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Abstract— We present an approach for object class learning
using a part-based shape categorization in RGB-augmented
3D point clouds captured from cluttered indoor scenes with
a Kinect-like sensor. A graph representation is used to detect
and categorize object instances based on part-constellations
found in scenes. No assumptions like objects being placed on
planar surfaces or constraints on their poses are required.
Our approach consists of the following steps: 1) a Mean-
Shift-based over-segmentation of a point cloud into atomic
patches; 2) use of topological and geometric features to merge
surface-homogeneous atomic patches into super patches; 3)
an unsupervised classification of these parts that allows to
symbolically label distinctively unknown object parts by their
surface-structural appearance; and finally, 4) a graph gener-
ation procedure that reflects the constellation of the detected
parts from object instances of certain shape categories. Fur-
thermore, an inference procedure is presented that processes
extracted part constellations of a scene to detect and categorize
object instances. Experiments with challenging, cluttered scenes
show that the segmentation procedure provides salient parts of
objects which lead to a good categorization performance using
the graph-based constellation model concept.

I. INTRODUCTION

Object recognition is a core research topic of AI and
robotics that has experienced significant progress over the at
least five decades in which it is investigated [1]. In the work
presented here, we are interested in a very challenging ap-
plication scenario, namely the unloading of containers in the
context of the EU-project “Cognitive Robot for Automation
of Logistic Processes (Roblog)”. The objects hence tend to
occur in cluttered scenes with many partial occlusions. Also,
objects can be deformable, e.g., sacks, or of different sizes
and shapes, e.g., various types of parcels and boxes, barrels,
etc.

Our method detects surface-homogeneous parts from an
over-segmented scene which are later utilized to find parts
of objects and finally probable object instances. Neither the
appearance of objects nor the variation in the appearance
of the application environment is constrained by making
assumptions like expecting object instances placed on planar
surfaces - also known as table top assumption - or consid-
ering only specific object poses. In our application scenario,
objects may have been piled up, stacked up or be presented
in arbitrary poses.

Instead of learning shape categories from 3D object mod-
els which cover the entire or partial object surfaces from
certain view points, the part-based approach used here offers
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a rich representation to model shape categories in the form
of a part-constellation graph. A part-based approach offers
several advantages for a classification task, especially robust-
ness in form of object rotation invariance and with respect
to partial observations especially in situations involving oc-
clusion. Also, this provides a basis for handling deformable
objects as discussed later. Parts of detected query instances
are used to infer the corresponding shape category using
graph models which encode sets of relations between parts
of certain shape categories that have been observed during
training. Relationships can describe shape appearance or
alignment of detected parts, e.g. in case of a barrel, the upper
planar-surface and the lower cylindric body surface would
be considered as two separate parts that are approximately
perpendicularly aligned.

II. RELATED WORK

The first step in the perception pipeline is typically a
detection of candidate regions, i.e., segmentation. A plethora
of approaches have been proposed relying on different
modalities like 2D RGB cameras or 3D points from time-
of-flight cameras. Popular approaches are often based on
techniques which aim at detecting probable object boundaries
[2], windowing [3], or even saliency detectors [4]. In recent
years, with the appearance of low-cost 3D cameras, the focus
has switched more and more to approaches which combine or
fuse different modalities to gain a more accurate set of object
instance candidates rather than e.g. rough 2D regions. In this
work, we focus on a probabilistic approach to detect object-
related segments in RGBD images which we later merge into
object parts and instances.

The Mean-Shift algorithm [5] is a probabilistic approach
for segmentation, clustering or object-tracking problems,
which has been successfully used on RGB data [6]. Here,
Mean-Shift is also used as an initial step but using both RGB
and depth information to generate surface-homogeneous
patches that over-segment the scene. Then, a surface recon-
struction and description method introduced by one of the
authors [7] is used to describe these segments. Based on
this, we introduce a method that merges those segments,
which leads to properly sized and shaped 3D parts. Finally,
a method is introduced to filter these 3D parts for being part
of an object instance by considering their spatial alignment.

