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Abstract— Autonomous vehicles operating in real-world in-
dustrial environments have to overcome numerous challenges,
chief among which is the creation and maintenance of con-
sistent 3D world models. This paper focuses on a particu-
larly important challenge: mapping in dynamic environments.
We introduce several improvements to the recently proposed
Normal Distributions Transform Occupancy Map (NDT-OM)
aimed for efficient mapping in dynamic environments. A
careful consistency analysis is given based on convergence and
similarity metrics specifically designed for evaluation of NDT
maps in dynamic environments. We show that in the context
of mapping with known poses the proposed method results in
improved consistency and in superior runtime performance,
when compared against 3D occupancy grids at the same size
and resolution. Additionally, we demonstrate that NDT-OM
features real-time performance in a highly dynamic 3D mapping
and tracking scenario with centimeter accuracy over a 1.5km
trajectory.

I. INTRODUCTION

Industrial applications of robotics are rapidly shifting from
pre-programmed manipulators to highly mobile, intelligent
robotic service vehicles. In order to operate efficiently in
complex, large scale and realistic industrial environments,
autonomous systems have to overcome numerous challenges,
chief among which is the creation of a map or world
model. As the availability of high-density 3D range sensors
increases, so does the need for efficient mapping algorithms
that produce accurate large-scale 3D models. One important,
yet largely overlooked aspect of mapping in real world
environments is the ability to build and maintain a model
in the presence of dynamic entities. In order to meet the
requirements for operating in realistic industrial scenarios,
we expect from a 3D representation that it allows for accurate
maps, that are compact in order to keep use of computational
resources low and that it enables 3D mapping which can
adapt to changes in the environment. The accuracy of a map
can be measured as its capability to represent the sensor
measurements [14], however, it should also enable high
performance in the tasks that are carried out on the map.

In this paper we build upon the Normal Distributions
Transform (NDT), which was originally developed in the
context of 2D laser scan registration [3]. The central idea is
to represent the observed range points as a set of Gaussian
probability distributions. NDT has later been extended to
3D scan registration [5], [13]. In a recent paper [10] we
introduced the Normal Distributions Transform Occupancy
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Maps (NDT-OM), which is a 3D mapping approach based
on the NDT representation. NDT-OM extends the NDT
representation with occupancy values, which also model
free space. In addition, the NDT-OM is recursively updated.
NDT-OM was shown in [10] to be feasible for mapping
large-scale environments, even in the presence of dynamic
changes. However, [10] does not account for two important
aspects of the map update procedure. First, NDT cells often
contain an estimated structure smaller than the cell volume.
Thus, a sensor ray passing through an NDT cell should
not necessarily be considered as evidence of emptiness. The
second aspect concerns the update of an NDT cell covariance
estimate in dynamic environments. In our previous work
[10], measurements from dynamic objects are fused into
the model, resulting in covariance estimates that represents
a combination of both static and dynamic entities. In this
paper, we address these shortcomings by: 1) introducing a
probabilistic occupancy update approach that accounts for
the shape of the estimated covariance in each cell during
raycasting and 2) proposing a modified recursive covariance
adaptation approach that allows faster adaptation to dynamic
changes in the environment. In addition, we introduce a
cluster-based raycasting approach for NDT-OM, which en-
ables update rates faster than those of an efficient occupancy
grid implementation of the same size and resolution. We will
also demonstrate that the resolution has little effect on the
localization accuracy obtained with a NDT-OM.

The evaluation was done in a highly dynamic test scenario.
The effect of parameters are analysed by introducing met-
rics for evaluating the maps in dynamic environments. We
demonstrate that the proposed NDT-OM maps are consistent
and accurate enough to enable a 3D mapping and tracking
system to achieve real-time pose estimates with centimeter
accuracy over 1.5km trajectory.

The rest of this paper is organized as follows. Sec.
2 reviews prior work on 3D representations with special
emphasis on the Normal Distributions Transform. Sec. 3
introduces the proposed improvements for mapping with
NDT-OM, Sec. 4 describes the test setup, Sec. 5 analyzes
the results and Sec. 6 concludes the paper.

