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Abstract— This work investigates the way humans plan their
paths in a goal-directed motion. The person can be viewed as
an optimal controller that plans the path minimizing a certain
(unknown) cost function. Taking this viewpoint, the problem
can be formulated as an inverse optimal control one, i.e.,
starting from control and state trajectories we want to figure
out the cost function used by a person while planning the path.
To test the envisaged ideas, a set of walking paths of different
volunteers were recorded using a motion capture facility. The
collected data have been used to compare a solution to the
inverse control problem coming from the literature to a novel
one. The obtained results, ranked using the discrete Fréchet
distance, show the effectiveness of the proposed approach.

I. INTRODUCTION

Despite the impressive achievements of robotics research
during the last decade, the use of robots in industrial ap-
plications that need a physical interaction with humans is
still severely limited by safety issues. In particular, allowing
humans working side by side with industrial robots is still
far from being a common industrial practice. To achieve this
goal the control system should be able to prevent dangerous
situations, by estimating the human intention in time to
perform a safe robot reaction.

While the estimation of the human intention [1] quite a
hard problem, in the case of walking of a human being one
can predict her/his trajectory in a goal-oriented motion [2],
based on a model of the way a human plans the path.

One of the most recent and promising approaches to
deal with the prediction of goal-oriented motion models
the human planning as an optimal control problem whose
cost function, however, is unknown. As a consequence, the
problem of predicting where a human is heading to can be
converted into an inverse optimal control problem.

The inverse problem has been a widely studied problem
[3], [4], and has a variety of applications both inside and
outside the field of robotics. In the context of planning human
walking paths, it has been used many times with various
approaches. In [2] and [5] the authors assume that decisions
are optimal w.r.t. a certain (unknown) cost function, and
try to minimize the difference between what is observed
and what would have been observed given a candidate
cost function. The cost function is represented as a linear
combination of basis functions weighted by an unknown
parameter vector. Their approach infers the parameter vector,
solves the corresponding optimal control problem, predicts
what the resulting observations would be, and then applies
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derivative-free optimization to minimize the difference be-
tween predicted and observed trajectories. This approach,
however, is computationally expensive as it requires solving
an optimal control problem at each iteration of the optimizer.

Another approach is presented in [6], in which the authors
implement several algorithms, based on inverse reinforce-
ment learning, that do not require solving the forward
problem.

The method proposed herein is inspired by [7], [8]. This
new formulation of inverse optimal control assumes that
the observations are perfect, while the system is considered
to be only approximately optimal. This allows to define
residual functions based on the Karush-Kuhn-Tucker (KKT)
necessary conditions for optimality [9]. Then, the inverse
optimal control problem can be solved by minimizing these
residual functions, recovering the parameters that govern the
cost function. As a result, the inverse optimal control problem
reduces to a simple least-squares minimization, which can be
solved very efficiently.

The present paper extends the work in [7], [8], trying to
overcome some of the limitations that arise applying those
approach to our dataset. To be more specific, in this paper
the walking paths instead of the walking trajectories are
considered, expressing the motion model with respect to the
natural coordinate so that it is invariant to walking velocity
changes. Further, a novel cost function, that considers the
energy and the position of the human with respect to the
target as well, is introduced. Finally, the discrete Fréchet
distance is proposed as a tool to assess the similarity of a
set of paths.

The paper is organized as follows. In Section II a detailed
description of the experiments performed to collect the data
is provided. Section III describes how the inverse optimal
control problem is solved and a comparison with respect
to a previous approach is reported. Section IV shows and
discusses the results obtained with the proposed approach.
Section V presents the future research and concludes the
manuscript.

II. EXPERIMENTAL SETUP

In this section we describe the experimental setup used
to collect a dataset of human walking paths. About one
thousand paths were recorded using a 6 cameras motion
capture system (SMART system by BTS S.p.A.). Each
subject was equipped with 3 light reflective markers, two
located on the hips – anterior superior iliac spine (asis) –,
and one located on the sacrum (see Fig. 1).