The concept of implicit shape models or constellation
models [8] has shown immense success in object recognition
or categorization tasks where not only the appearance but
also the spatial relationship between local features are taken
into account through probabilistic analyses. Also, partial
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absence of features due to occlusions or even deformations
can be dealt with more efficiently than considering objects
as a global and single entity. In our work we follow a
similar concept, however, we use 3D object parts rather
than texture-dependent 2D features of objects. These 3D
parts are classified by unsupervised machine learning for a
symbolic distinction by their surface-structural differences.
Based on the symbolic part representation a part constel-
lation model for each shape category is created using a
graph representation. The model does not only consider part
appearances, in addition we also augmented the graph with
a variety of features that describe relations between parts.
Such a graph representation has the inherent advantage of
facilitating access to topology and structure of the containing
3D object parts of certain categories. Graph theory-related
algorithms can then be easily exploited and beneficially used
for searching cliques and subgraphs or finding connected
components. Moreover naı̈ve inference methods such as
Markov Networks [9], [10] can be applied to each graph
model for finding the most probable shape category for a
query object instance.

The approach by Anand et al. [11] is close to ours.
However, Anand et al. present a graph model for scene
part classification rather than for specific object instance
classification. Moreover, our graph model is based on a
symbolic representation compared to the numeric feature
vector representation in their work.

III. MODEL FORMULATION

A. Part-Graph Model Generation

In this section, we formulate the part-graph model that
is created to represent appearing shape parts P of objects
instances I and their relations R for n shape categories C. R
can represent e.g. unary relations (U), i.e. statistics regarding
a single shape part, or pairwise relations (P), i.e. statistics
between two shape parts. Also a relation can be boolean-
like, responding {0, 1} or continuous with range [0, 1].

First, we define a dictionary D which is a repertoire of
m words {w1, ..., wm} to symbolically describe shape parts
P i.e. a word w ∈ D symbolically represents a part p ∈ P
of an instance I ∈ I. The corresponding word w for p is
inferred by w = fD(p). The mapping function fD(·) will be
discussed in Section IV-D.

Second, we create a set of part-graph models represented
by undirected graphs G. For each shape category c ∈ C an
undirected graph gc ∈ G is created. The undirected graph
gc for category c consists of V vertices and E edges: gc =
{Vc, Ec}. Let us assume that a given set of training object
instances Ic of shape category c exists where each instance
Ic ∈ Ic consists of a set of shape parts PIc . Any gc consists
of a set of words of the dictionary D that are represented
by vertices Vc in gc. A word w exists uniquely in gc only
if w has been inferred by w = fD(pIc) where pIc ∈ PIc of
a training instance Ic. An edge e ∈ Ec is a relation between
two words wi and wj where wi, wj ∈ (D, gc). We define
a pairwise relation (P ) between two words wi and wj by
fPR(wi, wj) ∈ R. An edge e ∈ Ec can be augmented with

Fig. 1. A set of (simplified) models G for n shape categories. Each vertex
and edge can be augmented with several relationsR. A vertex is represented
through a word w ∈ D. For illustration purposes three exemplary relations
are selected and shown for model g1 (unary (yellow), pairwise (blue) and
higher-order (green), i.e. order of three).

multiple pairwise relations in R. Also a single word w which
is represented by a vertex v ∈ Vc can be augmented with
multiple unary relations (U ), defined by fUR(w) ∈ R. More-
over, higher-order relations can exist which represent cliques
of related words by fHR (W ) ∈ R where W ⊆ (D, gc).
These relations R (= fUR(·) ∪ fPR(·) ∪ fHR (·)) will allow us
to infer the corresponding shape category c of a query object
instance Iq by a given set of models G = {g1, g2, ..., gn} for
n categories where for each category a model g is created.
An illustration is depicted in Fig. 1. It illustrates a set of
part-graph models G. Each model g ∈ G consists of set of
words containing unary, pairwise and higher-order relations.
In the next Section III-B we will discuss the concept how
relations are used to infer the corresponding shape category
of a given query object instance Iq .

