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Abstract—1In this paper, we present a novel method for
surface reconstruction with a low execution time for segmenting
and representing scattered scenes accurately. The surfaces are
described in a memory-efficient fashion as polynomial functions
and polygons. Segmentation and parameter determination is
done in one pass by using a quadtree on ordered point clouds,
which results in a complexity of O(logn).

This paper includes an evaluation with respect to recon-
struction accuracy, segmentation precision, execution time and
compression ratio of everyday indoor scenes. Our surface recon-
struction algorithm outperforms comparable approaches with
respect to execution time and accuracy. More importantly, the
new technique handles curved shapes accurately and enables
complex tasks like 3D mapping for mobile robots in an unknown
environment.

I. INTRODUCTION

Recently the mobile computing segment has expanded
significantly as a consequence of the smart phone boom. Also
mobile devices are steadily extended with new sensors like
cameras, gyroscopes and in future 3D cameras. The combi-
nation of mobility and sensors enable new applications like
indoor mapping and indoor navigation. As mobile devices
have a low power consumption they are predestined to be
used in mobile robotics.

Yet, the computational power of mobile devices is quite
limited, whereas many 3D mapping algorithms have exces-
sive computational and storage requirements. For example
KinectFusion [1] showed a convincing implementation of 3D
indoor mapping that was achieved by high computational
effort. The enormous demands on the system stem from
the complex and discrete representation of the surfaces. To
enable efficient 3D applications like mapping on mobile
robots, it is necessary to use a compact and efficient surface
representation.

In this paper, we introduce a novel approach for surface
reconstruction of curved surfaces, including segmentation.
The surface model is described as polynomial function which
is obtained by least-squares regression within a quadtree
(Fig. 2). After region growing, the outlines of the segments
are converted to polygons based on a binary pattern similar
to [2]. Hence, each surface segment is described in a memory
efficient fashion by its hull and a polynomial function
(Fig. 1). The main contributions are:
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Fig. 1: Surface reconstruction of a bin from segmentation to
parametric description (n = 2)

a) a segmentation with low execution time through an
efficient data structure,

b) general and accurate representation of curved surfaces
with polynomial functions,

¢) and a memory efficient storage through hull polygons.

In the first half of Section III, the surface model and
segmentation is outlined. The second half of Section III
describes the polygon extraction. Our approach is compared
with RANSAC, Marching Cubes, Multi Plane, JPEG and
PNG in Section IV. We conclude in Section V with a
summary and an outlook for future work.

II. PREVIOUS WORK

The first step of surface reconstruction is to find segments
which describe different surfaces. Segmentation is generally
divided into edge-based and region-based approaches. E.g.
Sappa and Devy [3] use the first one to extract boundary
points of segments through jump edges. Edge-based segmen-
tation fails to recognize smooth transitions between surfaces
while region-based approaches overcome this limitation by
combining segmentation and model fitting in one step.

Region-based segmentations like [4], [5] use normals at
each point as region growing criterion for locally planar
patches. As Holz et al. [6] state normal estimation on a
complete point cloud can be quite expensive. Hence, our
approach directly compares the depth values with the model
of curved surfaces and avoids normal computation.

Morwald et al. [5] showed an approach to reconstruct
curved geometries with NURBS. First the point cloud is
over-segmented into planar patches. Then the planes are
merged together and represented by NURBS [7] which rep-
resent curved surfaces accurately. In contrast, the proposed
algorithm segments and determines curved surfaces in one
pass.
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Fig. 2: Pipeline for Quadtree-based Polynomial Polygon
Fitting on range images

Another approach is to incorporate color information from
RGB-D sensors like Kinect. Erdogan et al. [8] combine color
and depth information into one weighting function for a
graph-based approach. Furthermore Erdogan et al. show that
least squares fitting for planar patches on the 1D domain
is more robust than on 3D points by adapting all three
dimensions. Therefore our surfaces also represent the 1D
depth value of the depth image in dependence of the lasting
coordinates.

In contrast to the presented surface reconstruction methods
RANSAC [9] fits an initial model to the point cloud with-
out further segmentation beforehand. Random samples are
selected from a point cloud to retrieve a first model, which
can be verified by the remaining data. Repeating those steps,
the input cloud is segmented into different surfaces.

Besides of planes and NURBS triangles are a common
representation of surfaces in computer graphics [10]. One
way to extract triangles from a segmented point cloud is
Marching Cubes [2]. It divides the covered space into cubes
and converts local surface intersections into binary patterns.
The binary patterns are replaced through a corresponding
triangle list. The idea of binary patterns is found again in
this work for polygon extraction from border points.