The experimental protocol was inspired to the one adopted
in [5]. More specifically, we restrict the study to the “natural”
forward locomotion, excluding goals located behind the
starting position and goals requiring side-walk steps.
Goals are defined both in position and orientation, and in
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Fig. 1: Marker positions and barycentre.

order to cover at best the accessibility region, the space for
the experiments, a 4m×6m rectangle corresponding to the
calibrated volume, was sampled with 144 points defined by
12 positions on a 2D grid and 12 orientations each. The final
orientation varied from 0 to 2π in intervals of π/6 at each
final position (see Fig. 2). The starting position was always
the same.
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Fig. 2: Final porch positions (left) and orientations (right).

Locomotor trajectories of seven normal healthy people
(both males and females), who volunteered for participation
in the experiments, were recorded. Their ages, heights, and
weights ranged from 24 to 50 years, from 1.60 to 1.85m,
and from 50 to 90kg, respectively.
Each subject performed all the 144 trajectories. Subjects
walked from the same initial configuration to a randomly
selected final configuration (see Fig. 2). The target consisted
of a porch that could be rotated around a fixed position in
order to show the desired final orientation (see Fig. 3).
The subjects were instructed to freely cross over this porch
without any spatial constraint relative to the path they might
take. Further, they were allowed to choose their natural
walking speed to perform the task.
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Fig. 3: An example of experiment.

A pre-processing phase on the paths collected by the
optoelectronic system was required in order to remove the
outliers, fill in the missing data and smooth the curves, and
the path of each marker was interpolated with a smoothing
spline. Then, considering the triangle that the three markers
form (see againFig. 1), the path of a unique “virtual” marker

representing the human walking path was computed as the
barycentre of the triangle.

III. INVERSE OPTIMAL CONTROL

In this section we describe the model used for the inverse
optimal control, and the approach developed to solve it.

A. The unicycle model

As far as human trajectory planning is concerned, the
complex activities performed during walking by muscles
and brain in commanding and coordinating many elementary
motor acts can be neglected, and the problem may be
considered from a high-level kinematic perspective.

A walking human can be thus represented by the center of
gravity of the body, that can translate and rotate with respect
to the direction of the forward walking. The pose of the
human is thus completely described by the 2D coordinates
of the center of gravity, and by the angle θ formed by the
tangent to the walking path with the x-axis.

The simplest kinematic model that can be used is the
unicycle model 

ẋ1 = u1 cos(x3)

ẋ2 = u1 sin(x3)

ẋ3 = u2

(1)

where x1 and x2 are respectively the x- and the y-coordinate
of the center of gravity, x3 is the orientation θ , u1 is the linear
(nonholonomic) velocity along the direction of motion, and
u2 is the angular velocity.

In order to apply optimal control techniques on this model,
a discrete version is adopted. In the following we consider
the Explicit Euler discretization method, i.e.,

x1(k+1) = x1(k)+ τu1(k)cos(x3(k))
x2(k+1) = x2(k)+ τu1(k)sin(x3(k))
x3(k+1) = x3(k)+ τu2(k)

, (2)

where τ is the sampling time, and k is the discrete-time index.

B. Problem formulation

The inverse optimal control problem solved in [8] is

min
x(k),u(k)

1
2

τ

N−1

∑
k=0

(
c(u1(k))

2 +u2(k)2
)

s.t. x(0)−xinit = 0,
x(N−1)−xgoal = 0,
x1(k+1)− [x1(k)+ τu1(k)cos(x3(k))] = 0,
x2(k+1)− [x2(k)+ τu1(k)sin(x3(k))] = 0,
x3(k+1)− [x3(k)+ τu2(k)] = 0,
∀k = 0, . . . ,N−1.

(3)

where x =
[
x1 x2 x3

]T is the state vector, xinit and xgoal
are the initial and the final states, respectively, and N is
the number of samples. The only unknown parameter is c,
that governs how much u1 is penalized with respect to u2
in the minimization of the cost function. The considered
cost function is related to the energy needed to perform the
trajectory.
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Solving the inverse optimal control problem associated
with (3) may take a lot of computational time, due to its
nonlinearities, thus in [8] a more efficient solution, based
on the KKT conditions for optimality, is proposed and here
briefly presented.

1) Necessary condition for optimality: Let
χ =

[
xT uT

]T , f (χ;c) ∈ R the cost function, and
g(χ) ∈ Rm the set of constraints.