B. Part-Graph Model Inference

Let us assume that besides the set of part-graph models G,
a query object instance Iq is given. Moreover, let us assume
that Iq consists of a set of parts PIq . For each part p ∈ PIq

and a given dictionary D, we can infer a corresponding word
w (w = fD(p)). From the resulting set of words we can
create a graph model gIq = {VIq , EIq} where for each word
a vertex v ∈ VIq is created. An edge e ∈ EIq is created
between two words wi and wj if the corresponding parts of
PIq are physical neighbors. These edges represent a simple
pairwise relation fPRneighbor

(·), i.e. the relation exists if pi ∈ PIq

and pj ∈ PIq are physical neighbors in object instance Iq
that is expressed by fPRneighbor

(fD(pi), fD(pj)). An illustration
is depicted in Fig. 2.

The target of the model inference procedure is to find
the most probable corresponding model gc ∈ G for a given
model gIq of object instance Iq . The defined set of models G
allows to compute a score for the given appearing words and
their relations in gIq . Markov Networks applied in computer
vision problems are one paradigm that is exploited in our
work to determine such scores which allow us to infer the
corresponding category c of the instance Iq . If for a given
instance Iq a set of shape parts PIq has been observed, then
we can compute the probability for a shape category c given
PIq in the form of a Gibbs distribution [10], [12] by:

P (c | PIq ) =
1

Z(PIq )
e−E(c,PIq ) (1)
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Fig. 2. An image section of a parcel (blue framed) is depicted from a shelf
scene and their segmented parts (p1, p2, p3) of the parcel instance Iq (red
framed). The figure shows the generation of the graph model gIq based on
the segmented parts and the inferred words (w2, w4, w4) of the dictionary
D. The edges between the words (w2, w4, w4) are created through the
relation fPRneighbor

(·) described in Section III-B.

where Z(·) is the partition function,

Z(PIq ) =
∑
c∈C

e−E(c,PIq ) (2)

and E(·) represents the energy function,

E(c,PIq ) =
∑
l

fRcl
(fD(PIq )) (3)

where fRcl
(·) represents a relation in Rc applied on the

model gc of shape category c. In the context of Markov
Networks we can also denote fRc

(·) as a clique potential
of the instance parts PIq , defined over the model gc. Such
potentials are described by the prior probabilities of the
particular configuration of relations in gc observed in PIq .
We can elaborate an energy function to unary, pairwise and
higher-order clique potentials:

E(c,PIq ) =
∑

pi∈PIq

∑
l

fURcl
(fD(pi))

+
∑

pi,pj∈PIq

∑
m

fPRcm
(fD(pi), fD(pj))

+
∑

Pk⊆PIq

∑
n

fHRcn
(fD(Pk))

(4)

Basically we can summarize that for an observed part p ∈
PIq the potential fURc

(·) is computed which was observed as
a part of an instance of shape category c ∈ C during model
generation gc. While for two and more observed parts in PIq

the potentials fPRc
(·) and fHRc

(·) are computed which were
observed as related parts of an instance of shape category
c ∈ C during model generation gc.

Finally we can infer the shape category of a set of parts
PIq of instance Iq by solving the maximum a posteriori
(MAP) or the energy minimization problem, respectively.

c = argmax
c

P (c | PIq ) = argmin
c

E(c,PIq ) (5)

IV. SHAPE PART DETECTION AND DESCRIPTION

In this section we present a hierarchical approach to find
reasonable and coherent surface parts in the scene. First

(a) RGB Scene (b) Segmentation result

Fig. 3. Mean-Shift segments (atomic patches) colored randomly.

we propose an over-segmentation approach that partitions
the scene into surface-homogeneous segments which we call
atomic patches. These atomic patches provide the basis for
finding surface coherent parts (super patches) in the scene by
merging the atomic patches in an appropriate way. Later on
these parts are used for detecting object instances and finally
for inferring the shape category of such instances.

