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Abstract— In this paper, we present a novel method for
surface reconstruction with a low execution time for segmenting
and representing scattered scenes accurately. The surfaces are
described in a memory-efficient fashion as polynomial functions
and polygons. Segmentation and parameter determination is
done in one pass by using a quadtree on ordered point clouds,
which results in a complexity of O(log n).

This paper includes an evaluation with respect to recon-
struction accuracy, segmentation precision, execution time and
compression ratio of everyday indoor scenes. Our surface recon-
struction algorithm outperforms comparable approaches with
respect to execution time and accuracy. More importantly, the
new technique handles curved shapes accurately and enables
complex tasks like 3D mapping for mobile robots in an unknown
environment.

I. INTRODUCTION

Recently the mobile computing segment has expanded

significantly as a consequence of the smart phone boom. Also

mobile devices are steadily extended with new sensors like

cameras, gyroscopes and in future 3D cameras. The combi-

nation of mobility and sensors enable new applications like

indoor mapping and indoor navigation. As mobile devices

have a low power consumption they are predestined to be

used in mobile robotics.

Yet, the computational power of mobile devices is quite

limited, whereas many 3D mapping algorithms have exces-

sive computational and storage requirements. For example

KinectFusion [1] showed a convincing implementation of 3D

indoor mapping that was achieved by high computational

effort. The enormous demands on the system stem from

the complex and discrete representation of the surfaces. To

enable efficient 3D applications like mapping on mobile

robots, it is necessary to use a compact and efficient surface

representation.

In this paper, we introduce a novel approach for surface

reconstruction of curved surfaces, including segmentation.

The surface model is described as polynomial function which

is obtained by least-squares regression within a quadtree

(Fig. 2). After region growing, the outlines of the segments

are converted to polygons based on a binary pattern similar

to [2]. Hence, each surface segment is described in a memory

efficient fashion by its hull and a polynomial function

(Fig. 1). The main contributions are:
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(a) Segmentation (b) Labeled input
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Fig. 1: Surface reconstruction of a bin from segmentation to

parametric description (n = 2)

a) a segmentation with low execution time through an

efficient data structure,

b) general and accurate representation of curved surfaces

with polynomial functions,

c) and a memory efficient storage through hull polygons.

In the first half of Section III, the surface model and

segmentation is outlined. The second half of Section III

describes the polygon extraction. Our approach is compared

with RANSAC, Marching Cubes, Multi Plane, JPEG and

PNG in Section IV. We conclude in Section V with a

summary and an outlook for future work.

II. PREVIOUS WORK

The first step of surface reconstruction is to find segments

which describe different surfaces. Segmentation is generally

divided into edge-based and region-based approaches. E.g.

Sappa and Devy [3] use the first one to extract boundary

points of segments through jump edges. Edge-based segmen-

tation fails to recognize smooth transitions between surfaces

while region-based approaches overcome this limitation by

combining segmentation and model fitting in one step.

Region-based segmentations like [4], [5] use normals at

each point as region growing criterion for locally planar

patches. As Holz et al. [6] state normal estimation on a

complete point cloud can be quite expensive. Hence, our

approach directly compares the depth values with the model

of curved surfaces and avoids normal computation.

Mörwald et al. [5] showed an approach to reconstruct

curved geometries with NURBS. First the point cloud is

over-segmented into planar patches. Then the planes are

merged together and represented by NURBS [7] which rep-

resent curved surfaces accurately. In contrast, the proposed

algorithm segments and determines curved surfaces in one

pass.
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(a) Input point cloud (b) Labeled input point
cloud

(c) Reconstructed and
labeled point cloud

(d) Reconstructed polygons

Fig. 6: Different representations of a point cloud with second degree (kitchen, office, table)

result of the growing number of data with increasing degree.

Yet, this step can be parallelized well as it is straightforward

and does not depend on other results.

