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Abstract— Time-series driving behavioral data and image
sequences captured with car-mounted video cameras can be
annotated automatically in natural language, for example, “in a
traffic jam,” “leading vehicle is a truck,” or “there are three and
more lanes.” Various driving support systems nowadays have
been developed for safe and comfortable driving. To develop
more effective driving assist systems, abstractive recognition
of driving situation performed just like a human driver is
important in order to achieve fully cooperative driving between
the driver and vehicle. To achieve human-like annotation of
driving behavioral data and image sequences, we first divided
continuous driving behavioral data into discrete symbols that
represent driving situations. Then, using multimodal latent
Dirichlet allocation, latent driving topics laid on each driving
situation were estimated as a relation model among driving
behavioral data, image sequences, and human-annotated tags.
Finally, automatic annotation of the behavioral data and image
sequences can be achieved by calculating the predictive distribu-
tion of the annotations via estimated latent-driving topics. The
proposed method intuitively annotated more than 50,000 pieces
of frame data, including urban road and expressway data. The
effectiveness of the estimated drive topics was also evaluated by
analyzing the performances of driving-situation classification.
The topics represented the drive context efficiently, i.e., the
drive topics lead to a 95% lower-dimensional feature space and
6% higher accuracy compared with a high-dimensional raw-
feature space. Moreover, the drive topics achieved performance
almost equivalent performance to human annotators, especially
in classifying traffic jams and the number of lanes.

I. INTRODUCTION
Recently, various advanced driver-assistance systems

(ADASs) have been proposed; however, most of them assist
a driver just before the vehicle runs into danger. To prevent
further accidents, “multiplex assistance systems,” which take
several actions from well before an actual collision occurs,
are needed. Securing additional time before a collision is
useful for senior drivers to avoid accidents. However, secur-
ing sufficient additional time and providing intuitive support
to the driver is difficult to do because of the diversity of
complicated driving situations. Most conventional ADASs
describe a driving situation by using simple physical-risk
criteria such as the time to collision[1]. Such criteria have
been useful in supporting a driver just before the vehicle runs
into danger, and several extensions of such criteria have also
been proposed, such as for handling uncertain situations[2].
However, several studies reported that these simple models,
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defined over physical-feature space, are not suitable for long-
term prediction of driving behavior[3]. Conversely, human
drivers recognize a driving situation more abstractly and
achieve longer prediction against the complexity and diver-
sity of driving situations.

Adjusting such a situation recognition strategy is key
technology for creating a novel ADAS that can achieve fully
cooperative driving between the driver and the vehicle. To
do this, Taniguchi et al.[4] proposed an unsupervised method
for segmenting driving behavioral data into semiotic symbols
that represent driving situations, that is, a double articulation
analyzer (DAA), and achieved longer prediction of symbolic
driving situations. Even though their data-driven estimation is
based only on the maximization of the generative probability
of driving behavioral data, Takenaka et al.[5][6] reported
that the estimated segmentation points correspond well to
human recognition of changes in a driving context. DAA is
an efficient driving-situation segmentation method; however,
it has some drawbacks. It is a fully unsupervised method,
and thus, extracted driving situations do not have intuitive
situation labels for informing a driver. Moreover, more than
400 kinds of situations are extracted for 90 minutes of
driving, which is too many for the driver to understand
intuitively.

Bando et al.[7] proposed a framework for automatically
translating driving situation symbols into “drive topics” in
natural language. They used latent Dirichlet allocation (LDA)
for clustering extracted driving situations into a small number
of drive topics in accordance with the emergence frequency
of the physical behavioral features observed in each driving
situation. The labels for the extracted drive topics were
also determined automatically by using the distributions
of the physical behavioral features included in each drive
topic. Because drive operations are executed on the basis
of a driver’s perception of environments, their approach
factored environmental factors into drive topic estimation
indirectly. A contrastive and more intuitive approach is to
consider surrounding environmental information directly and
to interpret a driving situation in natural language; annotating
to behavioral data and image sequence captured with car-
mounted camera in natural language.