A. Atomic Patch Detection based on Mean-Shift

We over-segment an RGBD image using Mean-Shift to
generate small atomic patches (Fig. 3) that can be used as
fundamental elements for further detection and classification
purposes. Mean-Shift [5] aims to iteratively converge into
local maxima of multivariate probability distribution/density
function (pdf ) that are defined over a feature space. The
feature-space can be defined e.g. by RGB pixels, ranges, 3D
points, local normals, curvature, etc. The Mean-Shift itera-
tions perform an implicit gradient ascent on the multivariate
probability distribution in the feature-space without having to
explicitly compute the probabilities themselves. The implicit
gradient-ascent iterations are started at uniformly placed
points on the RGBD image grid. The iterations converge to
local maxima of the pdf ; the basin of convergence of each
local maximum defines a segment. The parameter selection
for Mean-Shift requires mainly the determination of the
bandwidths in each feature space partition. Several features
spaces from RGBD information were experimented with
to achieve a detection of surface-homogeneous patches in
cluttered environments. We finally selected the following
features: the L component from the LUV color space, x, y, z
coordinates and local surface normals from the 3D point
cloud space.

B. Super Patch Detection by Merging of Atomic Patches

Due to the small region of the scene which is covered by
each atomic patch, often neighboring patches reflect similar
surface structures and hence the surface diversity is minor.
These fine-granular atomic patches provides a baseline for
merging atomic patches into a group of similar neighboring
patches that we denote as a super patch. In Algorithm 1
the super patch detection procedure is shown. Super patches
typically already cover reasonable coherent parts of objects
with similar geometric attributes as illustrated in Fig. 4(a)
and 7(a). Hence neighboring super patches are preferred to be
surface-diverse. For instance, a barrel is typically extracted
into two parts, namely the upper top planar surface combined
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(a) (b)

Fig. 4. A simplified scene O and the detected super patches are depicted in 4(a). The super patches are labeled by the corresponding visual words
(|D| = 45) – see Section IV-D. Subsequently a graph gO of scene O (4(b)) is accordingly created – see Section V. By applying Algorithm 2 a set of
subgraphs (randomly colored) is extracted which correspond to detected object instances whereas black edges indicate removed relations.

Algorithm 1 Super Patch Detection
Input: RGBD point cloud of an observed scene O

1: Detect atomic patches AO of scene O (Fig. 3)
2: Create a graph by adding a vertex for each atomic patch in AO

3: Create an edge between two vertices if the corresponding
patches satisfies the similarity that is conditioned by:

1) patches are neighbors,
2) patches are aligned by an angle less than β (= 75◦),
3) description of patches (see Section IV-C) are similar

(measured with Jensen-Shannon Divergence [13]) by a
threshold λ (= 0.5).

4: Find connected components in the graph
5: Merge point clouds of atomic patches which correspond to

vertices that are part of a connected component. Each merged
point cloud represent a super patch s ∈ SO .

Output: The set of super patches SO (Fig. 4(a))

with the lower cylindric part. Therefore, we can consider
super patches in practice also as actual object parts.

C. Global Patch Description
Both atomic patches A and super patches S of an observed

scene O have to be represented for comparison and inference
purposes. We aim to express a patch which is represented
as an unorganized point cloud t by a single description
vector δ where δ = fP(t). In our previous work [7]
we proposed a description method that not only considers
topology but also curvature characteristics of point clouds.
Here the method is applied on patches rather than on objects.
It is divided into two steps. First, a surface mesh m of
point cloud t is reconstructed by an unsupervised topology
learner [14] with m = LGNG(t). Second, so called shape
functions [15] are applied on m to extract the topological
(fS1(m)) and curvature (fS2(m)) characteristics. Based on
the concatenated responses of the two shape functions we
computed δ as

δ = fP(t) =
n

i=1

fSi(LGNG(t)) (6)