Multi Plane shows also a low execution time. In com-

parison, RANSAC has at least a linear complexity with

O(I(E + n)) (number of iteration I , complexity for initial

model estimation E and number of points n). The complexity

of Marching Cubes depends on the number of cubes m, as

the complexity is stated as O(m log n). With the evaluated

configuration both approaches do not reach 1Hz.

D. Reconstruction Accuracy

Accuracy is stated as minimal distance between the model

and the observed point. The distance between a point and a

polynomial manifold in n-dimensional space is not trivial and

there is no straightforward mathematical solution. Therefore

we used Levenberg-Marquardt optimization to iteratively

find the minimal distance between the surface and a point

(x0, y0, z0) with the following distance model:

F (x, y) = (x0 − x)
2
+ (y0 − y)

2
+ (z0 − d(x, y))

2
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The accuracy results are shown in Figure 7 and Table II.

For further use second degree is recommend to represent

curved shapes while retaining a high performance regarding

accuracy, coverage and execution time. With the stated

parameter settings Multi Plane reaches also a high accuracy.

But the trade-off is a low coverage.
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Fig. 7: Averaged accuracy results for evaluated datasets

(boxplot)

TABLE II: Averaged distance between point cloud and

reconstructed surfaces for evaluated datasets

method median [mm] mean [mm] variance [mm] coverage [%]

QPPF n=1 5.8010 5.9118 0.0095 95.3

QPPF n=2 5.2395 5.7108 0.0127 97.1

QPPF n=3 5.5545 6.1075 1.1138 93.2

QPPF n=4 5.9705 6.4237 11.055 88.6

RANSAC 11.829 10.896 0.1051 91.6

Multi Plane 7.2755 24.736 14.425 78.9

March. Cubes 8.1285 9.1998 0.0784 76.9
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TABLE III: Segmentation quality with Fos (left) and Fus

(right) in percent

method planes cylinders sphere NURBS other

QPPF n=1 16.5 16.2 48.0 47.7 79.3 78.2 58.1 57.7 33.6 30.8

QPPF n=2 12.3 11.9 9.5 9.3 7.2 7.0 9.8 9.5 8.9 6.4

QPPF n=3 17.2 16.8 4.3 4.2 8.7 8.6 8.2 8.2 10.0 8.0

QPPF n=4 14.0 13.7 6.6 6.5 7.0 6.9 12.0 11.9 9.0 6.8

RANSAC 9.2 5.1 41.6 32.7 66.6 54.9 52.2 43.8 50.4 29.6

Multi Plane 44.0 35.4 26.2 9.1 36.8 16.8 53.8 40.3 65.8 58.6

Cases of failure are especially surfaces which are nearly

parallel to the viewing direction. Those surfaces are sampled

with a low resolution which induces an unstable model fitting

and an increased deviation.

In addition to accuracy, the number of valid points of the

input cloud is compared against the reconstructed points to

show that most surfaces in indoor environments can be rep-

resented by our model. Third and fourth degree have a lower

coverage than first and second degree. The combination of

the lower coverage and good accuracy results with increasing

degree indicates over-fitting of noisy or incomplete surfaces

which limits region growing.

E. Segmentation Precision

In order to measure the segmentation precision, the appli-

cation is crucial for labeling of the groundtruth. Our desired

application is 3D mapping of environments which consist of

continuous surfaces. Therefore, different surfaces are labeled

as separated segments in the groundtruth.

The precision of the segmentation was evaluated by

comparing the computed segments with the groundtruth to

provide a measure for under- and over-segmentation. The

segments with the best match are true positives Ntrue on point

basis while the incorrect segmented points are false positives

Nfalse. With the number of all points Nall over-segmentation

Fos and under-segmentation Fus is defined as:

Fos = 1−
Ntrue

Nall

Fus =
Nfalse

Nall

In Table III over- and under-segmentation is stated. Low

values are preferable. RANSAC shows in general better

results for planes in the used dataset because it merges

divided segments which are handled as separated surfaces

in the proposed approach. For more complex surfaces like

spheres, cylinders and free form surfaces RANSAC and our

surface model with degree 1 show similar results. From

second degree on, even complex surfaces can be represented

precisely. Multi Plane handles noise-free data well while

noisy point clouds lead to over-segmentation.