For a given c, assuming that χ? is a local minimum of
the problem (3) and is regular, there exist unique Lagrange
multiplier vectors λ ? ∈ Rm [9] such that∇χ f (χ?;c)+

m

∑
i=1

λ
?T

i ∇χ gi(χ
?) = 0

g(χ?) = 0
(4)

assuming that f (·) and g(·) are continuously differentiable
functions. Equations in (4) are known as the KKT necessary
(and sufficient) conditions for equality constraint optimiza-
tion problems: the first one is the stationarity condition, while
the second equation ensures primal feasibility.

Thus, the KKT conditions for the Lagrangian of prob-
lem (3) can be written as

∇(χ,λ )L (χ,c,λ ) = ∇(χ,λ )

(
f (χ;c)+

m

∑
i=1

λ
T
i gi(χ)

)
= 0.

2) Residual functions: As previously stated, the system
is assumed to be only “approximately optimal”, while ob-
servations are assumed to be perfect. In [8], the inverse
optimal control problem is solved by minimizing the residual
function

min
c,λ

1
2
‖∇(χ,λ )L (χ,c,λ )‖2 = min

c,λ

1
2
‖Jz−b‖2, (5)

where z =
[
c λ

]T , while J and b depend on the collected
data.

One can see that the initial constrained optimization prob-
lem (3) has been cast into the unconstrained optimization
problem (5), with the only limitation that the objective
function needs to be composed of a linear combination
of known basis functions. The problem therefore becomes
a convex unconstrained least-squares optimization, which
is easier to solve than the initial constrained optimization
one, and reads as the classical normal equation, i.e., with
the solution z? = J†b, where J† denotes the Moore-Penrose
pseudoinverse of J.

3) Limits of the approach: One of the main limitations of
the approach formulated in [8] is that there is no guarantee
that the value of c? resulting from the normal equation
is actually positive. In fact, in many cases, starting from
the considered dataset, the solution is a negative value of
c, making the optimization problem not convex (the cost
function in (3) becomes a saddle).
To overcome this problem, the solution of the normal equa-
tion is here taken as the initial guess for the solution of a
new optimization problem, i.e., a constrained version of (5),
which reads as

min
c,λ

1
2
‖Jz−b‖2

s.t. c≥ 0.

Therefore, for each trajectory in the database the optimum
value c? was computed, obtaining an average value c̄ =
0.0595. Using c̄ to solve (3) yields unsatisfactory results. Just
to give an example, let’s consider a particular trajectory (see
Fig. 4) in which apparently the solution of the optimization
problem (the blue line) is not able to reproduce reliably the
collected data (the black line). This issue arises in many other
optimized trajectories, omitted here for space limitations.
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Fig. 4: Solution of the optimization problem.

It is opinion of the authors that this kind of issue in
reproducing the collected data is not only due to the fact
that the chosen value of c is not the optimal one – in
fact, even the optimal ones produce similar results –, but
also to the selected cost function, which is inherently not
able to replicate the human way of planning trajectories.
This is also revealed by the fact that in many the cases,
even if the geometry of the trajectory is close to the data,
the computed values of u1 and u2 are really different from
the ones measured during the experiments (see Fig. 5).
In particular, u1 tends to be unrealistic (if compared with
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Fig. 5: Inputs of the unicycle model.

the human velocity), and, in the authors’ opinion, it is not
relevant to understand how humans plan the paths. Thus, in
the following we modify the cost function (and the model)
accordingly.
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C. The model in the natural coordinate

If one is interested in studying the geometry of the walking
path only, instead of the complete trajectory as a function
of time, it is possible to rewrite model (1) with the natural
coordinate s as the independent variable, making the model
invariant with respect to changes in the velocity u1, and
reducing the number of input variables. Thus, if u1 > 0 along
the path (which is one of the assumptions of this work)
the relation between the natural coordinate s and the time
t is given by s(t) =

∫ t
0 u1(τ)dτ , and can be inverted defining

t = t(s). As a consequence, defining x′ = dx/ds, the unicycle
model (1) as a function of space can be written as

x′1(s) = cos(x3(s))
x′2(s) = sin(x3(s))
x′3(s) = u2(s)

(6)

where u2(s) is the angular velocity with respect to s.
Model (6) can be discretized yielding

x1(k+1) = x1(k)+σ(k)cos(x3(k))
x2(k+1) = x2(k)+σ(k)sin(x3(k))
x3(k+1) = x3(k)+σ(k)u2(k)

(7)

where σ(k) = s(k)− s(k−1), and, now, k is not a time, but
a space index.