1) Surface Reconstruction – LGNG(·): The surface recon-
struction step plays a particularly important role since a sur-
face – in the form of a mesh – encodes geometric properties

of a patch which can be used for description purposes. Stan-
dard triangulation approaches create connections between
points in the point cloud in a way such that a Delaunay-
like graph is formed. Therein the aim is to reconstruct a
surface to a mesh which is coherent with the actual patch
surface. However such reconstruction is influenced by noise
in the patch point cloud which is captured by the camera
from the real-world. In contrast, our surface reconstruction
approach treats the patch point cloud as a distribution of
points in 3D space. The goal is to learn the distribution of
these points rather than to directly project the point cloud into
a mesh as this is the case in the first mentioned approach. An
unsupervised learning method, a modified Growing Neural
Gas (GNG) [14] is applied to learn the distribution of the
points in a Hebbian learning manner. This leads to a mesh-
like representation that reflects the topology of the point
cloud. In principle, random points are iteratively selected
from the cloud and fired into a mesh. The mesh gradually
adapts to the point distribution and to the topology of the
point cloud – samples of reconstructed surfaces are shown
in Fig. 5. Note that a node in the mesh does not represent

(a) Object (b) GNG Object (c) Patches (d) GNG Patches

Fig. 5. A GNG generated mesh (5(b)) of a barrel point cloud (5(a)).
Samples of segmented object parts are shown in 5(c) and 5(d). Note that a
partial point cloud observation is given as input. Nodes are sized and colored
by the mean All-Pair-Shortest-Path (ASPS) distances (see Sec. IV-C.2).

a point in the point cloud but a distinctive location in the
distribution of points of the cloud. In order to adapt this
basic distribution learner (GNG) to the surface reconstruc-
tion problem several modifications were introduced in our
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previous work [7], like repeatedly retraining the point cloud
to gain a more consistent mesh regarding the actual patch
surface, the improvement of the triangulation through adding
mild noise to each point which is fired into the mesh or
the removal of diverted nodes from the mesh which are not
coherent with the actual patch surface. Several beneficial
properties of these methods have been observed such as
a smoothing, de-noising and a reorganizing effect on the
distribution of nodes in the mesh. This leads to similarly
reconstructed surfaces from structurally similar ground truth
object patches despite possible difference in appearance due
to for example different noise levels.

2) Shape Functions – fSi(·) : We focus on two character-
istic properties of a mesh, topology and curvature which we
denote as shape functions. To express these characteristics
in an expressive numerical and computationally efficient
manner a distribution-based descriptor [15] for each shape
function is used. The topological characteristic of m is
reflected by fS1(·) through a density estimation over the
All-Pair-Shortest-Path (APSP) distances using Johnson’s al-
gorithm. Therein the shortest path for each node to all
other nodes in m is computed. By using this method the
distances are computed in a geodesic manner. This means
that the connectivity of the nodes that reflects the surface
characteristics of the mesh is considered as the distance
measure between nodes rather than using a naı̈ve direct node-
to-node euclidean distance measure. The estimated density of
the distances is projected to a discrete probability distribution
that is a normalized histogram computed over the distance
distribution. For identifying a descriptive bin size and width
of the histogram with a computationally low cost, Scott’s
Rule [16] is used. On the other hand we applied the same
procedure to reflect the curvature characteristic of m by
fS2(·). In this case we applied a density estimation over
the surface normals of the nodes in m. Finally these shape
function responses with respect to m are concatenated into a
single vector δ which globally describes the topological and
curvature characteristics of m.

3) Rotation and Scale Invariance: A major issue of a
global surface description is its invariance to rotation and
scale. The first part in the histogram of the surface descrip-
tion vector δ, namely the geodesic part (APSP) is rotation
invariant since it is based on the distances between the nodes
in the mesh. In contrast the second part which describes the
distribution of the surface normals is not rotation invariant:
it will change with the rotation of the patch. Hence, a
pose normalization approach is applied in advance which
is inspired by Sfikas et al. [17] and is based on 3D reflective
symmetry. It shows robustness to conditions such as noisy
and partial observations.

Due to the proposed combination of a distribution-based
descriptor applied on the GNG-generated mesh, a beneficial
effect on scale invariance is observed – see further details
in [7]. Nevertheless, in context of shape categorization,
additionally in a preprocessing step patch point clouds are
normalized in an unit sphere-like manner. That means the
distance between the centroid and the farthest point of a point

cloud is 1 and all remaining points are adapted proportion-
ally. This step is applied to unify changing appearances of
similar patches due to scale variations.