F. Compression Ratio

A good compression is especially needed for point cloud

transmission with a limited bandwidth like mobile Internet.

The compression ratio is stated for all evaluated surface

TABLE IV: Compression ratio in relation to original size

(point cloud, bitmap)

method compression ratio [%] size [kB] orig. size [kB]

PNG 7.00 63.0 901

JPEG 4.47 40.2 901

Marching Cubes 57.8 2080 3600

RANSAC 23.2 837 3600

Multi Plane 2.28 82.1 3600

QPPF n=1 0.017 0.63 3600

QPPF n=2 0.028 1.0 3600

QPPF n=3 0.020 0.70 3600

QPPF n=4 0.024 0.85 3600

Fig. 8: Narrow passage between gray and red segment is

divided

reconstruction methods and two image compression methods

(JPEG and PNG). For the surface reconstruction algorithms

the resulting memory usage is compared with the original

point cloud. PNG and JPEG [16] are lossless and lossy image

compression algorithms which are applied and compared

with the size of the disparity image.

The input point cloud had a resolution of 640×480 pixels

with a size of 3600 kB. In Table IV the compression ratio

in relation to the size of the input point cloud or rather the

size of the disparity image saved as bitmap is stated. The

resulting file size of our surface reconstruction is by factor

50 smaller than those of the image compression algorithms.

Polygon extraction was not performed for RANSAC. Other-

wise similar compression results to our approach could be

expected. Especially for teleoperation, a bandwidth load of

around 32 kB s−1 at 30Hz is preferable over a full point

cloud transport with 105MB s−1.

G. Discussion

The over-segmentation of planes in Figure 8 is apparent.

It is a result of the limited growth in the lower levels of

the quadtree. Narrow passages prevent further spreading and

region growing stops here. A possible solution is an addi-

tional optimization step which merges similar neighbouring

segments. Merging is not necessarily done as part of the

surface reconstruction because following applications like

mapping either have no need for optimized surfaces or use

their own merging strategy.

One drawback of region growing methods is the depen-

dence of the result from the seeding node. By means of the

quadtree the dependence is reduced because the first nodes
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TABLE V: Standard deviation of segmentation precision

with random seed nodes (30 iterations) with std(Fos) (left)

and std(Fus) (right) in percent

method planes cylinders sphere NURBS other

QPPF n=1 5.5 13.4 0.9 1.3 0.9 1.7 2.4 2.2 4.0 3.6

QPPF n=2 6.8 13.0 1.3 1.1 0.5 0.5 2.3 2.0 2.5 2.2

QPPF n=3 10.7 13.2 7.3 7.2 7.3 7.4 9.2 8.9 8.3 8.2

QPPF n=4 10.8 14.4 12.3 11.5 12.3 11.7 14.5 13.6 11.6 10.2

already contain many points of the segment. We used random

seed nodes and evaluated the simulated dataset 30 times for

each degree. Table V shows the standard deviation of Fos

and Fus for random seed nodes. In general, the segmentation

precision is stable for first and second degree. However,

smooth transitions of surfaces like in the plane dataset are

difficult to distinguish. Therefore, segmentation precision of

planes shows an increased deviation. Higher degree tends

to overfitting. Traditional region growing methods start at a

single point and are therefore more prone to noise.

V. CONCLUSIONS

This paper presented a new approach for surface recon-

struction and segmentation for ordered point clouds. By

introducing a novel data representation based on a quadtree,

both – segmentation and surface reconstruction – are ac-

celerated to meet real-time requirements. In addition, our

approach compresses the input data to a compact repre-

sentation while filtering noise and clutter. Therefore, our

approach opens up new application areas in mobile robotics

and consumer markets of mobile devices by representing

unknown environments by parametric surfaces.

Future work will integrate color information to extract

boundaries with greater robustness. In the next step, we will

incorporate curved surfaces and 3D mapping applications to

enable indoor navigation on mobile devices.
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