accordingly to people’s behavior in the current environment.

The framework is based on applying principles from rein-

forcement learning on top of a Gaussian Regression Process.

We will show that — if the variables under the robot control

do influence people — learning will increase the chance of

successfully initiate engagement in a human-robot interaction.

The problem we tackle is very useful, but it is also very

generic. We could make it more specific. For example, we

could answer what is the optimal distance for our robot to

approach a person at a shopping mall. However, it is not

clear that result would still hold if we change any of the

parameters of the experiment. Changing the robot size, facial

expression, the country, the type of mall, or the task, would

likely affect the optimum distance. Thus, instead of making

the problem more specific, we focus on the learning process

itself. If we show how the robot can learn, the same learning

process is much more likely to apply, even after any of the

conditions of the experiment change.

The scenario we chose to simulate is that of a robot trying

to distribute a flyer for a new store opening at a shopping

mall (illustrated in Figure 1). The probability of success

is influenced by a number of variables, in this work we

consider three: time of day, approaching distance, and initial

position. All other non-modeled variables are lumped together

in the noise component. We also assume the robot will know

the outcome of the trial immediately after each approach

(success iff the customer took the flyer). We then measure

the ability of the robot to learn the influence of variables

under its control (robot’s position, distance to person before

engaging) by themselves and as a function of the variables

that are observable, but outside its control (time of day, rate

of arrival).

The robot’s objective is to tune the variables under its

control to maximize the chance of engagement. Results will,

of course, vary widely with the scenario. Over our specific
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Then, we want to optimize the success rate of approaches

over the variables under the robot’s control, i.e., :

maximize
P, D

|T s|

|T |
,

where | · | represent the cardinality of a set.

B. Learning Framework

It is natural to consider a reinforcement learning approach

to tackle the proposed problem. However, most standard

reinforcement learning techniques rely on discrete states

[32]. The common approach of discretizing the variables

quickly brings in an explosion of the learning space, making

the number samples required for training impractical. The

approach of fitting a parametric function requires a prior

model, and, (on our early experiments) a huge amount of

training data as well.

Our problem can, however, be recast as a prediction

problem (given the outcome of all previously visited sates,

what is the expected outcome of other states). We thus decided

to address it as a regression problem. One of the drawbacks

of this approach is the right choice of a model. Therefore, our

methodology is based on the Gaussian Process Regression

(GPR) technique, which consists of a less ‘parametric’ tool,

since it assumes that data can be represented as a sample from

a multivariate Gaussian distribution [33]. We then combine

GPR with a exploration policy based on principles from

reinforcement learning.

Given a vector of input variables x, a Gaussian process

is completely specified by its mean function (m(x)) and

covariance function (k(x,x′))[33]. Thus, we approximate our

random process f(x) , as a GP:

f(x) ∼ GP(m(x), k(x,x′)). (1)

Additionally, we model the covariance function as a linear

combination of the covariance function of each one of the

state parameters, time of day (Kt) and approach distance

(Kd), i.e.:

K = α1Kt + α2Kd. (2)

Note that this does not imply the variables are linearly

related, but simply that the covariance of one does not change

as a function of the other.

The position variable will be treated separately, therefore

this variable will not be incorporated in the covariance matrix.

GPR involves two steps. Initially, we have to fit a co-

variance matrix related to the process, that best explain the

observed datapoints. This can be done by maximizing the

likelihood of the observed data as a function of the parameters

in the covariance function. More specifically, each of the

covariance matrices Kt and Kd corresponding to the specific

vectors xi in the experiments

K(x,x) =







k(x1,x1) · · · k(x1,xn)
...

. . .
...

k(xn,x1) · · · k(xn,xn)






(3)

is obtained by modeling k(x,x) as

k(xi,xj) = σ2
f exp

(

−(xi − xj)
2

2l2

)

+ σ2
nδij(xi,xj), (4)

where δij(xi,xj) is a Kronecker delta which is one iff i = j and

zero otherwise. The squared exponential function has some

characteristic parameters such as the maximum allowable

covariance (σ2
f ), a length parameter related to the separation

of the observations (l) and a parameter related to the process

noise (σ2
n).