In this paper, we first discretize time-series driving behav-
ior into a symbol sequence that represents driving situations,
and then, consider annotating them. We use DAA[4] for the
segmentation of driving behavioral data, and the multimodal
latent topic model for estimating multimodal drive topics
that represents the relationship among the probabilistic dis-
tributions of driving behavioral features, image features, and
human annotations observed in each driving situation. Pre-
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Fig. 1. Framework for drive annotation. Time-series driving behavioral data is discretized into sequence of driving situations. Then, distributions of
observed behavioral, visual, and annotated features in each driving situation are modeled as mixtures of drive topics. The drive-topic proportion reflects
abstractive driving context, and thus, the drive topics are useful for vehicles to recognize driving situation like a human driver.

dictive distribution of intuitive driving-situation annotations
can be calculated via drive topics in accordance with the
observed driving behavioral data and the image sequence
around one’s own vehicle.

Several situation annotation methods have been proposed
in the image processing area, e.g., annotation estimation
methods based on the latent topic model[8] and the deep
Boltzmann machine[9]. Because these image annotation
methods treat input images independently of each other, they
could not consider the drive context, which is included in
time-series driving behavior.

II. AUTOMATIC DRIVE ANNOTATION

A. Overview

Figure 1 shows our framework for drive annotation. In
this framework, time-series driving behavior is segmented
by using DAA. By using a driver’s operational signals, e.g.,
the angle of steering wheel, as input signals, DAA is able to
extract the points of change in driving situations.

Since a driving situation has a high level of abstraction,
annotations of driving situations have a large variance, even
for human annotators. Conversely, the proposed framework
annotates robustly because the variance of annotations are
considered as the distributions of the multimodal features.

B. Double Articulation Analyzer

The first step of the proposed framework is the segmenta-
tion of continuous driving behavior into sequences of driving
situations by using DAA[4]. DAA uses sticky hierarchical
Dirichlet process-hidden Markov model (sHDP-HMM)[10]
and nested Pitman-Yor language model (NPYLM)[11] to
segment continuous driving behavioral data into sequences
of driving situations. sHDP-HMM is a non-parametric exten-
sion of a conventional HMM that is widely used for time-
series modeling. In addition to automatic determination of
the number of hidden states, sHDP-HMM achieves more
effective modeling of a continuous real-world data stream
by introducing self-transition bias. sHDP-HMM segments
the behavioral data into sequences of primitive elements of
driving behavior on the basis of its locality in observed
state space. NPYLM is a non-parametric parsing method
used in the field of natural language processing. Note that
NPYLM does not assume a preexisting dictionary; that is,
it can parse sequences of extracted driving primitives into
unknown driving situations and estimate the driving situation
dictionary simultaneously.

C. Multimodal Latent Topic Model

Latent Dirichlet allocation (LDA)[12] is one of the most
basic latent-topic models and is widely used for natural
language processing. Recently, LDA extensions that can deal
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Fig. 2. Graphical model representation of multimodal latent Dirichlet
allocation

with multimodal information, i.e., multimodal LDA (mLDA),
have been proposed for annotating images[8] and grounding
word meanings for robots[13]. Figure 2 shows a graphical
model representation of mLDA. In the figure, the number
of segmented driving situations is represented as N , and
the number of drive topics is K. The behavioral features
and visual features observed in the n-th driving situation are
represented as w(b)

n,m and w(v)
n,m, respectively, where, M (b)

n

is the number of the behavioral features and M (v)
n is the

number of the visual features. The human tags annotated for
the n-th driving situation is represented as w(a)

n,m, where M (a)
n

is the number of the annotations. Here, mLDA assumes that
the m-th feature w(·)

n,m observed in the n-th driving situation
is generated in accordance with the latent topic assignment
z(·)
n,m, namely, the actual value w of the feature w(·)

n,m is
assumed to be generated in accordance with β(·)

zn,m . The
assignment of latent topics is drawn from θn with Dirichlet
parameter α. Hence, mLDA assumes

θn ∼Dir(θ|α), (1)

z(·)
n,m ∼Mult(z|θn), (2)

w(·)
n,m ∼Mult(w|β(·)

zn,m
). (3)

The log likelihood of the parameters is calculated as

log p (w|α,β) = log
∫ ∑

z

p (w,θ, z|α, β) dθ. (4)

Because simultaneous optimization done with θ, z is actually
intractable, several approximation methods, such as using
variational approximation[12] or Gibbs sampling[14], have
been proposed. For details on these approximation methods,
please see the above references.