In order to understand whether this model is suited for our
purposes, we compared simulation results with the collected
data (see Fig. 6), obtaining a very good match.
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Fig. 6: One of the trajectories used for validating the model.

D. The proposed cost function

In this section we propose a new cost function, the
parameters of which are identified with the same procedure
presented in Section III-B.
The proposed cost function accounts for the energy related
to the angular velocity u2, and for the distance between the
current state and the final state, i.e.,

f (x,u2;c) =
1
2

N−1

∑
k=0

σ(k)(u2(k))
2 ·
(
1+ cT

δx2) , (8)

where

c =

c1
c2
c3

 , δx2 =


(
x1(k)− x1,goal

)2(
x2(k)− x2,goal

)2(
x3(k)− x3,goal

)2

 .

The assumption here is that the distances of the current state
from the goal values can be interpreted as space- (time-)
varying weights on the angular velocity u2, and then chosen
as the terms to be weighted.

Therefore, we can write the new optimization problem as

min
x(k),u2(k)

1
2

N−1

∑
k=0

σ(k)(u2(k))
2 ·
(
1+ cT

δx2)
s.y. x(0)−xinit = 0,

x(N−1)−xgoal = 0,
x1(k+1)− [x1(k)+σ(k)cos(x3(k))] = 0,
x2(k+1)− [x2(k)+σ(k)sin(x3(k))] = 0,
x3(k+1)− [x3(k)+σ(k)u2(k)] = 0,

∀k = 0, . . . ,N−1,

(9)

and, writing the Lagrangian associated with (9) as described
in Section III-B.1, the residual functions matrices of (5)
become

z =
[
cT λ 0

1 λ 0
2 λ 0

3 · · · λ
N−1
1 λ

N−1
2 λ

N−1
3

]T
,

b =
[
ζ (0)T ζ (1)T · · · ζ (N−1)T

]T
,

and

J =


ψ(0) I4×3 M(0) 04×3 · · · 04×3
ψ(1) 04×3 −I4×3 M(1) · · · 04×3
ψ(2) 04×3 04×3 −I4×3 · · · 04×3

...
...

...
...

. . .
...

ψ(N−1) 04×3 04×3 04×3 · · · −I4×3


with

ζ (k) =

 0
0
0

σ(k)u2(k)

 , I4×3 =

[
I3×3
01×3

]
,

ψ(k) =σ(k)u2(k)·u2(k)δx1(k) 0 0
0 u2(k)δx2(k) 0
0 0 u2(k)δx3(k)

δx1(k)2 δx2(k)2 δx3(k)2

 ,

M(k) =

 1 0 0
0 1 1

−σ(k)sin(x3(k)) σ(k)cos(x3(k)) 1
0 0 σ(k)

 .
Even in this case, it is possible to find a solution to the

normal equation, and determining the values of c in a very
efficient way. However, it is not possible to guarantee that
c≥ 0, thus the solution z? of the normal equation is used as
the initial guess for the constrained problem

min
c,λ

1
2
‖r(χ,c,λ )‖2

s.t. c≥ 0.
(10)

The average weights obtained using the collected data are
c̄ =

[
125.1760 42.4662 189.8515

]T , values that are used
for the solution of the optimization problem (9).

Even if the choice of the weights could not be the optimal
one, the obtained results are really encouraging. Recalling
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the trajectory example presented in Section III-B.3 (Fig. 4,
top) the previous approach was not able to reproduce the
human trajectory, leading to a solution of the optimization
problem that was not even passing through the porch. In this
case, the solution not only passes through the porch, but also
its shape is very similar to the actual human path (see Fig. 7,
bottom).
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Fig. 7: Solution of the optimization problem with the pro-
posed approach.

On the other hand, however, the computed u2 does not
fit exactly the actual angular velocity obtained from the
data, showing a peak while the porch is almost reached (see
Fig. 7). Anyway, the overall trend is caught, and can be
considered as an average of the actual input.

This result could be improved, for example, by accounting
in the cost function the first and second derivative of u2
as well, introducing some inertia in the curvature and thus
avoiding discontinuities in the input.