The next step consists in predicting the mean and variance

of the process accordingly to the observations vector y as:

ȳ∗ = K∗K
−1y (5)

var(y∗) = K∗∗ −K∗K
−1KT

∗ (6)

where y∗ is the Gaussian process prediction (random variable)

for the test input vector x∗, ȳ∗ is its mean and var(y∗)
its variance. The covariance matrices are K = K(x,x),
K∗ = K(x∗,x) and K∗∗ = K(x∗,x∗).

Since the method is executed iteratively, it is necessary to

use an efficient policy to choose the next state to visit in order

to improve the model learned until the moment. Here we

borrow from the reinforcement learning theory, and establish

a balance between exploration and exploitation.

Considering the mean (Equation 5) and variance (Equation

6) previously presented, we first introduce in Equation 9

the policy regarding the position. Among all the possible

positions, we choose the value with the maximum predicted

mean with a probability P
p
mean, the value with the highest

value on a 95% C.I. with a probability P
p
ci or a random

position otherwise.

pmean = argmax
∀i∈|P|

max(ȳ∗)
[i] (7)

pstd = argmax
∀i∈|P|

max(ȳ∗ + 1.96
√

var(y∗))
[i] (8)

p ∼











pmean , if r ≤ P
p
mean

pstd , if P
p
mean < r ≤ P

p
ci

U(1, |P|) , otherwise

(9)

where r ∈ [0, 1] is a random real number with uniform

distribution.

We present in Equation 12 the policy regarding the distance.

Assuming a position was chosen, we select some test values

(x∗) and predict the possible values. Similarly to the previous

step, with a probability P d
mean we select the value with the

maximum mean, but then we choose a distance with a

Normal distribution considering this value. The value with the

highest value on a 95% C.I. with a probability P d
ci is selected,

and distance is chosen again with a Normal distribution.

Otherwise, a value is uniformly randomly chosen in the

domain of the set of distances.

dmean = argmax
∀x∈x∗

max(ȳ∗) (10)

dstd = argmax
∀x∈x∗

max(ȳ∗ + 1.96
√

var(y∗)) (11)
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d ∼











N (dmean, σ
2
d ) , if r ≤ P d

mean

N (dstd, σ
2
d ), , if P d

mean < r ≤ P d
ci

U(min(D),max(D)) , otherwise

(12)

where r ∈ [0, 1] is a random real number with uniform

distribution.

Figure 2 is presented is other to clarify the main idea behind

the policies. The first case on the policies is responsible for

choosing the best know value. The second case is used to

increase the confidence in an area not yet explored. Finally,

the third case is responsible for executing a global search. It

is important to notice that choosing the distance based on a

Normal distribution it is also executing a local search.

max(ȳ∗)

max(ȳ∗ + 1.96
√

var(y∗))

Fig. 2. Example of the exploration policy. The red line represents the
Gaussian process posterior mean (ȳ∗) and the gray area represents a 95%
C.I. around the mean.

The Gaussian process prediction method has a basic

complexity of O(n3) due to the inversion of K (considering

standard techniques), which can be prohibitive for large

datasets. However, for the specific problem under considera-

tion, datasets are typically small, varying from a few dozens

to a few thousands. At this levels, computational complexity

is not a problem. For situations where the robot approaches

say, over 10,000 people, data consolidation or other methods

for controlling the complexity may need to be used.

C. Simulation

The proposed framework was evaluated in a simulation

context in order to measure the learning potential, and evaluate

the amount of data needed to learn certain characteristics of

the interaction.

Our arrival method is based on a non-homogeneous Poisson

process, since we consider that it can vary along the day. The

frequency of inclusion of new people in the environment is

defined by a rate (intensity) function λ(t), which represents

an estimate of the amount of new persons that must be created

in a given unit of time.