D. Drive Annotation
To estimate multimodal drive topics, the proposed frame-

work uses driving behavioral features, visual features, and
human-annotated tags.
Behavioral features: the features calculated from time-
series driving behavioral data. The feature space consists of
eight-dimensional driving behavior, i.e., throttle opening rate,
brake master-cylinder pressure, angle of steering wheel, and
vehicle velocity, and their differential values. The behavioral
features are obtained as cluster indices of 1000 clusters1,

1Actually, the number of clusters do not affect storongly to drive topic
estimation. Therefore, we set it appropriately.
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Fig. 3. Time-series representation of voting results of human annotators

which are estimated by k-means in the eight-dimensional
feature space. Note that one behavioral word is calculated
per frame.
Visual features: the features calculated from an image
sequence captured by using a vehicle-mounted camera. We
use scale-invariant feature transform (SIFT)[15] as visual
features that were calculated every five pixels in captured
320 × 240 images, i.e., 3072 SIFT features calculated from
one image2. The SIFT features were also clustered into 1000
clusters by k-means and then a distribution of indices is used
as a bag of visual features.
Annotated features: the human-tag features annotated for
vehicle behavior and the surrounding environments. An 80-
minutes drive video was annotated by nine human annotators
in terms of driving context such as the existence and vehicle
type of the leading vehicle, the existence of traffic jams, and
several pieces of environmental information, e.g., the number
of lanes. Note that the annotated tags include large variances
because of the variety of annotation criteria used by human
annotators, e.g., the threshold of the inter-vehicle distance
from the leading vehicle to judge whether there is the leading
vehicle or not. The annotated items and voting results of
the tags in each frame annotated by the nine annotators are
represented in Fig. 3.

After learning the multimodal drive topics from the mul-
timodal features, driving situation annotations in natural
language are estimated from observed behavioral and visual
features. Due to space limitations, the set of behavioral and
visual features is replaced as w∗ =

{
w(b), w(v)

}
; then, the

probability of w(a) given w∗ is calculated as

p(w(a)|w∗)

=
∫ ∑

z

p(w(a)|z(a))p(z(a)|θ)p(θ|w∗)dθ. (5)

In other words, z(a) is generated from the drive-topic pro-
2Because SIFT features observed in each frame much more than other

modal features, weighting parameters that control contribution ratio of
modalities should be introduced. We employ the mean number of word
indices observed in each driving situation as discounting parameters to
frequency of observed features.
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Fig. 4. Experimental course. Rainbow colors represent driving situations
estimated by double articulation analyzer, i.e., changing in colors mean
changing in driving situation. Note that the same colors do not represent
same driving situation because the number of driving situation is too many to
depicted in unique colors. Moreover, the vehicle position was estimated from
the encoder’s record, i.e., the trajectories deviated from the true position.

portion θ, which is estimated by using the observed w∗.
p(θ|w∗) can be calculated by marginalizing out the terms
related to w(a) from p(w, θ, z|α, β) in Eq. (4).

III. EXPERIMENTS

For evaluation, driving behavioral data and image se-
quence were gathered over an experimental course over a
duration of more than 80 minutes and a distance of about
70 km, which included urban roads and an expressway. The
experimental course and segmentation results by DAA are
depicted in Fig. 4. The driver started from the start point,
and after driving in the urban area, he drove on an orbital
expressway twice. Then, he return to the goal point in the
urban area. There was heavy traffic twice on the expressway.