4) Atomic and Super Patch Descriptions: For an expres-
sive surface description δ of atomic patches, the bin size
and width is individually determined by atomic patches that
are collected from random scenes. Those patches are neither
labeled nor deliberately selected. The same procedure is also
applied for the super patch description since the properties
according to the patch size and actual surface information
differs from the description space defined for atomic patches.

D. Symbolic Parts through Unsupervised Classification

In this section we describe the unsupervised classification
of the super patches. We have previously referred to it as a
mapping function fD(·) which symbolically describes a part
p by the corresponding word w (w = fD(p)) where D is a
dictionary – see Section III-A.

A dictionary is often used in Bag-of-Words [18] ap-
proaches to generate a common feature space whose di-
mensionality reduces the original space and provides a first
unsupervised classification e.g. of image features. Here, we
also exploit this concept of an unsupervised classification
to generalize the appearance variety of super patches to a
set of symbolic labels which we call (visual) words. Such a
dictionary D consists of a set of words which are generated
through clustering the descriptions (see Section IV-C) of
super patches. A fast k-means clustering algorithm is applied
to group similar surface patches. In succession of the k-
means clustering of the super patches, the center of each
group represents a word. Hence an unknown super patch
can be labeled by the nearest center or word, respectively.
A major parameter is the number of visual words (k) of the
dictionary used for a discriminative classification – k can be
seen as a resolution parameter for the dictionary quantization
of the super patches. An appropriate k (dictionary size |D|)
can be determined by the Dunn Validity Index [19]. Such a
procedure was introduced in our previous work [20]. Thereby
the dictionary size is varied in sequence from 2 to nmax

words. An indication of a dictionary size that leads to a
reasonable classification is found by the identification of
local maxima of the sequence of validity values. That one
local maximum is empirically selected whose magnitude is
most pronounced.

For training of the dictionary, a set of 500 unlabeled super
patches was collected from random scenes. Note that in order
to classify similar patches to similar words even in cases
where patches differ by scale or rotation, the pose normal-
ization procedure described in Section IV-C.3 is applied. An
exemplary classification result of super patches is shown in
Fig. 4(a) and 8(b). Already in this stage correspondences can
be inferred between the responded words and the surface-
structural appearance of the super patches.

V. OBJECT INSTANCE DETECTION

A major challenge is to detect object instances from a
scene by determining a subset of neighboring parts, which
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(a) RGB scene (b) Convex part alignment

Fig. 6. Convex aligned neighboring parts (super patches) are connected
with a green edge, non-convex neighboring parts with a red edge.

when combined, plausibly represents an object instance.
Based on the detected parts in Section IV, we create a part-
graph model gO of an observed scene O. The model gO
consists of an extracted set of parts PO of O. As in Section
III-B described we apply the fPRneighbor

(·) relation to create
edges between neighboring parts of the scene. As a result
gO represents a graph of the scene of which object instances
are also a part. Such a graph is illustrated in Fig. 4(b).
In the next step, we propose a method to detect potential
instances in the scene based on the model gO. Therein we
aim to detect subgraphs in gO which probably represent
object instances. Due to the camera view point and the partial
object observation we can exploit these facts that neighboring
parts generally appear in a convex or planar alignment as it
is observable for instances in Fig. 4(a) or 8(b). An illustration
can be found in Fig. 6. In Algorithm 2 we summarize the
object instance detection procedure. Finally the algorithm

Algorithm 2 Object Instance Detection
Input: RGBD point cloud of an observed scene O

1: Apply Algorithm 1 on O to detect super patches SO so that a
set of parts PO is detected (Fig. 4(a))

2: Apply dictionary D on PO by fD(PO) (Fig. 4(a))
3: Create a graph gO by applying the relation fP

Rneighbor
(PO)

(Fig. 4(b))
4: Remove relations in gO where parts are non-convex aligned
5: Extract connected components in graph gO . Each connected

component represents a subgraph in gO . Each subgraph is a
potential object instance I ∈ IO .

Output: A set of instances IO (Fig. 4(b))

returns a set of subgraphs in which each subgraph is a
potential object instance, see Fig. 4(b). In the next Section
VI, it is explained how these object instances are processed
to identify the corresponding shape category.