II. RELATED WORK

Several approaches for 3D spatial modeling have been
proposed and successfully used in robotic mapping systems.
Elevation grid maps — a 2.5D parametrization of space,
obtained by associating a height value to cells organized
in a 2D grid, have been used for outdoor robot navigation
since the early years of robotics research (e.g. Bares et al.
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[1]). Gaussian Processes (GP) is an extension to the elevation
grid approach. The available range sensor data can be used
to learn the hyper-parameters of a GP, which can then be
used to perform regression for any point in 2D space and
obtain an interpolated height value, resulting in a continuous
spatial model (Lang et al. [4]). Triebel et al. [16] propose the
Multi-Level Surface (MLS) map as an extension to elevation
grids which allows for multiple height values to be stored
per cell. Triangle meshes are another method for spatial
representation popular in the computer graphics community
(Wiemann et al. [17]).

Occupancy grid mapping is one of the predominant mod-
eling techniques for 2D [8] and 3D [7], [18] environments
in robotics applications. The environment is represented by
partitioning space into a regular grid and updating the proba-
bility of occupancy for each cell. An occupancy grid models
both free and occupied space and adapts to dynamic changes
in the environment through sequential updates making it only
3D representation, among those mentioned above, that is
suitable for dynamic environments.

The Normal Distribution Transform (NDT) representation
was first introduced by Biber and Strasser [3] for 2D scan
matching. NDT is a grid based surface representation. The
basic idea is to first accumulate sensor measurements into
grid cells and then use them to compute a sample mean
and a covariance for each cell. Thus, the NDT map is a
set of normal distributions that describe the probability of
a point being measured at a particular physical location.
The NDT representation was extended to 3D (again for scan
matching purposes) by Magnusson and Duckett [6] (later
published in [5]). Additionally, 3D-NDT maps have been
used in autonomous navigation context [12].

Stoyanov et al. in [14] compared the accuracy of 3D-
NDT representation to grid-based [18] and triangle mesh
based [17] representations using extensive tests conducted
in different environments. An important result of [14] was
that 3D-NDT typically provides the best accuracy even at
low resolutions.

In [19] Yguel and Aycard proposed a method for updating
the distributions in each cell using error-refinement (ER).
They also proposed to use an occupancy update method
based on whether a cell was observed empty or occupied.
However, their approach only tracks the occupancy probabil-
ity of cells containing a Gaussian component, thus disregard-
ing the modeling of free space. In addition, the methodology
proposed in [19] disregards an important property of maps
with Gaussian components — namely the fact that not all of
the space inside a cell containing a Gaussian component is
necessarily occupied.

In our prior work [10], we introduced the Normal Dis-
tributions Transform Occupancy Maps (NDT-OM) — a 3D
mapping approach using the NDT representation. NDT-
OM introduced recursive covariance updates and models the
occupancy of each cell using the log-likelihood approach [9],
similarly to an occupancy grid. In this paper we propose three
improvements to NDT-OM mapping: 1) An improved sensor
model for occupancy updates; 2) a covariance adaptation

scheme and; 3) an efficient raycasting approach. In addition
we propose a map quality metrics for NDT-OM and evaluate
the performance of NDT-OM in highly dynamic 3D mapping
and tracking scenario.

III. NORMAL DISTRIBUTIONS TRANSFORM OCCUPANCY
MAPPING IN DYNAMIC ENVIRONMENTS

A. NDT-OM updating in dynamic environments

A key procedure in occupancy grid mapping [8] is to
perform raycasting, i.e., tracing the ray that connects the
sensor origin and sensor beam endpoint. All cells along the
beam length can then be updated with evidence for being
empty, while the final endpoint cell is updated with a high
probability of occupancy. This procedure can be efficiently
implemented using log-likelihood formulation [9]. The pre-
viously introduced NDT-OM formulation [10], applies a
similar approach. Formally, a cell ci in NDT-OM is repre-
sented with parameters ci = {µi, Pi, Ni, p(mi|z1:t)}, where
µi and Pi, are the parameters of the estimated Gaussian
component, Ni is the number of points used for estimation
of normal distribution parameters so far, and p(mi|z1:t) is
the probability of the cell being occupied. The minimum
amount of parameters required to define an NDT-OM cell is
11 (mean, upper diagonal of covariance, number of points
and occupancy probability). In this paper we are using
this representation, but proposing improvements especially
considering mapping in dynamic environments.