Multimodal drive topics were estimated by mLDA from
the behavioral, visual, and annotated features. The extracted
driving situations were divided into two groups: for training
and for test. The latent drive topics were modeled by
using the driving situations for training, and the predictive
performance of situation annotations was evaluated by using
the driving situations for test3.

Figure 5 shows a time-series plot of the gathered be-
havioral data, segmentation results of driving situations, the
estimated multimodal drive-topic proportion with K = 10,
and several captured images and predicted annotations. The
depicted annotations had maximum probabilities in the same
tag items4 in the case of K = 10 and K = 100. In the
case of K = 10, diverse driving situations were represented
as mixtures of small numbers of drive topics. Frequent
annotations such as “cruise,” “accelerate,” and “car,” for
the leading vehicle tended to be generated with a small
number of drive topics. In contrast, rare annotations such as

3Because DAA uses Gibbs sampling, the estimated driving-situation
sequence produced as output from DAA is stochastically distributed. Thus,
ten driving-situation sequences were generated from one training data set,
and mLDA was evaluated by using each sequence. The final evaluation
results shown in Fig. 6 were calculated by averaging the evaluation results
for each sequence.

4Because frequently emerged annotations have a high generative proba-
bility, e.g., “cruise” and “accelerate,” most of the annotations predicted via
generative probability were frequently emerged annotations. This is actually
not suitable for prediction. Thus, we modify the generative probability by us-
ing the inverse document frequency IDF(w(a)

i ) = log
“
N/|d : w(a)

i ∈ d|
”

to bias rare annotations.

“decelerate,” “low speed,” and “approaching to the leading
vehicle” appeared when the number of drive topics was
increased to K = 100. Another type of difference appeared,
for example, the color of traffic signal and the number of
lanes in the situations at 5:00 and 78:00. The main cause of
this is that driving situations included several annotations in
the case of the traffic signal changing its color from red to
blue.

Nevertheless, while our framework can provide intuitive
annotations as described above, the difficulty of quantita-
tively evaluating multimodal drive topics remains because of
there are multiple true annotations in each driving situation.
If the multimodal drive topics capture the driving features
abstractly as well as do human drivers, it can extract features
that well represent a human-recognized driving situation.
Thus, in this paper, the multimodal drive topics were eval-
uated quantitatively as the feature extraction method for
driving situation classification.

A conventional support vector machine (SVM) with multi-
modal raw features was used as a baseline for classifying the
voted tags described in Fig. 3. The raw feature space of the
SVM consists of 1000 dimensional behavioral features, 1000
dimensional visual features, and 12 dimensional annotated
features, with the exception of objective annotation terms.
The efficiency of multimodal drive topic representation was
investigated by comparing it with the raw high-dimensional
feature space. Figure 6 shows the clustering results for the
three annotation terms of raw feature space, multimodal drive
topics with K = 10 and K = 100, and the agreement rate
of human annotators with the results of voting. The mean
precisions were 72.11%, 56.00%, 78.22%, and 76.44% for
the raw features, the drive topics with K = 10 and K = 100,
and the agreement rate of the human annotators, respectively.
In traffic jam classification, both the raw features and drive
topic with K = 100 performed as well as did human
annotators. Because traffic jams obviously influence driving
behavior, traffic jam classification is easier than classification
of the leading vehicles and number of lanes. In leading
vehicle classification, conversely, all of the raw features and
drive topics with K = 10 and K = 100 performed much
lower than did human annotators. In particular, there are
many instances of trucks being miss-classified as cars. In
contrast, all of them could discriminate the existence of
leading vehicles well compared with the leading-vehicle type
classification. In the classification of the number of lanes,
drive topics with K = 100 performed better than not only the
raw features but also the human annotators. The main cause
of this result is the large variance of human annotations,
especially in the case of a large number of lanes; in this case,
annotator have to predict the true number of lanes because
the image captured in each frame does not include an entire
shot of the road from end to end.