III. METHODOLOGY

In indoor environments, a robot encounters diverse scenes
with a plethora of different geometries. Most applications
in service robotics need a representation which describes
everyday geometries, e.g. for grasping, collision avoidance
and object recognition. Our approach represents point clouds
through curved surfaces including the outline and holes. The
outline and holes are represented as polygons, which are
generated from the segments. The surface model describes
the depth value in dependence of the remaining coordinates.

A. Segmentation

A segment is a region or set of points which can be
described through the same parameterized model. A model
specifying the depth value z of each point from a point cloud
can be stated as function d{x,y) of z and y. A general
representation of an unknown function is given by a Taylor
series which is expressed as polynomial function with one

Fig. 3: Quadtree-based representation of a segment (blue)

parameter for each term. The accurate representation of a
segment through a Taylor series depends on the degree n of d
and how well the point set can be reproduced by the function.
Although an exact fitting is desirable, system immanent noise
should be eliminated through segmentation. A Taylor series
up to the linear term is sufficient for planes; curved objects
need a higher degree for the approximation.

The polynomial function d,, of degree n with the param-
eters p is stated as follows:

n

2
do(,y) =2=Y Zp(j+zg 2’y =pa
i=0 j=0

The parameters p for the function d,, are unknown, but
the output and the input of z; = d,,(x;,y;) are given by the
point cloud. The measurement z; is the depth at the world
coordinate z; and y,;, which is given from the depth image
for point i. Therefore, the parameters p can be estimated by
linear least-squares fitting [11].

R= Z (dn (25, y5) — 21)°

Minimizing the residuals R leads to:

argminz (pTaZ- — zi)Q (D)
p .

K3

The parameter p is solved by linear regression. For exam-
ple singular value decomposition [12] or QR decomposition
can be used. For our implementation we used singular value
decomposition with respect to a lower execution time.

Equation 1 is minimized to formulate an additive expres-
sion for parameter determination:

T T
E ;2 =P E a;a;
i

K3

By use of the additive behavior of the contributing values
a;z; and aiaiT, the parameter only has to be determined
once for all points of the segment. It is necessary that the
summarized points are part of the same model. Otherwise
the result will not be correct.
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B. Quadtree Representation

The contributing values a;z; and aiaiT, which are needed
to determine the parameters of the model, are represented by
a quadtree (Fig. 3) in an efficient fashion. The point set of a
segment consists of neighboring points from the depth image,
which can therefore be summarized beforehand through their
local proximity without consideration of different segments.
Segmentation is done by a top-down strategy within the
tree. For parameter determination only the summarized nodes
have to be evaluated instead of all single points.

Each point is a leaf of the quadtree. Four neighboring
points are quadrants of the parent node. Each node has four
children and contains the sums of > az and > aa’ from
the lower nodes or leaves. The values > az and > aal of
the leaves are given by the corresponding points.

After building the quadtree, segmentation starts with the
selection of a random seed node. We used every second node
starting from top left corner. From the starting point, the
segment grows and the parameter model is refined until a
termination condition occurs.

Because the seed node should describe the model of the
segment accurately, the starting node has to be completely
part of the segment which is true for all leaves. Yet, a single
point is not sufficient as starting node. To ensure that the
seeding node is completely part of one single surface it is
required that the surrounding nodes are also a valid part of
the segment. For an accurate approximation of the model the
more points the better the result. Thus, the starting node is
selected for our application at the 3rd and 4th level of the
quadtree, which have 42 and 43 leaves.

The termination condition states if another node is also
a part of the model. The condition is a combination of
the allowed residuals (2) of the nodes and edge-based (3)
criterion.

observed depth 2

e N
estimated depth 1
~=
pla  — |01 (a2)
2
€1 = 2 (2)

For the residuals e; ; the averaged z value of the node
and its four children i are individually compared against
the approximated model p with m leaves. If all e;q lie
within 1.50 (86.6% of valid points) of the expected standard
deviation o of the depth image, the node is valid.
’ (3)

For the edge based criterion the difference between the
maximum 2max and minimum depth value zp,i, within the
node is checked against the expected difference of the camera
error model and the local gradient from the model. This value
should lie within 30 (99.7% of the cases). Both factors of &
are chosen thresholds and should be adjusted in dependence
of the application and sensor.

(62)2 = (Zmax - Zmin)
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Fig. 4: Direction estimation of neighboring points

Segment growing within the quadtree is done on the same
level until no node fulfils the validation rule. After one
full pass, region growing is repeated, because the model
was updated and refined in the first run (Fig. 2). Nodes
which could not be validated in a second pass are marked as
border nodes. Border nodes are split up to their children and
processed further on the lower level to refine the segment. On
lower levels the growth is limited (in our case to 9 steps from
the initial parent node) to prevent high computational costs
in some special cases (see IV-G). If the leaves are reached
and a leaf is not valid part of the model, it is a border point of
the segment, and therefore part of the outline of the segment.