Fig. 1 illustrates the NDT-OM update procedure. The
sensor is situated in the bottom left corner, the red dots are
the measurements returned by the sensor, red lines illustrate
the trace of the rays and the yellow ellipses represent
occupied cells with estimated normal distributions. In this
paper we will focus on cases C and D.

In NDT mapping the cell often contain an estimated
structure smaller than the cell volume. As a consequence, a
sensor ray can pass through an occupied cell without hitting
an obstacle, see Case C in Fig. 1. Using the standard beam
tracing procedure as in occupancy grid mapping in this case
will cause an occupied cell to be wrongly updated with
evidence of being empty. To account this, in Sec. III-C we
will formulate an approach that evaluates the consistency of
a measurement with the map by computing the likelihood
for the ray to pass through a cell occupied with a Gaussian
component. This likelihood is then used to set the evidence
for the occupancy update.

Another NDT update related issue in dynamic environ-
ments is that the distribution within the cell can change
over time (Case D in Fig. 1). This results for the covariance
estimate containing both static and dynamic points and the
result does not correspond to actual state of the cell. In order
to speed up the convergence of the covariance estimate, we
propose a covariance adaptation parameter in Sec. III-B.

Finally, an occupancy update step is a computationally
intensive operation mainly due to the raycasting. High den-
sity sensors, such as Velodyne HDL-32 used in this paper,
produces hundreds of thousands of points every second.
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A Empty seen empty

B Occupied seen 
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C Occupied seen empty
(consistent)

D Distribution changed

E Occupied seen empty
(distribution vanished)

F Empty seen occupied

Fig. 1. Illustration of different cases of NDT occupancy mapping. Cases
A, B, E and F correspond to standard occupancy mapping. Case C requires
that the consistency between the map and the measurement is checked in
order to update the cell correctly. Case D requires that there is a mechanism
for adaptation of the existing normal distribution.

Raycasting has to be performed for each measurement in-
specting many cells for each measurement. In Sec. III-D
we utilize the recursive formulation of NDT-OM, which
allows us to first compute a temporary NDT map from
the measurement. We then represent the laser measurement
with a vector of Gaussian components obtained from the
temporary map and use the mean values to update the
occupancy of NDT-OM. This leads to an efficient NDT-OM
update, since computing an NDT map is fast and the number
of Gaussians is substantially less than number of raw sensor
measurements.

B. Adaptive Recursive updating of NDT cell

The basic Recursive Covariance Update (RCU) procedure
introduced in [10] computes an exact sample mean and
covariance, given two sets of measurements {zi}mi=1 and
{zi}m+n

i=m+1, zi ∈ R3. The combined estimate of the sample
mean given in [10] can be written as

µ1,m+n =
1

m+ n
T1,m+n, (1)

where T1,m+n = T1,m + Tm+1,m+n, T1,m =
∑m
i=1 zi,

and Tm+1,m+n =
∑m+n
i=m+1 zi. Similarly the combined

covariance estimate is

P1,m+n =
1

m+ n− 1
S1,m+n, (2)

where S1,m+n = S1,m + Sm+1,m+n + m
n(m+n) ( nmT1,m −

Tm+1,m+n)( nmT1,m − Tm+1,m+n)
′
, S1,m =

∑m
i=1(zi −

1
mT1,m)(zi − 1

mT1,m)
′
, and Sm+1,m+n =

∑m+n
i=m+1(zi −

1
nTm+1,m+n)(zi − 1

nTm+1,m+n)
′
.

Equations (1) and (2) can be used to update exact sample
mean and covariance over a sequence of observations. With
respect to long-term mapping in dynamic environment we
observe that 1) T1,m and S1,m grow unbounded with the

consistent
inconsistent
occupied

Fig. 2. NDT-OM update step. The sensor ray travels through three cells
containing Gaussian components. The first cell is consistent according to
map and measurement, while the second one is inconsistent.

number of measurements added, which could lead to numer-
ical instabilities and overflows; and 2) the resulting distribu-
tion will carry information from all available measurements,
hence, the presence of measurements from dynamic objects
will result in incorrect distributions.