IV. DISCUSSION

As described above, the number of lanes is actually a
unique number that can be identified by observing the
environment surrounding the vehicle. However, because the

2747



accel.
brake
steering
velocity

topic 10
topic 09
topic 08
topic 07
topic 06
topic 05
topic 04
topic 03
topic 02
topic 01

Driving Behavior

Segmented Driving Situa!ons

Es!mated Topic Propor!on

0 10 20 30 40 50 60 70 80 [min]Time 

cruise, accelerate, car,

traffic signal: red,

lane mark: yellow-solid,

2 lanes, crosswalk w/o ped.

cruise, accelerate, car,

lane mark: white-dashed,

3 or more lanes

cruise, accelerate, car,

lane mark: white-dashed,

2 lanes, jam

cruise, accelerate, car,

lane mark: white-dashed,

3 or more lanes

cruise, accelerate, car,

lane mark: white-dashed,

2 lanes, jam

cruise, accelerate, car,

lane mark: white-dashed,

3 or more lanes

cruise, accelerate, car,

traffic signal: blue,

lane mark: yellow-solid,

2 lanes

cruise, accelerate, car,

traffic signal: blue,

lane mark: yellow-solid,

1 lane, crosswalk w/o ped.

5:00 17:00 30:00 40:00 55:00 70:00 78:00

cruise, accelerate, car,

lane mark: white-dashed,

3 or more lanes

cruise, decelerate, car,

lane mark: white-dashed,

2 lanes, jam

cruise, accelerate, car,

lane mark: white-dashed,

3 or more lanes

low speed, decelerate, car,

lane mark: white-dashed,

2 lanes, jam, approaching

cruise, accelerate, car,

lane mark: white-dashed,

3 or more lanes

cruise, accelerate, car,

traffic signal: red,

lane mark: yellow-solid,

1 lane, approaching

Predicted Annota!onPredicted Annota!onPredicted Annota!ons
10 topics

100 topics

Fig. 5. Time-series representation of the gathered driving behavior, sequences of driving situations segmented by DAA, drive topic proportion estimated
by mLDA, and several examples of captured images with predicted annotations. The bold texts in the case of K = 100 represent the different results
between the cases of K = 10 and K = 100.

100 topics

.98 .02

.21 .79

jam

none

.73 .17 .10 .00

.00 .80 .16 .04

.01 .07 .85 .07

.00 .02 .07 .91

3 or more

2

1

0

.40 .58 .02

.04 .93 .03

.02 .33 .65

truck

car

none

10 topics

.97 .03

.44 .56

jam

none

.11 .63 .10 .16

.02 .50 .31 .17

.00 .08 .83 .09

.00 .06 .18 .75

3 or more

2

1

0

.16 .80 .04

.02 .96 .03

.02 .79 .20

truck

car

none

Raw features

.97 .03

.23 .77

jam

none

.46 .39 .10 .05

.01 .66 .22 .10

.01 .10 .79 .10

.00 .06 .15 .79

3 or more

2

1

0

.51 .44 .06

.07 .88 .05

.07 .37 .56

truck

car

none

Human annotators

.99 .01

.25 .75

jam

none

.46 .32 .23 .00

.10 .53 .34 .03

.02 .09 .76 .13

.02 .05 .10 .82

3 or more

2

1

0

.81 .17 .02

.06 .93 .01

.06 .11 .83

truck

car

none

T
ra

ffi
c 

ja
m

N
u

m
b

e
r 

o
f 

la
n

e
s

Le
a

d
in

g
 v

e
h

ic
le

Fig. 6. Classification results of the voted tags by SVMs based on raw-feature space (left), 10 drive topics (middle-left), 100 drive topics (middle-right),
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image captured in each frame does not include an entire shot
of the road from end to end and because there are several
surrounding vehicles that occlude the road, classifying the
number of lanes becomes a complicated task, even for the
human annotators, as shown in Fig. 6. Multimodal drive
topic achieve perform well treating diverse human tags as

distributed features in lane number classification task.
These robust characteristics of mLDA lead to another

engineering benefit. Various object recognition systems for
ADASs nowadays have been developed, such as pedes-
trian and leading vehicle detection[16], and traffic sign
recognition[17]. The proposed method will contribute to the
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development of a novel type of ADASs; it gathers recogni-
tion results from intelligent vehicles and provides estimated
information about a driving situation estimated from driving
behavior and captured images to normal vehicles that have
no special sensors. The different recognition systems have
different levels of accuracy. Thus, in this case, the novel
ADAS have to compete with the variance of automatic
annotations because there are various intelligent vehicles
with different recognition systems in a real environment.