C. Polygon-based Border Representation

After the segmentation step the model is described through
its parameters and its border points, containing the hull and
holes. The border points are converted to a polygon for a
memory-efficient representation. A polygon is the approxi-
mation of neighbouring points by a closed path composed
of straight lines. The ordered structure of the point cloud
is used to find neighbouring border points. In an image a
line is sampled with pixels directed into a uniform direction.
Therefore, any changes in direction introduce a new line
segment of the polygon if it is not part of aliasing.

For each point a direction is assigned which is given
through its neighboring border point as shown in Figure 4a.
The direction of a line is the differential equation which is
constant for linear equations.

f@)y=azx+b
f@)=0

The second discrete derivation of the line f” is equal to the
direction drift of the sampled line. On the depth image the
direction drift of successive pixels is the Manhattan distance
between the expected position of the next point from the
last direction, and the actual observed position. Because of
quantization and noise the local direction drift is usually not
0. However, integrating the derivative yields [ f” = 0 for
an ideal line. For locally observed data an error A¢ is given
from starting point s to the endpoint e of a line segment:

Ae:/ef”
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Fig. 5: Line extraction (blue) from border points (black)

If A¢ exceeds a given threshold, the line segment cannot
be expressed by a linear equation anymore and leads to a
new line of the polygon.

In Figure 4a the direction estimation is shown. If there
is more than one neighboring point, the leftmost in relation
to the last direction is taken (Fig. 4b). This ensures that all
points are passed in clock-wise direction. After visiting a
point it is removed from the border point list and will not
be revisited again. An example is given in Figure 5.

An initial direction for clock-wise circulation has to be
set for the starting point, which has always two neighbors
for a closed path. As starting point the topmost and leftmost
is selected, which is followed by the next neighboring point
on the right side. This enforces a clock-wise selection of the
next point search.

D. Implementation of Polygon Fitting

A point in a binary 2D image has eight neighbors, shown
in Figure 4c. The binary occupancy map of the neighbors
is encoded in an 8-bit integer which can be used as index
for a lookup table. The combination of the lookup value of
the last point and the actual point yields — beside direction —
the direction drift. With a previously generated lookup table
with a 16-bit index the polygon extraction has a complexity
of O(n) with n border points.

IV. RESULTS

Our approach is evaluated with regard to execution speed,
reconstruction accuracy, segmentation precision and com-
pression ratio in comparison to RANSAC, Marching Cubes
with a “greedy” voxelization algorithm, an organized multi
plane approach (Multi Plane), JPEG and PNG. The test
system was equipped with an 17-2600, at which only a single
core was used, and 4 GB RAM. The algorithm was integrated
in ROS and is using the PCL [13]. The results for the whole
pipeline were averaged over all frames and give an insight
into potential fields of application.

TABLE I: Averaged execution time for algorithms and pro-
cessing steps of our approach

degree quadtree  region growing  polygon sum
QPPF n=1 8.12 ms 10.6 ms 1.70 ms 20.4 ms
QPPF n=2 19.8 ms 13.5 ms 1.80 ms 35.0 ms
QPPF n=3 94.5 ms 25.5 ms 10.0 ms | 130.0 ms
QPPF n=4 101 ms 37.4 ms 18.9 ms 157.3 ms
Multi Plane - - - 90.0 ms
RANSAC - - - 412 s
Marching Cubes - - - 2.00 s

A. Scenes

As datasets we used the publicly available TPA dataset!
and TOCS dataset’. Both were captured with an Asus Xtion
Pro Live with a resolution of 640 x 480. The IPA dataset
contains eight real world scenes from various cluttered
indoor environments from far and close distances (Fig. 6).
In addition the IPA dataset contains 36 simulated scenes
which were generated with Blensor [14]. They contain labels
for continuous surfaces like planes, spheres, cylinders and
NURBS in different sizes, distances and viewing angles. The
labeled and simulated dataset contains noise-free - but with
disparity error - and noisy point clouds which were both used
as groundtruth to evaluate the segmentation precision. Every
10th frame (213 point clouds) of the TOCS dataset was used
with an all-round scenery, from table scenes to far walls.

B. Parameter Settings

The camera error model is essential to distinguish between
edges and noise. For the datasets we used the error model
according to [15], which expresses the standard deviation o
in dependence of the distance z of the measurement:

o=1.425 x 107322

For polygon extraction from the border points, a direction
drift threshold of 3 was used, which results in a very precise
substitute for the border points.