NDT-OM in the case of Eqs.1 and 2, with basic RCU,
stores the number of points used for estimation as Np =
n+m. In order to speed up the convergence of the covariance
estimates to correct distribution we introduce a covariance
adaptation parameter M, which regulates the amount of
points considered used for the estimate, that is

Np =

{
n+m, n+m < M

M, n+m ≥M
. (3)

This approach maintains the current mean and covariance
estimates unchanged, however, M sets the weight for the T ,
and S. Setting a small M means that the adaptation is faster,
but on the other hand the history is lost quickly and on the
contrary, setting M to a large value means that the adaptation
is slow, but the history is better preserved.

C. New sensor model for occupancy updating with NDT-OM

In the case of an occupancy grid [8] the common practice
is to update the occupancy by following the trace of a mea-
surement from the sensor pose towards the sensor reading.
All the cells along the ray are updated with low occupancy
probability while the last cell is updated with high one. NDT
maps have typically large cell size and often the object in the
cell does not occupy the full volume of the cell. An example
of the situation is illustrated in Fig. 2, where a sensor
ray passes through three cells. The leftmost cell should
not be updated empty, since the measurement is consistent
with the map, while the center cell is clearly inconsistent.
Thus, in order to consistently update the occupancy of NDT-
OM the evidence should not be constant, but a function of
disagreement between the observation and the map. Below,
we will derive a sensor model that is based on a measure
of inconsistency between the observation and the map. The
derivation assumes that each cell along the sensor ray is
visited once and that there is only one normal distribution
per cell.

A line passing through the sensor origin xs ∈ R3 and a
measurement zi ∈ R3 can be defined as:

x̄(t) = l · t+ l0, (4)
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where l = zi−xs

‖zi−xs‖ = (lx,ly, lz)
′

is the direction of the line,
l0 is some point on the line and t ∈ R is a parameter. Given
a normal distribution N(µi, Pi), the likelihood along the line
is given by the function:

pi(x̄(t)) = exp(−1

2
(x̄(t)− µi)

′
P−1
i (x̄(t)− µi)). (5)

In order to find an inconsistency measure between the
measurement and a map, we search for the maximum of
Eq. 5 for each cell containing a Gaussian component

Li = argmax
t

(p(x̄i(t))) (6)

The maximum of Eq. 6 can be straight forwardly found
by solving dpi(x̄(t))

dt = 0. Additionally, given a solution point
x̄i(t̂), where t̂ is the solution for Eq. 6, we evaluate the
likelihood of this point being an end point

Lei = exp(−1

2

∥∥x̄i(t̂)− zi∥∥2
/σ2

s), (7)

where σ2
s is sensor noise. Finally, we set the evidence for

updating the occupancy value of a cell mi that is observed
empty given a measurement zi and map m is

p(mi = 1|zi,m) =

{
0.5− ηLi(1− Lei ) , cell occupied

β , otherwise
,

(8)
where η is a scaling factor and β is a constant. Parameter η
in Eq. (8) is used since both Li and Lei are likelihoods. In
order to compute the evidence of occupancy, the likelihoods
need to be scaled. The scaling parameter η is selected so that
0 < ηLi(1−Lei ) < 0.5 and it can be used as a parameter to
determine the rate of adaptation to new information. When an
empty cell is observed empty the evidence is set to a constant
β, similar to the standard occupancy update. However, since
NDT-OM also considers structures smaller than a single cell,
β should depend on the ratio between the volume of the cell
and the volume covered by previous observations and the
current measurement. However, we do not have an efficient
way to keep track of this ratio. The value of β determines the
level of confidence about one observation; setting the value
too low can cause that a cell that is first observed empty,
but has an object will be interpreted as empty. We therefore
heuristically use a constant value close to 0.5 (β = 0.45) in
all our tests. A cell that is considered occupied, i.e, the cell
where zi falls into, is treated in the same way as in standard
occupancy grid mapping.

Finally, in the occupancy update step we apply occupancy
clamping [20] in order to prevent the map from becoming
overconfident. Occupancy clamping simply limits the log-
odd values of the map between given thresholds.