VI. OBJECT SHAPE CATEGORY RECOGNITION

The previous steps of detecting parts and labeling these
parts with a dictionary D, allow us to generate models G
of appearances of such labeled parts for object instances of
different shape categories as described in Section III-A. In
Section III-B we introduced the model inference procedure
as an energy minimization problem by solving the energy
effort of the observed parts PIq of an instance Iq for a
given model gc in G of shape category c. The energy effort
for PIq is computed by the set of unary, pairwise and
higher-order relations defined in Table I for each gc model.

TABLE I
SUMMARY OF UNARY, PAIRWISE AND HIGHER-ORDER RELATIONS

Type/ Description Relation
Range
U, Word appearance fURc1

(fD(p)), p ∈ PIq

[0, 1] in Iq
U Number of parts fURc2

(
∣∣PIq

∣∣)
[0, 1] in Iq
U, Proportional size fURc3

(fD(p)), p ∈ PIq

[0, 1] of parts in Iq
P, Words in Iq being fPRc1

(fD(pi), fD(pj)),pi, pj ∈ PIq

{0, 1} physical neighbors
P, Words in Iq being fPRc2

(fD(pi), fD(pj)), pi, pj ∈ PIq

{0, 1} convex aligned
P, Words in Iq being fPRc3

(fD(pi), fD(pj)), pi, pj ∈ PIq

{0, 1} planar aligned
P, Angular alignment fPRc4

(fD(pi), fD(pj)), pi, pj ∈ PIq

[0, 1] between words in Iq
H, Clique of word fHRc1

(fD(P )), P ⊆ PIq , where

[0, 1] appearances in Iq P forms a subgraph in gc of > 2 vertices

A set of unary (U ), pairwise (P ) and higher-order (H) relations that are
used to infer the energy of the parts PIq of instance Iq for a model
gc ∈ G. The relations represent statistics, e.g. fURc1

(·) can be interpreted

as the confidence that w = fD(p)) has appeared in category c.

Therein each relation fRci
returns a response according to

the given constellation of words and relations between words
of category c in gc ∈ G. The responses of the relations are
accumulated as defined in Eq. 3 for each category. Solving
Eq. 5 we receive the most probable shape category c for Iq .

Algorithm 3 Object Shape Category Recognition
Input: RGBD point cloud of an observed scene O, the given set

of models G
1: Apply Algorithm 2 on O to detect a set of object instances IO
2: For each instance I ∈ IO compute the energy effort (Eq. 4)

considering the relations in Table I for each model gc in G
3: By solving Eq. 5 infer the MAP label for an instance I ∈ IO .
4: Remove a labeled instance in I ∈ IO whose MAP is lower

than a threshold τ(= 50%)
Output: A set of labeled instances IL ⊆ IO

The proposed part-based approach analyzes object in-
stances in a local fashion, i.e. parts are detected and inferred
by their constellation to be related to a certain category.
Hence even the appearance of e.g. a parcel with a single
planar facing part is most likely to be classified as a parcel
– however with a low confidence. Therefore a threshold τ is
introduced to remove less confident instances. In Algorithm 3
we summarize the recognition procedure.

VII. EXPERIMENTAL EVALUATION

A. Super Patches and Unsupervised Part Classification

The super patch detection procedure merges the atomic
patches into a set of patches which significantly cover entire
object parts. Typical evaluation measures are over- and
under-segmentation. In our experiment 50 random surfaces
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(a) Super patch detection (b) Segmentation Results

Fig. 7. Super patch detection results of a cluttered scene (7(a)). 7(b) shows
the segmentation result of super patches regarding parcels, sacks and barrel
(over (red), under (yellow) and good (blue) segmentation).

(a) Visual word distribution (b) Visual word assignment

Fig. 8. Visual word distribution (8(a)) based on frequencies of labeled
object instances. |D| = 21 visual words. Visual words assignments of super
patches based on D are shown in 8(b).

are captured from the scene and evaluated by these measures.
As a result, 87.1% of the super patches are appropriately
detected. Compared to this result, 5.5% are over-segmented
and 7.4% under-segmented. A similar segmentation behavior
is shown in Fig. 7(b) for parcel, barrel and sack-like surfaces.

