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Abstract—In this paper, an adaptive trajectory tracking
controller for quadrotor MAVs is presented. The controller
exploits the common assumption of a faster orientation dy-
namics w.r.t. the translational one, and is able to asymptotically
compensate for parametric uncertainties (e.g., displaced center
of mass), as well as external disturbances (e.g., wind). The good
performance of the proposed controller is then demonstrated
by means of an extensive experimental evaluation performed
with a commercially-available quadrotor MAV.

I. INTRODUCTION

Over the last years the robotics community experienced

a substantial increase of interest in the Micro Aerial Ve-

hicles (MAVs) field. Among the numerous tasks attainable

with MAV systems, one can list aerial mapping, air pollu-

tion monitoring, traffic management, inspection of damaged

buildings and dangerous sites, and many agricultural appli-

cations such as pesticide spraying. Furthermore, commercial

services based on MAV technology recently appeared in the

market [1]. In fact, when compared to traditional fixed-wing

aircrafts, MAVs have several advantages, such as the ability

to take-off and land vertically, to hover above any target, and

to navigate in indoor or highly cluttered environments.

Development of effective flight controllers and motion

planning strategies has been one of the primary objectives

in MAV research, see e.g. [2], [3]. In most of these works,

the experimental validation has been performed by exploiting

onboard IMUs and external motion capture systems in order

to obtain an accurate and fast estimation of the MAV state.

In parallel, another fundamental research topic has been

addressed over the last years: the estimation of the MAV

position/orientation by only resorting to onboard sensors

and computation capabilities, see, e.g., [4], [5], [6]. MAVs

have also been proven useful for many tasks involving

physical interaction such as cooperative transportation [7]

and aerial grasping [8]. Cooperative sensing and multi-MAV

coordination have also been addressed in the literature [9],

[10], [11], [12].

Quadrotors, i.e., MAVs equipped with four aligned copla-

nar propellers, have been the most popular MAVs in the

last decade. In the overview offered by [13], [14] the me-

chanical model of the quadrotor is derived assuming perfect

geometrical inertial symmetry. This assumption allows for a

simpler design of the controllers, such as, for instance, by
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using LQR techniques. Additional control strategies based

on sliding mode and backstepping techniques, and still

exploiting the above-mentioned assumption, have been also

presented [15], [16]. Being the quadrotor an underactuated

mechanical system (only four control inputs are available

despite the six dimensions of its configuration), a common

strategy is to control its 3D position and yaw angle, i.e.,

quantities know to be flat outputs for the system [17]. The

addition of tilting propellers to the classical quadrotor model

has nevertheless been recently explored in [18] in order to

increase actuation capabilities.

Robustness of the flight controller performance is a fun-

damental feature for any MAV application. Integral-based

actions can be used to counteract external disturbances, such

as wind and presence of small loads. Nevertheless, an adap-

tive/integral action may result in an additional disturbance

when the nonlinearities of the model are not properly taken

into account, see, e.g., [19] for analogous problems in the

marine context. In this sense, at the best of our knowledge

the only adaptive control for MAVs has been proposed

in [20], [21]. This solution employes a feedback linearization

approach which exploits the linear dependency of the model

w.r.t. the position of the Center of Mass (CoM).

In [22] a novel adaptive control scheme for a quadrotor

that considers the effect of constant exogenous forces and

moments, and allows for presence of unknown dynamic

parameters (e.g., the position of the CoM) has been intro-

duced and its theoretical analysis provided. The standard

assumption of a rotational dynamics faster than the positional

is assumed and, contrarily to [20], the external disturbances

are explicitly considered in the design. A minimal set of

parameters for the identification and the possible wrong

estimation of the center of mass have been considered. Here

an experimental validation of the proposed method on a real

MAV platform is presented.

II. MATHEMATICAL BACKGROUND

A. Kinematics

A rigid body is completely described by its position and

orientation with respect to a reference frame Σi, O − xyz

assumed earth-fixed and inertial. Let η1 =
[

x y z
]T

∈
R

3 be the vector of the body position coordinates in an earth-

fixed reference frame. The vector η̇1 is the corresponding

time derivative (expressed in the earth-fixed frame). If one

defines ν1 =
[

u v w
]T

as the linear velocity of the origin

of the body-fixed frame Σb, Ob − xbybzb with respect to

the origin of the earth-fixed frame, expressed in the body-

fixed frame (from now on: body-fixed linear velocity), then
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the following relation between the defined linear velocities

holds:

ν1 = RB
I η̇1

, (1)

where RB
I is the rotation matrix expressing the transforma-

tion from the inertial frame to the body-fixed frame [23].

Define η2 =
[

ϕ θ ψ
]T

∈ R
3 as the set of body Euler-

angle coordinates with respect to the earth-fixed reference

frame. Those are commonly named roll, pitch and yaw

angles and correspond to the succesive elementary rotations

around x, y and z in the fixed frame [23]. Let define ν2 =
[

p q r
]T

as the angular velocity of the body-fixed frame

with respect to the earth-fixed frame expressed in the body-

fixed frame (from now on: body-fixed angular velocity).

Finally ν =
[

νT

1
νT

2

]T
∈ R

6 is the six-dimensional body-

fixed velocity.