D. Raycasting using cluster means

The most time consuming operation in occupancy map-
ping is raycasting. The standard approach is to perform
raycasting for all measurements updating all cells along

A
A Current NDT-OM

B Inserted Measurements

C Updated cells

D Not updated in batch-trace

B

C D

Fig. 3. Cluster mean raycasting illustrated. The red ellipse is computed in
the local map from a set of recent measurements. Then the mean value (star)
is used to represent all the measurement points that generated the mean
value. Instead of tracing the six black lines, associated with the original
measurements, we only perform one raycasting operation for the thick red
line, associated with the mean value.

the ray, which means that the map update step depends
on the number of measurements and the distance values
returned by the sensor. In this paper we use the mean
values obtained from a temporary NDT map for raycasting to
substantially reduce the number of raycasting operations. The
basic principle is to first create a local NDT map using the
most recent observations and then perform raycasting using
only the means of Gaussian distributions in the local map.
After the occupancy update, the means and the covariances
of the local map are fused directly into the global map using
RCU. The process is illustrated in Fig. 3, where the red
ellipse represents a cluster obtained from the local map.

During this process, a local map is created at the resolution
of the global map with aligned grids. This ensures that
the resulting covariance and mean estimates are exactly the
same as given by RCU when using directly the original
scan. While raycasting using the mean value, we weight the
observation with the number of points in the cluster, as if
the mean value was observed by all the measurements in the
cluster (the red line in Fig. 3 is used to represent all the black
lines). This maintains the update of occupancy exact for the
occupied cell, however, the raycasting is not exact. The mean
value differs from the original measured points and thus there
is a chance that a slightly different set of cells are selected for
occupancy update. However, as demonstrated in the results
section of this paper, the discrepancy is minimal and does
not introduce inconsistencies in practice, while resulting in
dramatically improved update rates.

IV. EXPERIMENT SETUP

The improvements proposed in this paper are mostly
related to the performance of 3D mapping with NDT-OM in
dynamic environments. Accordingly, we present experiments
in a dynamic environment. The test sequence is recorded at a
basement of Örebro University (referred as “basement” from
now on). The main area of activity is approximately 25m x
25m and covers two rooms connected by a corridor (see Fig.
4c). The test area is not particularly large-scale, but it was
selected because of two reasons: 1) The area is sufficiently
small so that a substantial fraction of the environment can
easily be changed during the experiments and 2) the area is
equipped with an industrial Automatically Guided Vehicle
(AGV) laser reflector system that provides a ground truth
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pose estimate with approximately one centimeter accuracy1.
The test vehicle — a training platform for AGV operators

(visible in Fig. 4a and b) was controlled by the AGV on-
board control system to repeat a given trajectory (see Fig.
4c) throughout the experiment. The data collected during the
experiment includes odometry, ground truth pose from the
navigation system and Velodyne HDL-32 sensor data. The
Velodyne HDL-32 produces approximately 700,000 points
per second and the data was used in our evaluation without
pre-filtering (except for a height cutoff for measurements
higher than 2.1m). All performance evaluations were done
using a single core implementation with Intel(R) Core(TM)
i7-3770K CPU @ 3.50GHz with 16GB of memory.

The experiment started with an empty, static basement
(Fig. 4a). During the experiment four persons spread boxes
around the basement so that gradually the layout of the area
changed substantially (Fig. 4b). At the end of the experiment
the boxes were collected, such that the final state of the
basement was identical to its initial configuration. The total
number of boxes used was forty 0.4m x 0.4m x 0.6m boxes
and one hundred 0.4m x 0.3m x 0.3m boxes. The experiment
lasted 36 minutes and the total trajectory length was 1552m.
Additionally a 300m trajectory was collected in the static
basement to create a ground truth map.

The data set includes dynamic obstacles (people moving
boxes) as well as semi-static structural changes to the en-
vironment. Thus, the conditions are extremely challenging
for mapping and localization algorithms, built upon a static
environment assumption. The vehicle was continuously in
operation and collecting data throughout the experiment.2

V. TESTS AND RESULTS

In the following subsections we analyze the performance
of NDT-OM using the dataset introduced in Sec. IV. A
comparison of accuracy between 3D-NDT representation to
grid-based [18] and triangle mesh based [17] representations
was presented in [14]. Additionally in [10] we evaluated
the covariance update against the one presented in [19].
We therefore restrict the subsequent comparison between
the NDT-OM as proposed in [10] to the improved version
presented in this work. For convenience in this section we
refer to the improved approach as NDT-OMFG (standing
for NDT-OM Fast and Generalized). In addition, a mapping
performance comparison against [18] is provided in context
of mapping with known poses.