Our multimodal drive topic proportion as a feature space
of SVM increased classification accuracy about 6%. Com-
pared with a 2012-dimensional raw-feature space, the 100-
dimensional drive topic is an efficient representation of
driving features; in other words, the drive topics and topic
proportion include the drive context, and they are a low-
dimensional representation of a complicated drive context.
There are also various statistical driver models, such as the
estimation of driver intention at an intersection[18][19], pre-
diction of vehicle trajectory[20] and driver state estimation
with smartphone sensors[21]. Most of them use HMM or
Gaussian mixture models for modeling vehicle behavior or a
driver’s operation, and they do not model and process shared
information among multimodal sensors by using a hierarchi-
cal model. Such higher level abstraction and extraction of
contextual information by using the hierarchical statistical
model achieves not only long-term prediction of driving
behavior for safety driving assist systems but also intuitive
retrieval of driving situations in natural language[22]. Anno-
tating whole data in a large-scale database is actually impos-
sible; however, our method will achieve automatic annotation
without fully prepared annotations. It is useful character for
giving instructions for novice drivers and contributing to
further technical development of driving systems.

Future works include developing an actual on-line sys-
tem that can treat large scale data with a distributed
algorithm[23], and extending the model to nonparametric
estimation of drive topics with the hierarchical Dirichlet
process[24].

V. CONCLUSION

In this paper, an automatic driving-situation annotation
method that uses driving behavioral data and image se-
quence captured with a car-mounted camera. The proposed
method consists of a double articulation analyzer (DAA)
and multimodal latent Dirichlet allocation (mLDA). DAA
discretizes time-series driving behavioral data into semantic
symbol sequences that represent driving situations in an
unsupervised manner. Thereafter, on the basis of behavioral,
visual features, and annotated human tags, drive topics
laid on multimodal feature distributions are estimated by
mLDA. Predictive annotations can be generated intuitively
from behavioral data and image sequences via the drive
topic proportion. The efficiency of multimodal drive topics
was evaluated by using driving situation classification tasks.
Compared with a high-dimensional raw-feature space, the
drive topics reduced the dimensionality to 5% and improved

classification performance about 6%. This is quite close to
the performance of human annotators.

REFERENCES

[1] D. Lee, “A theory of visual control of braking based on information
about time-to-collision,” Perception, vol. 5, no. 4, pp. 437–459, 1976.

[2] A. Berthelot, A. Tamke, T. Dang, and G. Breuel, “Stochastic situation
assessment in adcanced driver assistance system for complex multi-
objects traffic situations,” in Proc. of the IEEE/RSJ IROS, 2012, pp.
1180–1185.

[3] W. Takano, A. Matsushita, K. Iwao, and Y. Nakamura, “Recognition
of human driving behaviors based on stochastic symbolization of time
series signal,” in Proc. of the IEEE/RSJ IROS, 2008, pp. 167–172.

[4] T. Taniguchi, S. Nagasaka, K. Hitomi, N. Chandrasiri, and T. Bando,
“Semiotic prediction of driving behavior using unsupervised double
articulation analyzer,” in Proc. of the IEEE IV, 2012, pp. 849–854.

[5] K. Takenaka, T. Bando, S. Nagasaka, T. Taniguchi, and K. Hitomi,
“Contextual scene segmentation of driving behavior based on double
articulation analyzer,” in Proc. of the IEEE/RSJ IROS, 2012, pp. 4847–
4852.