The random length of time that will pass before the

next region is inserted into the environment is obtained

by generating random numbers based on a sample in the

inverse transform in accordance with a cumulative distribution

function [34]. The cumulative distribution function of a

homogeneous Poisson process rate λ can be represented by

an exponential distribution:

F (x) = 1− e−λx, x ≥ 0, (13)

with the inverse transform given by

T =
− lnU

λ
, (14)

where U ∈ [0, 1] is a random real number with uniform

distribution.

The event schedule of the non-homogeneous Poisson

Process for each time slot ti are then generated according to

a homogeneous Poisson process with rate λ(ti). Each event

has a probability pi of being added to the schedule given by

pi =
λ(ti)

max(λ(t))
. (15)

Considering an environment with P = {1, 2, 3}, we pro-

pose for each position a model that represents the probability

of successful engagement. The models are based on the

time of the day (T = [0h, 12h]) and approach distance

(D = [0m, 5m]). Figure 3 presents the models, the maximum

probability (red areas) in all positions is 90%.

Algorithm 1 presents a simplified overview of the execution

of the framework. In line 2 an schedule of the arrival times

are created using the Poisson process previously described.

On each iteration of the loop the robot chooses a new position

(line 4) based on the current time (t) using Equation 9. Line

5 verifies if it is time for a new arrival. When a new arrival

happens the robot must initially choose an approach distance

(line 6) using Equation 12. The approach tentative is then

realized performed considering the position, distance and

current time (line 7). The result is obtained selecting an

uniform random number and comparing to the corresponded

probability of the model. Based on the return the model is

updated (line 8) based on Equations 5 and 6.

Algorithm 1 SimulationLoop()

1: t← 0
2: s ← createArrivalSchedule();

3: while stopping criteria not met do

4: p ← choosePosition(t);

5: if isTimeOfNextArrival(s, t) then

6: d ← chooseDistanceToApproach(p, t);

7: r ← tryToApproach(p, d, t);

8: updateModel(r);

9: end if

10: t← t+∆t

11: end while

IV. NUMERICAL EXPERIMENTS

In this section we describe our experiments and the

corresponding statistical analysis, showing the improvement

obtained in the success engagement rate with the proposed
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(a) Position 1 (b) Position 2 (c) Position 3

Fig. 3. Simulated approachability model proposed. The success of a tentative engagement is represented as a probability based on the position, time of day
and approach distance. The maximum probability (red areas) in all positions is 90%.

methodology. The simulator was implemented using Matlab

and all experiments were executed in a PC with an Intel Xeon

3.60 GHz processor, 8 Gb of RAM, and a 64-bit Windows

OS. Table I presents an overview of the specific parameters

related to the simulation execution.

TABLE I

PARAMETERS USED IN THE SIMULATION.

Parameter Value

G
P

R

σ
2

f
0.5

l 1

σ
2
n 1

α1 = α2 1

P
o

li
ci

es P
p
mean = P

d
mean 0.8

P
p
ci
= P

d
ci 0.9

σ
2

d
0.25

S
im

u
la

ti
o

n

Number of days 60

Minimum arrival rate 1

30

Maximal arrival rate 1

10

Figure 4 presents the behavior of the engagement success

rate along the days. The red line are the results given by a

random policy (the position and distance are randomly chosen)

which has a mean value of ≈ 13%. The blue line represents

the results of an optimal policy, with a mean success rate of

≈ 61%. The black line are the results given by our proposed

methodology. After a period of circa 20 days it is possible

to observe a convergence of the results to a mean value of

≈ 46%, a significant improvement over the random policy.

Furthermore, as we will explain later, mostly all the gap to

the optimum policy is explained by our decision to keep the

exploration component active.

Figure 5 presents the model learned by the end of the

simulated period. Despite the considerable size of the search

space, the methodology was able to satisfactorily estimate

the underlying model (especially the peaks). It is important

to notice that some parts of the space may never be fully

explored since we give priority to the use of known good

estimates, instead of looking in parts of the space already
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Fig. 4. Engagements success rate considering three different policies. The
optimal policy accordingly to the proposed model (blue), a random policy
(red) and the proposed methodology (black).

proven not to lead to better solutions.