A. Mapping with known pose

In this subsection, we evaluate the consistency of the
produced models, when mapping a dynamic environment
given known ground-truth robot poses (obtained from the
reflector localization system). First, we build ground truth
maps for both NDT-OM and NDT-OMFG using the dataset

1Automatically Guided Vehicle (AGV) system from Kollmorgen using
Vehicle Master Controller (VMC 500), and Laser Way reflector based
positioning system.

2A video showing the experiment is available at
http://youtu.be/O7q1v960ZgE

a)

b)

c)

d)

Fig. 4. Experimental setup: a) a view of the basement at the beginning
(and end) of the experiment; b) during the experiment, c) 3D map of the test
area with vehicle trajectory and d) state of the map during the experiment.
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recorded in a static basement environment. Next, we use the
dynamic data set to build a map using different occupancy
clamping limits (that is the threshold for maximum occu-
pancy/emptiness confidence a cell is allowed to reach) and
for NDT-OMFG different values of the covariance adaptation
constant M from Eq. 3. The dynamic environment maps
produced in this manner are compared to the ground-truth
map, using a consistency score defined as:

score =
1∑

i s(c
gt
i , c

gt
i )

∑
i

s(cgti , ci), (9)

where cgti is an observed cell in the ground truth map, ci is
a cell from the evaluated map with same index, and

s(cgti , ci) =


L2(cgti , ci) , if cgti , ci occupied

+1 , if cgti , ci free

−1 , otherwise

, (10)

where L2(cgti , ci) = exp
(
−(µ1−µ2)T (P1+P2)−1(µ1−µ2)

2

)
,

L2 ∈ [0..1], measures the similarity of two Gaussian com-
ponents as the L2-likelihood for normal distributions [13]
and µ1, P1 are the parameters of the normal distribution
in cgti and µ2, P2 in ci. The consistency measure given by
Eq. 9 rewards consistently free cells as well as consistently
occupied cells with similar Gaussian components. Fig. 5
summarizes the results of this test. The consistency value is
computed according to Eq. 9 and the x-axis spans different
occupancy limit values (values from 1 to 5 correspond to
occupancy values 10, 50, 250, 1250 and 6250) scaled for
better visualization. In all cases NDT-OMFG reaches higher
consistency than NDT-OM. In addition, the consistency
peaks at occupancy limit value of 1250 and the larger value
of M results to a better consistency up to M=1e4 (M=1e4
and 1e5 are nearly identical in Fig. 5). This implies that
the adaptation is not needed in order for a map to converge
into stationary state, which is a surprising finding. A further
analysis of the effect of M is shown in Fig. 6. In this
test, range scans are sequentially inserted into the map. At
preselected test points (every 3 meters on the path), the
consistency between the current range scan and the map is
evaluated as:

score =
1

ns

ns∑
i=1

L2(cmi , c
s
i ), (11)

where csi iterates over all cells in the scan model, cmi is
the corresponding cell in the map and ns is the number of
components in the NDT models in the test scan. The averages
of the obtained consistency scores for each approach are
presented in Fig. 6. In this case, clearly, a smaller value of
M and lower occupancy clamping threshold result in better
performance.

The results for the two tests presented above are explained
by the so called stability-plasticity dilemma [2]. In the
first test the goal is to converge to the stationary map,
which requires stability from the map. In the second test, in
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Fig. 5. Convergence to a static map using different occupancy clamping
thresholds and different values of M for NDT-OMFG. The x-axis values
from 1 to 5 correspond to occupancy limit values 10, 50, 250, 1250 and
6250.
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Fig. 6. Dynamic self-test. The consistency is measured as how well the
measurement is explained by the map before adding the measurement into
the map.

order to explain the most recent measurement in dynamic
environment, the map needs a fast adaptation, which is
achieved by setting a low value for both M and occupancy
clamping.

As a conclusion, both the value of M and occupancy limit
affect to the quality of the map. For mapping the stationary
part of the environment the M and occupancy limit should be
set to large values. However, in the presence of semi-dynamic
changes the values should be such that the adaptation rate
corresponds to the timescale of the dynamics.