The unsupervised classification of super patches and their
actual correspondences to the surface characteristics that
the super patches describe are illustrated in Fig. 8. The
distribution of visual word assignments (Fig. 8(a)) of super
patches detected from parcels, sacks and barrels are also
reflected in the scene Fig. 8(b) – e.g. the most prominent
words for parcels are word 11 and 6 which also appear
for the white and brown parcel (see center and bottom in
Fig. 8(b)).

B. Object Instance Detection and Shape Categorization

Finding objects as a single instance is challenging in
cluttered scenes. To analyze the classification behavior of
an occluded or a partially observed instance, we define a
detection tolerance criterion which is defined by the portion
(in %) containing the actual detected instance from a testing
set, i.e. in case of 50% tolerance at least 50% of the parts
of an object instance are supposed to be detected as a
single clique of connected parts or a graph, respectively. In
Fig. 9 detection results are illustrated regarding the defined
tolerance. As it can be observed, the higher the tolerance, the
more (partial) object instances are detected. A detection rate
of up to 65.2% is achieved with no tolerance (0%) where

(a) Misdetection rate (b) Number of cliques of misdetections

Fig. 9. Instance detection result (60 instances per category) regarding
detection tolerance (c.f. definition in Section VII-B).

Fig. 10. Cooccurrence of part constellations (unary, pairwise, higher-order)
in test instances (20 instances per category) and models of G.

instances were mostly misdetected as two separated cliques
of parts – see Fig. 9(b). However a tolerance which covers
an object by at least 50% leads to a detection rate of 93.2%.
High tolerances might lead to partial detections of object
instances and thus to a higher chance of misclassification as
we show later on.

In Fig. 10 the cooccurrence of part constellations in a
test instance and the trained models of G is illustrated. A
cooccurrence is only found if a detected constellation in the
labeled test instance also appears in the model g ∈ G of
the same label and is most pronounced compared to the
remaining models in G. The result verifies that the higher
the clique order of an observed clique in an instance, the
more distinctive is the clique for being an evidence for a
certain category. For instance, parcel cliques of order three
that appear also in a test instance have a chance of 90% of
being actually a part of a parcel.

In Fig. 11 we compare the detection, test and a 5-fold
crossvalidation error (CV) regarding the number of training
samples per category and detection tolerance. An inversely-
proportional tendency can be observed between the detection
error and the classification error of the testing set with respect
to the detection tolerance. By increasing the number of
instances used for the model training, a final 6.1% testing
set classification error has been achieved on a model trained
with 60 samples per category with a 0% detection tolerance.
A detection tolerance of 40% still lead to a 7% classification
error, whereas a high detection tolerance (60%) leads to
more misclassifications (testing set error = 12.8%, CV error
= 2.2%) and can be analogously interpreted as partial or
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(a) Scene 1, τ=50% (b) Scene 2, τ=50%

Fig. 12. Recognition result of two scenes (labels are red for sacks, green for barrels, blue for parcels). A label is augmented with the detected instance
number and the recognition confidence.

Fig. 11. CV error (blue), detection (red) and classification error (green) on
a testing set (20 instances per category) with respect to detection tolerance
and number of training instances.

occluded object observations in real-world scenes. Fig. 12
shows examples of such scenes with several detected and
classified instances which are differently posed and partially
occluded.

VIII. CONCLUSION

We presented a graph-based 3D object shape categoriza-
tion approach – by over-segmenting RGBD images of scenes,
detecting atomic patches, merging them to super patches,
classifying super patches by a dictionary to visual words,
and finally learning the visual words constellations and
their relations for certain shape categories. The experiments
have shown the detection of reasonable object parts in
cluttered scenes and the correspondences between structural
appearance and the symbolic visual word labeling of these
parts. Also the actual reoccurrence of patterns of visual
word constellations for instances of certain categories could
be shown and exploited for a final shape categorization of
instances.
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