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Abstract— In this paper, we derive the analytical solution to
the transition function of the state error in 1-DOF semi-passive
dynamic walking for understanding how the gait stability
changes according to acceleration or deceleration. We introduce
the model of an active rimless wheel (RW) as the simplest
walker for analysis and linearize the equation of motion
incorporating a simple control torque. Through mathematical
investigations, we finally derive the analytical solution to the
transition function of the state error for the stance phase as
a function only of the control parameters. We discuss the
accuracy of the solution obtained through comparison with
the values numerically-integrated in the linearized and the
nonlinear walking models.

I. INTRODUCTION

Understanding the stability principle inherent in limit cycle

walking is one of the fundamental subjects in the area of

robotic legged locomotion [1][2][3][4][5]. We have proposed

two major approaches to stability analysis: one is the method

based on the state space representation using linearization of

motion and the other is the method based on mechanical

energy balance. Through investigations of passive dynamic

walking of a rimless wheel (RW), we clarified that both

approaches derive the same result in terms of the transition

function of the state error [6]. We also mathematically

showed that the stability of an underactuated bipedal gait

can be explained in the same manner as a RW [7][8].

We outline the main results on 1-DOF limit cycle walking

in the following. The approach based on the state space

representation was firstly proposed by Coleman et al. [9]

They derived the transition functions of the state error for the

stance and the collision phases in a passive RW. Limit cycle

walkers including RWs that achieve constraint on impact

posture are the easiest models for stability analysis because

we can consider only the error of the angular velocity at

the collision phases and the return map is reduced to a

scalar function. The scalar transition functions of the state

error are very useful for understanding the physical meanings

and mechanisms of the inherent stability. Following the

method of Coleman et al., the author analytically derived

the transition functions using linearization of motion and

clarified that both the stance and the collision phases are

stable [6]. Specifically, they are given as the following forms:

∆θ̇
−

i+1 = Q̄∆θ̇
+

i
, ∆θ̇

+

i
= R̄∆θ̇

−

i
,

where the subscript “i” denotes the step number and the

superscripts “−” and “+” denote immediately before and im-
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mediately after impact. In a passive RW gait, Q̄ = R̄ = cosα
where α is the relative angle between the two neighboring leg

frames. The Poincaré return map then becomes Q̄R̄ = cos2 α
and the generated gait is thus asymptotically stable.

As McGeer discussed, stable limit cycle walking exhibits

various convergence properties [1]. He called the mode of

0 < Q̄R̄ < 1 the “speed mode” and that of −1 <
Q̄R̄ < 0 the “totter mode”. A passive RW can exhibit

only speed mode because 0 < Q̄R̄ < 1 always holds as

mentioned. Since a RW cannot control the impact posture,

some control inputs must be applied to the stance phase

motion to change the convergence property. The authors then

extended the method to an underactuated spoked walker with

actuation [10] and to a 1-DOF active RW [11]. Through

mathematical investigations, we clarified that acceleration

(deceleration) always worsens (improves) the convergence

speed. Our research goal is achieving the mode between the

speed and the totter modes: the deadbeat mode [8][11]. This

mode represented by Q̄ = 0 provides the optimal solution in

terms of the convergence speed or the Gait Sensitivity Norm

(GSN) [4]. As in the case of computing the eigenvalues of

the Jacobian matrix for the Poincaré return map [2], however,

numerical simulations must be conducted because the steady

gait parameters or the discrete system responses are required

for computing Q̄ [5][6][7] or the GSN [4]. The next subject

to be achieved is therefore clarifying the gait stability in

terms of convergence speed without performing numerical

simulations.

Based on the observations, in this paper we attempt to

derive the analytical solution of Q̄ without depending on the

steady gait parameters. We mathematically show that this

can be achieved by using the two major approaches we have

proposed. Through numerical simulations, we compare the

accuracy of the derived analytical solution with those of the

linearized and the nonlinear models.

II. PASSIVE DYNAMIC WALKING OF RIMLESS

WHEEL

A. Stability of Passive-dynamic Gait

This section explains the stability principle of a passive

eight-legged RW that walks on the slope of φ [rad] as

shown in Fig. 1 (α = π/4 [rad]) from the viewpoint of

the mechanical energy balance approach [6].