Finally, Fig. 7 compares the run-time performance of
different approaches. The test measures the time it takes to
add one scan to the map in sequential mapping. Fig. 7 shows
that NDT-OMFG is substantially (more than three times)
faster than NDT-OM. For comparison, the same test was
performed with a 3D occupancy grid at the same resolution
as NDT maps. For testing we used a popular and efficient
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3D occupancy grid implementation, Octomap 3 [18]. Fig. 7
shows that NDT-OMFG is twice as fast as Octomap with the
same resolution in our experiment.

B. Simultaneous mapping and tracking in dynamic environ-
ment

In order to demonstrate the utility of the two variations of
the proposed NDT-OM mapping algorithm, it is important to
evaluate how it performs in one of the most important use
cases — namely as a backbone of a Simultaneous Mapping
and Localization (SLAM) system. In this paper we adopt
a maximum likelihood mapping principle from [15]. The
map is incrementally built by adding new observation into
the model at the most likely pose with respect to the map.
In this paper we make use of the 3D NDT distribution-to-
distribution (D2D) registration method introduced in [13].
The D2D method uses two scans, both represented as local
NDT maps, and uses Newton’s method to find the rigid trans-
formation that minimizes the L2 distance between the scans.
This method has been shown to be an accurate and robust 3D
registration approach [13]. In this paper, we register the NDT
model of each scan directly to an incrementally built global
map. The resulting pose estimate is then used to update the
global map with the new scan. This naive approach does not
include any loop-closing mechanism, but given the size of
our test environment this is not necessary. However, in order
not to confuse it into a full SLAM solution we refer to it as
mapping and tracking.

Fig. 8 illustrates the Absolute Trajectory Error (ATE)4

histograms for a) NDT-OM and b) NDT-OMFG, at a map
resolution of 0.4m. The mean ATE for NDT-OM was 0.025m
and for NDT-OMFG 0.024m. The ATE is computed against
the ground truth pose estimate from the vehicle navigation
system, which should provide us estimates within 1cm error.
In both cases, the accuracy of the pose estimate is excellent

3The version of Octomap used for comparison was 1.4.3 from ros-fuerte-
octomap package.

4ATE implementation from the Rawseed Project
(http://www.rawseeds.org) was used
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Fig. 8. Absolute trajectory error histograms for a) NDT-OM and b) NDT-
OMFG in mapping and tracking trial.

and the difference between the two NDT-OM variations is
small.

Fig. 9 illustrates the performance of the NDT-OMFG-
based approach at different map resolutions. The red curve
shows the mean combined run-time of registration and map
update, while the blue curve shows the mean ATE with
one standard deviation as error bars. Fig. 9 shows that the
accuracy remains at approximately 2.5cm up to a cell size of
0.5m. From 0.65m to 1.1m the accuracy is approximately 5-
6cm and after that the error grows quickly. The computation
time is approximately 200ms for 0.2m resolution and from
0.35m onwards it is under 100ms, which can be considered
as real-time for the 10Hz sensor used in our test-case.

VI. SUMMARY AND CONCLUSION

This paper introduces improvements to the recently
proposed Normal Distribution Transform Occupancy Map
(NDT-OM) [10] approach, that allows for more efficient map
updates in dynamic environments. We propose an adaptation
strategy for updating the NDT-OM Gaussian components,
which can be used to tune the plasticity-stability properties
of the map. Furthermore, we introduce an occupancy update
step that also considers the estimated shape inside each map
cell. Finally, we propose a raycasting strategy for NDT-
OM, based on efficient cluster mean raycasting. Together,
these contributions were shown to not only improve the
consistency of the NDT-OM in highly dynamic environment,
but also result in more than three times faster map updates
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Fig. 9. Accuracy and processing time comparison with respect to the
resolution.

compared to previous results. We also show that with the
proposed improvements NDT-OM update rates outperform
those of an efficient implementation of 3D occupancy grids
even at the same resolution — at the same time NDT-OM
usually works well at substantially lower resolutions than
occupancy grids [11]. Finally, we demonstrate that NDT-
OM can be used to obtain accurate 3D maps in real-time
and despite high-level of dynamics in the environment. As
a conclusion, the proposed improvements to the NDT-OM
algorithm make it fully capable of producing accurate and
consistent maps in environments that feature various degrees
of dynamics.

All the results of this paper will be integrated as a part of
future release of the oru-ros-pkg5 open source package.
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