For RANSAC we used the implementation from PCL
with planes, spheres and cylinders with a distance threshold
of 3em. Marching Cubes was also used from PCL with
the parameters of 0.025 for the leaf size and 0.02 for the
ISO level. Multi Plane is a flood fill approach from PCL
which is similar to [6]. The used parameters are 2.5° for
the angular threshold, 0.001 for the maximum curvature, a
distance threshold of 1cm and a minimum cluster size of
100 points.

C. Execution Time

The execution time was measured for each step, namely
building the quadtree, segmentation and polygon extraction,
on the above mentioned computer system. As Table I shows
surface reconstruction for second degree polynomials is pos-
sible with over 28 Hz. The most expensive step for non-linear
polynomials is building the quadtree with around 85% as a

Uhttps://github.com/ipa320/cob_test_dataset
Zhttp://svn.pointclouds.org/data/Toyota
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Fig. 6: Different representations of a point cloud with second degree (kitchen, office, table)

result of the growing number of data with increasing degree.
Yet, this step can be parallelized well as it is straightforward
and does not depend on other results.

Multi Plane shows also a low execution time. In com-
parison, RANSAC has at least a linear complexity with
O(I(E + n)) (number of iteration I, complexity for initial
model estimation E and number of points n). The complexity
of Marching Cubes depends on the number of cubes m, as
the complexity is stated as O(mlogn). With the evaluated
configuration both approaches do not reach 1 Hz.

D. Reconstruction Accuracy

Accuracy is stated as minimal distance between the model
and the observed point. The distance between a point and a
polynomial manifold in n-dimensional space is not trivial and
there is no straightforward mathematical solution. Therefore
we used Levenberg-Marquardt optimization to iteratively
find the minimal distance between the surface and a point
(0, Yo, z0) with the following distance model:

F(2,y) = (x0 — 2)* + (yo — 1)° + (20 — d(, 1))

oF
<8m> A
or
dy

The accuracy results are shown in Figure 7 and Table II.
For further use second degree is recommend to represent
curved shapes while retaining a high performance regarding
accuracy, coverage and execution time. With the stated
parameter settings Multi Plane reaches also a high accuracy.
But the trade-off is a low coverage.

argmin || F(x,y) +
@y

30
25 |
20 |

€

E 15"

10}

Fig. 7: Averaged accuracy results for evaluated datasets

(boxplot)

TABLE II: Averaged distance between point cloud and
reconstructed surfaces for evaluated datasets

method median [mm] | mean [mm] | variance [mm] | coverage [%]
QPPF n=1 5.8010 59118 0.0095 95.3
QPPF n=2 5.2395 5.7108 0.0127 97.1
QPPF n=3 5.5545 6.1075 1.1138 93.2
QPPF n=4 5.9705 6.4237 11.055 88.6
RANSAC 11.829 10.896 0.1051 91.6
Multi Plane 7.2755 24.736 14.425 78.9
March. Cubes 8.1285 9.1998 0.0784 76.9
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TABLE III: Segmentation quality with Fos (left) and Fy
(right) in percent

TABLE IV: Compression ratio in relation to original size
(point cloud, bitmap)

Cases of failure are especially surfaces which are nearly
parallel to the viewing direction. Those surfaces are sampled
with a low resolution which induces an unstable model fitting
and an increased deviation.

In addition to accuracy, the number of valid points of the
input cloud is compared against the reconstructed points to
show that most surfaces in indoor environments can be rep-
resented by our model. Third and fourth degree have a lower
coverage than first and second degree. The combination of
the lower coverage and good accuracy results with increasing
degree indicates over-fitting of noisy or incomplete surfaces
which limits region growing.

E. Segmentation Precision

In order to measure the segmentation precision, the appli-
cation is crucial for labeling of the groundtruth. Our desired
application is 3D mapping of environments which consist of
continuous surfaces. Therefore, different surfaces are labeled
as separated segments in the groundtruth.

The precision of the segmentation was evaluated by
comparing the computed segments with the groundtruth to
provide a measure for under- and over-segmentation. The
segments with the best match are true positives Ny, on point
basis while the incorrect segmented points are false positives
Niyise- With the number of all points Ny over-segmentation
Fos and under-segmentation Fy is defined as:

Nire
Fos=1-—
Nall
Nfalse
F =
® " Na

In Table III over- and under-segmentation is stated. Low
values are preferable. RANSAC shows in general better
results for planes in the used dataset because it merges
divided segments which are handled as separated surfaces
in the proposed approach. For more complex surfaces like
spheres, cylinders and free form surfaces RANSAC and our
surface model with degree 1 show similar results. From
second degree on, even complex surfaces can be represented
precisely. Multi Plane handles noise-free data well while
noisy point clouds lead to over-segmentation.