We assume that the parameters with the subscript “eq”

are those of the equilibrium point at the collision phase, and

that the parameters with the superscript “∗” are those of the

stationary orbit.
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Fig. 1. Passive rimless wheel model

Let K−

i
[J] be the kinetic energy immediately before the

(i)th impact. This is given by

K−

i
=

1

2
ml2

(

θ̇
−

i

)2

. (1)

This can be applied for both the nonlinear and the linearized

models. The following recurrence formula then holds.

K−

i+1 = εK−

i
+∆E (2)

Where ε = cos2 α [-] is the energy-loss coefficient and ∆E
[J] is the restored mechanical energy supplied by gravity.

Both ε and ∆E are positive constants. The potential energies

immediately before and immediately after impact are given

by

P± = mgl cos
(

φ∓ α

2

)

. (3)

∆E then becomes

∆E = P+ − P− = 2mgl sin
α

2
sinφ. (4)

In the linearized model, the corresponding potential energy

is defined as

P = mgl

(

1− θ2

2

)

. (5)

This derives the gravity term of the linearized RW dynamics

according to the Lagrangian method [6]. The potential ener-

gies immediately before and immediately after impact then

becomes

P± = mgl

(

1− 1

2

(

φ∓ α

2

)2
)

= Pmax−
mgl

2

(

φ∓ α

2

)2

,

(6)

where Pmax := mgl [J] is the maximum potential energy the

RW can achieve. In the same way, ∆E corresponding to the

linearized model becomes

∆E = P+ − P− = mglαφ. (7)

The limit value of K−

i
in the linearized model then becomes

K−

eq := lim
i→∞

K−

i
=

∆E

1− ε
=

mglαφ

sin2 α
. (8)

This shows that the generated passive gait always becomes

1-period and asymptotically stable.

B. Condition for Overcoming Potential Barrier

A potential barrier exists during the stance phase in the

case that the following inequality holds.

θ+eq = −α

2
+ φ < 0 (9)

To overcome the potential barrier, the following inequality

must be satisfied.

E±

eq − Pmax = K−

eq + P− − Pmax

=
mglαφ

sin2 α
− mgl

2

(

φ+
α

2

)2

> 0 (10)

This can be solved as

α

2
tan2

α

2
< φ <

α

2
cot2

α

2
. (11)

By summarizing Eqs. (9) and (11), the condition necessary

for overcoming the potential barrier is finally specified as

α

2
tan2

α

2
< φ <

α

2
. (12)

The upper bound is conservative because the vertical (nor-

mal) ground reaction force becomes negative before reaching

φ = α/2.

III. ACTIVE COMBINED RIMLESS WHEEL AND

SEMI-PASSIVE DYNAMIC WALKING

A. Equations of Motion and Its Linearization

In this section, we consider the model of a planar active

combined RW (CRW) shown in Fig. 2 as a realistic 1-DOF

active RW model [11]. This is composed of two identical

eight-legged RWs and a body frame, and can exert a joint

torque, u [N·m], between the rear stance-leg and the body

frame. We assume the following statements.

• The fore and rear stance legs always contact with the

ground without sliding.

• The inertia moments about the CoMs of all the frames

can be neglected.

• The fore and rear RWs perfectly synchronize or rotate

maintaining the relation θ1 ≡ θ2.

This model configurates a four-bar linkage, and exerting

the joint torque, u, is thus equivalent to exerting that at

the contact point with the ground (ankle-joint torque). The

g

l

α

l

θ2θ1 α

u

m m
mb

Fig. 2. Model of planar active combined rimless wheel
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dynamics of the rear RW then becomes identical to that of

an active RW with an ankle-joint torque, that is,

θ̈ = ω2 sin θ +
u

Ml2
, (13)

where M := mb+2m [kg] is the total mass of the CRW, θ(=
θ1 = θ2) is the stance-leg angle, and ω :=

√

g/l [rad/s]. By

linearizing this around θ = θ̇ = 0, the state-space realization

of the RW dynamics becomes

d

dt

[

θ

θ̇

]

=

[

0 1
ω2 0

] [

θ

θ̇

]

+

[

0
1/Ml2

]

u. (14)

In the following, we denote Eq. (14) as ẋ = Ax+Bu.