[6] K. Takenaka, T. Bando, S. Nagasaka, and T. Taniguchi, “Drive
video summarization based on double articulation structure of driving
behavior,” in Proc. of the ACM MM, 2012, pp. 1169–1172.

[7] T. Bando, K. Takenaka, S. Nagasaka, and T. Taniguchi, “Unsupervised
drive topic finding from driving behavioral data,” in Proc. of the IEEE
IV, 2013, pp. xxx–xxx.

[8] C. Wang, D. Blei, and L. Fei-Fei, “Simultaneous image classification
and annotation,” in Proc. of the IEEE CVPR, 2009.

[9] N. Srivastava and R. Salakhutdinov, “Multimodal learning with deep
boltzmann machines,” in NIPS, 2013, pp. 2231–2239.

[10] E. B. Fox, E. B. Sudderth, M. I. Jordan, and A. S. Willsky, “The
sticky hdp-hmm: Bayesian nonparametric hidden markov models
with persistent states,” MIT Laboratory for Information and Decision
Systems, Tech. Rep. 2777, 2007.

[11] D. Mochihashi, T. Yamada, and N. Ueda, “Bayesian unsupervised
word segmentation with nested pitman-yor language modeling,” in
Proc. of the ACL and the AFNLP, vol. 1, 2009, pp. 100–108.

[12] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent Dirichlet Allocation,”
Journal of Machine Learning Research, vol. 3, pp. 993–1022, 2003.

[13] T. Nakamura, T. Nagai, and N. Iwahashi, “Grounding of word mean-
ings in multimodal concepts using lda,” in Proc. of the IEEE/RSJ
IROS, 2009, pp. 3943–3948.

[14] T. Griffiths and M. Steyvers, “Finding scientific topics,” in PNAS, vol.
101, Apr. 2004, pp. 5228–5235.

[15] D. G. Lowe, “Object recognition from local scale-invariant features,”
in Proc. of the IEEE ICCV, vol. 2, 1999, pp. 1150–1157.

[16] G. Stein, Y. Gdalyahu, and A. Shashua, “Stereo-assist: top-down stereo
for driver assistance systems,” in Proc. of the IEEE IV, 2010, pp. 723–
730.

[17] S. Houben, J. Stallkamp, J. Salmen, M. Schlipsing, and C. Igel,
“Detection of traffic signs in real-world images: The German Traffic
Sign Detection Benchmark,” in International Joint Conference on
Neural Networks (submitted), 2013.

[18] G. S. Aoude, V. R. Desaraju, L. H. Stephens, and J. P. How, “Be-
havior classification algorithms at intersections and validation using
naturalistic data,” in Proc. of the IEEE IV, 2011, pp. 601–606.

[19] M. Liebner, M. Baumann, F. Klanner, and C. Stiller, “Driver intent
inference at urban intersections using the intelligent driver model,” in
Proc. of the IEEE IV, 2012, pp. 1162–1167.

[20] J. Wiest, M. Hoffken, U. Kresel, and K. Dietmayer, “Probabilistic
trajectory prediction with gaussian mixture models,” in Proc. of the
IEEE IV, 2012, pp. 141–146.

[21] H. Eren, S. Makinist, E. Akin, and A. Yilmaz, “Estiamting driving
behavior by a smartphone,” in Proc. of the IEEE IV, 2012, pp. 234–
239.

[22] M. Naito, C. Miyajima, T. Nishino, N. Kitaoka, and K. Takeda, “A
browsing and retrieval system for driving data,” in Proc. of the IEEE
IV, 2010, pp. 1159–1165.

[23] D. Newman and M. Welling, “Distributed Algorithms for Topic
Models,” Journal of Machine Learning Research, vol. 10, pp. 1801–
1828, 2009.

[24] Y. Teh, M. Jordan, M. Beal, and D. Blei, “Hierarchical dirichlet
processes,” Journal of the American Statistical Association, vol. 101,
no. 476, pp. 1566–1581, 2006.

2749