F. Compression Ratio

A good compression is especially needed for point cloud
transmission with a limited bandwidth like mobile Internet.
The compression ratio is stated for all evaluated surface

method planes cylinders sphere NURBS other method compression ratio [%] | size [kB] | orig. size [kB]
QPPF n=1 |16.5 16.2|48.0 47.7|79.3 78.2|58.1 57.7|33.6 30.8 PNG 7.00 63.0 901
QPPF n=2 |123 119| 95 93| 72 7.0( 98 95| 89 6.4 JPEG 4.47 40.2 901
QPPFn=3 |17.2 168| 43 42| 87 86| 82 82100 8.0 Marching Cubes 57.8 2080 3600
QPPF n=4 |14.0 137| 66 65| 70 6.9|120 11.9| 90 6.8 RANSAC 23.2 837 3600
RANSAC 9.2 5.1|41.6 32.7|66.6 549 (522 43.8(504 29.6 Multi Plane 2.28 82.1 3600
Multi Plane | 44.0 35.4(26.2 9.1|36.8 16.8|53.8 40.3|65.8 58.6 QPPF n=1 0.017 0.63 3600
QPPF n=2 0.028 1.0 3600
QPPF n=3 0.020 0.70 3600
QPPF n=4 0.024 0.85 3600

Fig. 8: Narrow passage between gray and red segment is
divided

reconstruction methods and two image compression methods
(JPEG and PNG). For the surface reconstruction algorithms
the resulting memory usage is compared with the original
point cloud. PNG and JPEG [16] are lossless and lossy image
compression algorithms which are applied and compared
with the size of the disparity image.

The input point cloud had a resolution of 640 x 480 pixels
with a size of 3600 kB. In Table IV the compression ratio
in relation to the size of the input point cloud or rather the
size of the disparity image saved as bitmap is stated. The
resulting file size of our surface reconstruction is by factor
50 smaller than those of the image compression algorithms.
Polygon extraction was not performed for RANSAC. Other-
wise similar compression results to our approach could be
expected. Especially for teleoperation, a bandwidth load of
around 32kBs~! at 30Hz is preferable over a full point
cloud transport with 105 MBs~1.

G. Discussion

The over-segmentation of planes in Figure 8 is apparent.
It is a result of the limited growth in the lower levels of
the quadtree. Narrow passages prevent further spreading and
region growing stops here. A possible solution is an addi-
tional optimization step which merges similar neighbouring
segments. Merging is not necessarily done as part of the
surface reconstruction because following applications like
mapping either have no need for optimized surfaces or use
their own merging strategy.

One drawback of region growing methods is the depen-
dence of the result from the seeding node. By means of the
quadtree the dependence is reduced because the first nodes
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TABLE V: Standard deviation of segmentation precision
with random seed nodes (30 iterations) with std(Fos) (left)
and std(F,) (right) in percent

method planes cylinders sphere NURBS other

QPPF n=1| 55 134| 09 13| 09 17| 24 22| 40 3.6
QPPFn=2| 6.8 13.0| 13 11| 05 05| 23 20| 25 22
QPPF n=3|10.7 132| 73 72| 73 74| 92 89| 83 82
QPPF n=4 | 10.8 144|123 11.5(123 11.7|145 13.6|11.6 10.2

already contain many points of the segment. We used random
seed nodes and evaluated the simulated dataset 30 times for
each degree. Table V shows the standard deviation of Fyg
and Fy; for random seed nodes. In general, the segmentation
precision is stable for first and second degree. However,
smooth transitions of surfaces like in the plane dataset are
difficult to distinguish. Therefore, segmentation precision of
planes shows an increased deviation. Higher degree tends
to overfitting. Traditional region growing methods start at a
single point and are therefore more prone to noise.

V. CONCLUSIONS

This paper presented a new approach for surface recon-
struction and segmentation for ordered point clouds. By
introducing a novel data representation based on a quadtree,
both — segmentation and surface reconstruction — are ac-
celerated to meet real-time requirements. In addition, our
approach compresses the input data to a compact repre-
sentation while filtering noise and clutter. Therefore, our
approach opens up new application areas in mobile robotics
and consumer markets of mobile devices by representing
unknown environments by parametric surfaces.

Future work will integrate color information to extract
boundaries with greater robustness. In the next step, we will
incorporate curved surfaces and 3D mapping applications to
enable indoor navigation on mobile devices.
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