B. Collision Equations

We assume that the rear leg frame at impact (the previous

stance leg) begins to leave the ground immediately after

landing of the fore leg frame (the next stance leg) according

to the law of inelastic collision. The transition equation for

the angular velocity then becomes the same as that of a single

RW, that is,

θ̇
+

i
= cosα · θ̇

−

i
.

In a steady gait, this should be

θ̇
+

eq = cosα · θ̇
−

eq.

Therefore the relation between the state errors immediately

before and immediately after impact becomes

∆θ̇
+

i
= cosα ·∆θ̇

−

i
,

where ∆θ̇
±

i
:= θ̇

±

i
− θ̇

±

eq.

The angular positions immediately before and immediately

after impact are always

θ±
i
= θ±eq = φ∓ α

2
,

and their errors are thus always zeros. The collision phase

is therefore stable.

C. Transition Function of State Error for Stance Phase

The details of the derivation originally studied by Coleman

et al. [9] have already been described in our previous papers

[6][8], so we outline it here.

The state vector immediately before the (i+ 1)th impact,

x−

i+1, is written by that immediately after the (i)th impact,

x+
i

, as

x−

i+1 = eATix+
i
+

∫

T
−

i

0+
eA(Ti−s)Bu(s) ds. (15)

Here, Ti [s] is the step period of the (i)th step. s is the time

parameter that is reset to zero at every impact and u(s) is

the control torque determined as follows.

u(s) =

{

u0 (0 ≤ s < Tset)
0 (s ≥ Tset)

(16)

We call Tset the settling time and assume that the step

period is longer than Tset, that is, the inequality Ti > Tset

must hold. The feed-forward control of Eq. (16) must be

completed before the next impact (settling-time condition).

Define a constant vector η ∈ R
2 as

η :=

∫

Tset

0+
e−AsBu0 ds

=
u0

Mω2l2

[

1− cosh (ωTset)
ω sinh (ωTset)

]

=:

[

η1
η2

]

. (17)

Eq. (15) is then arranged as

x−

i+1 = eATi

(

x+
i
+ η

)

. (18)

We also define x′
i

and x′
eq here as

x′

i
:= x+

i
+ η =

[

θ+
i
+ η1

θ̇
+

i
+ η2

]

=:

[

θ′
i

θ̇
′

i

]

, (19)

x′

eq := x+
eq + η =

[

θ+eq + η1

θ̇
+

eq + η2

]

=:

[

θ′eq
θ̇
′

eq

]

. (20)

Eq. (18) is then rewritten as

x−

i+1 = eATix′

i
. (21)

In a steady gait, Eq. (21) should be

x−

eq = eAT
∗

x′

eq. (22)

Eqs. (21) and (22) are equivalent to the linearized dynamics

of a passive RW whose initial conditions are x′
i

or x′
eq. Eq.

(21) is expanded to

x−

i+1 = eA(T∗+∆Ti)
(

x′

eq +∆x+
i

)

= eA∆TieAT
∗ (

x′

eq +∆x+
i

)

≈ (I2 +A∆Ti) e
AT

∗ (

x′

eq +∆x+
i

)

(23)

= eAT
∗ (

x′

eq +∆x+
i

)

+AeAT
∗ (

x′

eq +∆x+
i

)

∆Ti. (24)

Here, the errors were defined as ∆x±

i
:= x±

i
− x±

eq and

∆Ti := Ti − T ∗. In addition, we used the following

approximation:

eA∆Ti ≈ I2 +A∆Ti. (25)

By considering Eq. (22), Eq. (24) is further arranged as

x−

i+1 ≈ x−

eq +Ax−

eq∆Ti + eAT
∗

∆x+
i
. (26)

Here, we neglected the error term higher than second order,

that is,

∆x+
i
∆Ti ≈ 02×1. (27)

Define p :=
[

1 0
]

and multiplying x by p leads to px = θ.