Notice that the chosen human path is deliberately one of
the most difficult to reproduce, due to its curvature and final
orientation. In other cases the results that can be obtained
with the presented approach are even better, as it will be
shown in the next section.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

In this section the results obtained with the presented
approaches are analysed in more details. In particular, more
experimental results are presented, and a way to evaluate the
distance between the obtained curves and the human paths
is described, i.e., the Fréchet distance [10].

A. Experimental results
For the sake of clarity, we refer to the first method pre-

sented in Section III-B as the Time method, and to the second
one presented in Section III-D as the Space method, with
obvious meanings. The solution of the nonlinear optimization
problems (3) and (9) is performed using an interior point
algorithm [9].

Fig. 8 shows a sample of representative trajectories. The
black solid lines are the data collected from the human
trajectories, the blue dashed lines the solutions of the time
method, while the red dash-dotted lines are the solutions of
the space method.

Apparently, in some cases both the methods manage to
reproduce the human trajectory, but also in those cases, the
space methods seems to be closer. In several other cases,
however, the time method definitely fails. From a qualitative
point of view, it is already clear that the novel approach
overcomes the limitations of the time method highlighted in
Section III-B.3, but the performance of both methodology
from a quantitative viewpoint needs discussing.

B. Discussion
To evaluate the performance of the approaches, we need

to quantify how far the obtained solution (with any method)
is from the collected data. The classical way to quantify
the distance between two curves is the `2-norm (Euclidean
distance) [5], [11]–[13]. In the opinion of the authors, this
is not the most suited distance to compare the shape of two
paths.

A different way to measure the distance between two
curves is here proposed, i.e., the Fréchet distance [10],
which is particularly used in computational geometry as a
“similarity” metric between two curves.

Formally, the Fréchet distance is defined as follows. Given
two curves f : [a,b]→ V and g : [a′,b′]→ V , their Fréchet
distance is defined as

δF( f ,g) = inf
α,β

max
t∈[0,1]

d ( f (α (t)) ,g(β (t)))

where α and β are arbitrary continuous non-decreasing
function from [0,1] onto [a,b] and [a′,b′] respectively. In
computing the Fréchet distance between arbitrary curves one
typically approximates the curves f and g by polygonal
curves fN and gM of N and M points respectively, and uses
the discrete Fréchet distance δdF( fN ,gM).

Hence, the discrete Fréchet distance was computed for
all the paths computed by the two methods with respect to
the human ones. Fig. 9 shows the boxplot of the obtained
distances.

The red crosses in the boxplot represent the outliers, while
the red dots are the computed average (also considering
the outliers). Statistical properties of the obtained discrete
Fréchet distances are presented in Table I. As it might be

TABLE I: Statistical properties of δdF .

Method Avg (m) Var (m2) Min (m) Max (m) Med (m)
Time 0.2840 0.0738 0.0016 1.1084 0.1525
Space 0.0833 0.0057 0.0029 0.5642 0.0640

expected from the qualitative considerations of Section IV-
A, the proposed method gives better results with respect to
the time method.

V. CONCLUSION AND FUTURE WORK

In this work, we dealt with the problem of identifying
how humans plan their paths, modelling this problem as an
inverse optimal control one.

1680



−2

−1

0

y
ax

is
(m

)

data time method space method

−2

−1

0

y
ax

is
(m

)

−2 −1 0 1 2 3

−2

−1

0

x axis (m)

y
ax

is
(m

)

−2 −1 0 1 2 3

x axis (m)

Fig. 8: A representative sample of paths. The trajectories start from the same initial condition, while the black dashed line
represents the porch width (final configuration).
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Fig. 9: Boxplot of the computed discrete Fréchet distances.

To this end, experiments on volunteer subjects were con-
ducted, and a modified version of a promising and recent
approach [8] was used to solve the problem. It was then
compared with a novel one, able to overcome the highlighted
former limitations. The results were evaluated with the
discrete Fréchet distance, a metric that was never used for
the performance measurement in the context of generation
of human walking paths to date.

Starting from this work, different research directions can
be identified. For example, terms can be added to the cost
function, accounting for the inertia of changing the orienta-
tion, i.e., inertia on u2, improving the prediction capabilities
of the proposed method.
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