Figures 6 and 7 show the possible decisions that could

be made by the policy considering the model learned by the

end of the simulation. Figure 6 presents the decision related

to the position of the robot accordingly to the time of the

day. The blue lines are the optimal values and the black lines

the values given by the methodology. Most of the time the

robot is at the optimal position but still has some freedom to

explore other positions.

Figure 7 presents the decision related to the approach

distance accordingly to the time of the day. The blue lines

are the optimal values and the black dots the values given by

the methodology. The values are spread around the optimal

values, which was expected considering Equation 12.

As the proposed technique is a probabilistic method,

in order to perform a thorough statistical analysis, we

present next an overall analysis with a significant number of

experiments. We run 300 experiments considering the same

parameters used in the previous experiment.

Figure 8 presents the average success rate along the

simulated period. As can be observed, the methodology

achieves a success rate of 50% in less than 30 days, about 4×
more effective than the random policy. If we fit an exponential

to the learning curve, we conclude that the methodology
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(a) Position 1 (b) Position 2 (c) Position 3

Fig. 5. Approachability model learned after a simulated period of 60 days.
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Fig. 6. Example of possible decisions taken during a day by the policy
responsible for choosing a new position. This example considers the model
previously learned after a 60 days simulation.
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Fig. 7. Example of possible decisions taken during a day by the policy
responsible for choosing the approaching distance. This example considers
the model previously learned after a 60 days simulation.

has a “learning time constant” of 7 days. It is important to

observe that the mean value obtained by the methodology

will be lower than the maximum expected mean using the

optimal policy due to the random values that are chosen

accordingly to each policy (position and distance). Indeed, in

10% of the time it chooses a random position, and 10% of

the time uses a random distance. Thus we estimate that this

would reduce the success rate to approximately 52% (i.e.,
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Fig. 8. Average success rate of the proposed methodology considering a
simulated period of 60 days and 300 experiments.

(.81)61% + (.19)13%)). The additional 2% sub-optimality

is most likely also derived from the random noise added to

the distance. In any case, both could easily be removed if

we allow the policy to decrease the rate of exploration as it

learns.

Note also on Figure 8 the early improvement. We can

estimate the success rate at the end of first day at around

18%, an improvement of almost 40% over the random policy

after just a day.

Besides number of days, it is also important to evaluate the

number of approaches necessary for convergence. Although

we consider different arrival rates during the day, we assume

they remain unchanged among days. Considering the values

used for the minimum and maximum rate we obtained

an average of ≈ 80 new approaches each day (Figure

9). Therefore, it has a “learning time constant” of ≈ 560
approaches.

V. CONCLUSIONS AND FUTURE WORK

This work proposed a learning framework for mobile

robots in order to increase the chance of successfully initiate

engagement in a human-robot interaction.

The proposed methodology is based on Gaussian Process

Regression, combined with principles from Reinforcement

learning. The use of GPR allows a rather simple model,

while still being powerful enough to adequately represent

2178



0 10 20 30 40 50 60
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Days

A
v
e
ra

g
e
 n

u
m

b
e
r 

o
f 

a
p
p
ro

a
c
h
 t

ri
a
ls

Fig. 9. Average number of approach trials considering a minimum and
maximum rate of 1

30
and 1

10
, respectively. Simulated period of 60 days and

300 experiments.

the the underlying phenomenon. In the simulated experiment,

improvements of around 40% (over a random policy) were

obtained after just one day (≈ 80 engagement trials), and

nearly optimum results after 60 days. Although suitable for

problems with a reduced number of training data (our case),

the main drawback of the technique is its computational cost,

which can be a problem for long-term executions.

Future research directions include the deployment of a robot

in a real world scenario, a better study of the parameters used

in the model (probably the use of an optimization process on

every learning iteration of the algorithm), and the analysis of

different learning policies, particularly regarding the trade-off

between exploration and exploitation. The study of techniques

with a lower (or even constant) computational complexity is

also of interest, particularly for other scenarios, where the

number of data points may become excessively large.
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