Therefore, the following relation

px−

i
= px−

eq = θ−eq = φ− α

2

holds immediately before impact. By multiplying both sides

of Eq. (26) by p, we get

0 = pAx−

eq∆Ti + peAT
∗

∆x+
i
. (28)

∆Ti is then solved as

∆Ti = −peAT
∗

∆x+
i

pAx−
eq

.
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By substituting this into Eq. (26) and considering the relation

of ∆x−

i+1 = x−

i+1 − x−
eq, the transition matrix of the state

error is finally derived as

∆x−

i+1 = Q∆x+
i
, Q :=

(

I2 −
Ax−

eqp

pAx−
eq

)

eAT
∗

. (29)

Considering the relation ẋ−

eq = Ax−
eq, Q can be also formed

as

Q :=

(

I2 −
ẋ−

eqp

pẋ−

eq

)

eAT
∗

. (30)

By considering the relation:

∆x±

i
= v∆θ̇

±

i
, v :=

[

0
1

]

,

Q can be reduced to the following scalar function:

Q̄ = vTQv = cosh (ωT ∗)−
θ−eqω

θ̇
−

eq

sinh (ωT ∗) . (31)

In the following, we arrange Q̄ into the form without

depending on the steady step period, T ∗. We outline the

proof. Eq. (22) can be deformed to x′
eq = e−AT

∗

x−
eq which

is detailed as
[

θ′eq
θ̇
′

eq

]

=

[

cosh(ωT ∗) −ω−1 sinh(ωT ∗)
−ω sinh(ωT ∗) cosh(ωT ∗)

]

[

θ−eq

θ̇
−

eq

]

.

By extracting the second row, we get

θ̇
′

eq = θ̇
−

eq cosh (ωT
∗)− θ−eqω sinh (ωT ∗) . (32)

Following Eqs. (31) and (32), we get

θ̇
′

eq

θ̇
−

eq

= cosh (ωT ∗)−
θ−eqω

θ̇
−

eq

sinh (ωT ∗) = Q̄. (33)

Q̄ can be written as the ratio of the steady angular velocities.

Considering the relation of Eq. (20), Eq. (33) can be arranged

as follows.

Q̄ =
θ̇
+

eq + η2

θ̇
−

eq

= cosα+
u0 sinh(ωTset)

Mωl2θ̇
−

eq

(34)

From Eq. (34), we can understand that Q̄ becomes cosα, the

value in passive dynamic walking, by choosing u0 or Tset as

zero, and that acceleration always worsens the convergence

speed whereas deceleration always improves it.

IV. ANALYTICAL SOLUTION OF Q̄

Let t [s] be the time parameter and assume that a collision

for stance-leg exchange occurs at t = 0 [s]. The steady state

vector at t, x∗(t), then becomes

x∗(t) = eAtx+
eq +

∫

t

0+
eA(t−s)Bu0 ds. (35)

By extracting the first row from x∗(t) and replacing t with

Tset, we get

θ∗(Tset) =
1

Mgl

((

u0 +Mgl
(

φ− α

2

))

cosh (ωTset)

−u0 + θ̇
−

eqMωl2u0 cosα sinh (ωTset)
)

. (36)

Next, let us revisit the recurrence formula of Eq. (2). In

the case of semi-passive dynamic walking, the kinetic energy

immediately before impact satisfies the following recurrence

formula:

K−

i+1 = εK−

i
+∆Ei, (37)

where ε is the same as in Eq. (2) and ∆Ei [J] is the restored

mechanical energy in the (i)th step. If the generated gait is

asymptotically stable, Eq. (37) should converge to

K−

eq = εK−

eq +∆E∗, (38)

where ∆E∗ [J] is the steady restored mechanical energy

supplied by the actuation and gravity. This can be derived as

∆E∗ =

∫

Tset

0+
θ̇
∗

u0 ds+Mglαφ

=
(

θ∗(Tset)− θ+eq
)

u0 +Mglαφ. (39)

The steady kinetic energy immediately before impact also

becomes

K−

eq =
1

2
Ml2

(

θ̇
−

eq

)2

=
∆E∗

1− ε
. (40)

Following Eqs. (36), (39) and (40) and considering θ̇
−

eq > 0,

we can solve θ̇
−

eq as

θ̇
−

eq =
u0 cosα sinh (ωTset) +

√

F (u0, Tset)

Mωl2 sin2 α
, (41)

where F is a function of u0 and Tset and can be arranged

as a quadratic function of u0 as follows.

F (u0, Tset) = C2u
2
0 + C1u0 + C0 (42)

The coefficients in Eq. (42) are detailed as

C2 = 2 (cosh (ωTset)− 1) sin2 α+ cos2 α sinh2 (ωTset) ,

C1 = −2Mgl(α− 2φ) sin2 α sinh2
(

ωTset

2

)

,

C0 = 2M2g2l2αφ sin2 α.

Eq. (42) is a parabola convex downward because C2 is

positive. Fig. 3 plots the value of F with respect to u0 and
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Fig. 3. F with respect to u0 and Tset where M = 1.0 [kg], l = 1.0 [m]
and φ = 0.1 [rad]
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Tset where the system parameters are chosen as M = 1.0
[kg], l = 1.0 [m] and φ = 0.1 [rad]. We can confirm that F
forms a parabola convex downward as a function of u0. The

minimum value of F becomes

Fmin(Tset) =
M2g2l2 sin2 αG(Tset)

8 (2 + cos2 α (cosh(ωTset)− 1))
, (43)

where

G(Tset) = α2 + 20αφ+ 4φ2

−
(

α2 − 12αφ+ 4φ2
)

cosh(ωTset)

+2(α+ 2φ)2 cos(2α) sinh2
(

ωTset

2

)

. (44)

Since the denominator of Fmin is always positive, the sign

of Fmin is equal to that of G(Tset). The partial derivative of

G(Tset) with respect to Tset becomes

∂G(Tset)

∂Tset
=
(

−α2 + 12αφ− φ2 + (α+ 2φ)2 cos(2α)
)

×ω sinh(ωTset). (45)

We then obtain the following relation.

∂G(Tset)

∂Tset
> 0 ⇐⇒ α

2
tan2

α

2
< φ <

α

2
cot2

α

2
(46)

This is included in Eq. (12). Therefore we can conclude that

G(Tset) monotonically increases from G(0) = 32αφ > 0
with the increase of Tset if the condition of Eq. (12) is

satisfied or the walker can exhibit passive dynamic walking.

Note that, however, this condition is sufficient and conser-

vative. The positivity of G(Tset) is not always necessary for

Fmin(Tset) ≥ 0.

By substituting θ̇
−

eq of Eq. (41) into Eq. (34), Q̄ can be

derived as a function of u0 and Tset as

Q̄ (u0, Tset) =
u0 sinh (ωTset) + cosα

√

F (u0, Tset)

u0 cosα sinh (ωTset) +
√

F (u0, Tset)
.

(47)

Although it is obvious, Eq. (47) has the following limit values

in the case without actuation, i.e. passive dynamic walking.

Q̄ (0, Tset) = cosα, Q̄ (u0, 0) = cosα

Let us define

∇Q̄x (u0, Tset) :=
∂Q̄ (u0, Tset)

∂x
.

The partial derivative of Q̄ with respect to Tset where Tset =
0 then becomes

∇Q̄Tset
(u0, 0) =

u0ω sinα√
2αφMgl

. (48)

The sign of Eq. (48) is the same as that of u0. Therefore, as

suggested by Eq. (34), the convergence speed monotonically

worsens with the increase of Tset if u0 is positive.

On the other hand, the partial derivative of Q̄ with respect

to u0 where u0 = 0 becomes

∇Q̄u0
(0, Tset) =

sinα sinh (ωTset)√
2αφMgl

. (49)

This is always positive and Q̄ therefore monotonically in-

creases with the increase of u0.

V. NUMERICAL ANALYSIS

This section evaluates the accuracy of the analytical solu-

tion of Eq. (47) by comparing with the values numerically-

integrated in the linearized and the nonlinear walking models.

A. Effect of Tset

Let us define the real transition function of the state error

for the stance phase of the (i)th step, Q̄i, as

Q̄i :=
∆θ̇

−

i+1

∆θ̇
+

i

. (50)

Here, we should remember that the analytical solution

of Q̄ was derived by using two linear approximations of

Eqs. (25) and (26). It is then expected that Q̄i would return

different values from the analytical solution.

Fig. 4 shows the evolution of Q̄i with respect to the step

number where Tset = 0.1 [s], u0 = 1.0 [s] and φ = 0.1
[rad] in the linearized model and its magnified view. We

can see that the value seems mostly unchanged for the

initial steps but it begins to violate later. This is because

the denominator of Eq. (50) converges to zero as well as the

numerator, that is, Eq. (50) finally becomes an indeterminate

form. Therefore we can take the values only for the first

several steps for evaluation. As shown in the magnified view

in Fig. 4, however, there is considerable changes in Q̄ for

the initial steps due to the error terms higher than second

order neglected. We then numerically compute the value of

Q̄ for the linearized and the nonlinear models as the mean

value of Q̄ for the first five steps:

Q̄ :=
1

5

4
∑

i=0

Q̄i. (51)

Fig. 5 plots Q̄ of Eq. (51) in the linear and the nonlinear

models and the analytical solution of Q̄ of Eq. (47) with

respect to Tset where M = 1.0 [kg], l = 1.0 [m], u0 =
1.0 [N·m] and φ = 0.1 [rad]. The initial angular velocity

is chosen as θ̇
+

0 = θ̇
+

eq + 0.2 [rad/s]. As the mathematical
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Fig. 4. Evolution of Q̄ in semi-passive dynamic walking where Tset = 0.1
[s], u0 = 1.0 [N·m] and φ = 0.1 [rad]
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result indicated, the values of Q̄ in all cases monotonically

increase with the increase of Tset. The numerically integrated

values in the real walking systems are slightly larger than the

analytical solution. This might be caused by the facts that the

error terms in Eqs. (25) and(27) are non-negligible and that

the initial error of 0.2 [rad/s] is too large.

B. Effect of u0

Next, we analyze the effect of u0. Fig. 6 plots Q̄ of Eq.

(51) in the linear and the nonlinear models and the analytical

solution of Q̄ of Eq. (47) with respect to u0 where M = 1.0
[kg], l = 1.0 [m], Tset = 0.1 [s] and φ = 0.1 [rad]. As the

mathematical result indicated, the values of Q̄ in all cases

monotonically increase with the increase of u0. Acceleration

worsens the convergence speed and deceleration improves

it. As in the previous case, the numerically integrated values

are slightly larger than the analytical solution. Nevertheless,

the error is maintained at an acceptable level and analytical

solution is useful for examining the convergence property

without conducting numerical simulations.
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VI. CONCLUSION AND FUTURE WORK

In this paper, we derived the analytical solution to the

transition function of the state error for the stance phase

in 1-DOF semi-passive dynamic walking. The numerical

results in Section V suggested that the values of Q̄ obtained

numerically in the linearized and the nonlinear models are

almost the same but they are slightly larger than the an-

alytical solution. This implies that the error terms higher

than second-order neglected in Eqs. (25) and (27) are not

sufficiently small and that the analytical solution is valid only

for sufficiently-small state errors.

In the future, we should analyze the effective range of the

analytical solution and consider the methods for improving

the accuracy of the analytical solution. The control param-

eters, u0 and Tset, that achieve the deadbeat mode, Q̄ = 0,

can be uniquely determined by Eq. (47) and the parameters

for deadbeat gait generation are then obtained by solving the

equation. Development of some useful solutions for it is left

as a future work.

The method in this paper can be applied to other walking

systems where the state transition during the stance phases

can be described in the same form as Eq. (18). Now we are

analyzing the stability of an underactuated bipedal gait with

constraint on impact posture [7]. The result will be reported

in a future paper.
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