B. Dynamics

The rigid body dynamics of a quadrotor, in matrix form,

is given by:

Mν̇ +C(ν)ν + τ v,W + g(RB
I ) = τ v, (2)

where τ v =
[

τT

1
τT

2

]T
, the vector

τ 1 =
[

X Y Z
]T
,

collects the linear forces acting on the rigid body expressed

in a body-fixed frame, while

τ 2 =
[

K M N
]T

collects the moments acting on the rigid body expressed in

a body-fixed frame. Deatils on the terms can be found, e.g.,

in [23], [24]. Notice that the term τ v,W ∈ R
6 represents

external disturbances such as wind; its effect on the vehicle

is modeled as a constant disturbance in the earth-fixed frame

that is further projected onto the vehicle-fixed frame [22].
It is possible to rewrite eq. (2) by exploiting the linearity

in the parameters as:

Φv(ν̇,ν,R
B
I )γv = τ v (3)

where γv ∈ R
16 is the vector of the dynamic parameters

collecting the mass (1 parameter), the first moment of inertia

(3 parameters), the inertia tensor (6 parameters) and the 6
elements of the disturbance γv,W . The same equation may be

easily rewritten with respect to the variables expressed in the

inertial frame η, η̇, η̈ following the guidelines of, e.g., [23].

In the following, the terms Φxy ∈ R
2×16 and φz ∈ R

1×16

will denote the first two rows and third row of the regressor

matrix expressed in the inertial frame, respectively. Follow-

ing the guidelines of [25], well established in robotics [26],

it is possible to further elaborate the regressor and classify

the parameters among the sets: unidentifiable, identifiable

alone and identifiable in linear combination. As an example,

the body is affected by a vertical force caused by both the

gravity and the wind; those effects cannot be separated and

the corresponding parameters will be identifiable only in a

linear combination. For sake of space, in this work the details

are omitted; the controller tested in the following, in fact,

will only consider the parameters that affect the steady state

error.

C. Thrust

Quadrotors are equipped with 4 thrusters aligned along

the body-fixed z axis with position pbt,i ∈ R
3, each of them

providing a force and a moment

fi = bω2

t,i τt,i = dω2

t,i for i = 1, . . . , 4

where ωt,i is the angular velocity of the i th rotor, b and

d are the thrust and drag coefficients. Figure 1 reports the

common motor position with relevant variables. Notice that

the body-fixed frame is positioned in the geometric center of

the vehicle, i.e., in the intersection between the two thrusters

axes.
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Fig. 1. Thrusters related variables

It holds

τ 1 =

[

0 0

4
∑

i=1

fi

]T

and, by defining rbC =
[

rC,x rC,y rC,z
]T

6= 0, it is

possible to compute:

τ 2 =





l(f2 − f4) + rC,y(f2 + f4)
l(f1 − f3) + rC,x(f1 + f3)
−τt,1 + τt,2 − τt,3 + τt,4



 .

It is finally possible to write the mapping from the angular

velocities to the force-torque at the vehicle:








Z

K

M

N









= Bv









ω2

t,1

ω2
t,2

ω2

t,3

ω2

t,4









(4)

with

Bv=







b b b b

0 b(l + rC,y) 0 −b(l− rC,y)
b(l + rC,x) 0 −b(l− rC,x) 0

−d d −d d






.

III. QUADROTOR ADAPTIVE CONTROL

The thrusters velocities may be assumed as the control

input for the quadrotor control problem. The dynamics of

the low level motor controller, in fact, can be typically

neglected with respect to the vehicle dynamics; thus, we can
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assume u =
[

ω2

t,1 ω2

t,2 ω2

t,3 ω2

t,4

]T

. Since the controller

will output the desired force
[

Zc Kc Mc Nc
]T

at the

vehicle, the control input is obtained as

u = B−1

v









Zc
Kc

Mc

Nc









(5)

where B−1

v ∈ R
4×4 is the inverse of (4).

It is interesting to evaluate what happens if the mapping

from the desired forces to the thrusters velocities is com-

puted with the estimated mapping (r̂C), while the effective

mapping is physically related to rC :








Z

K

M

N









= Bv|rC
B−1

v

∣

∣

r̂C









Zc
Kc

Mc

Nc









(6)

i.e.,









Z

K

M

N









=

























1 0 0 0

r̃C,y

2
1 0

br̃C,y

2d

r̃C,x

2
0 1 −

br̃C,x

2d

0 0 0 1

































Zc
Kc

Mc

Nc









(7)

where ·̃ represents the error operator and the terms non

belonging to the unitary matrix represent a coupling effect

that may arise if the center of mass is wrongly estimated or

neglected. Also, force along zb and moment around zb are

not affected by a wrong estimation of the center of mass and

thus Z = Zc and N = Nc.
In the following, an adaptive control law for quadrotor

position and yaw regulation will be developed by taking into

account persistent external disturbances and unknown CoM

position. The assumption that the roll and pitch dynamics

are faster than the position one is made. Figure 2 sketches

the control loop.

A. Altitude control

Let define z̃ = zd−z ∈ R, sz = ˙̃z+λzz̃ ∈ R with λz > 0
and γ̃v = γv− γ̂v with the hat symbol denoting the estimate

of the corresponding variable. The altitude controller is given

by:

Z =
1

cosϕ cos θ
(φzγ̂v + kpzsz)

˙̂γv = K−1

γ,zφ
T

z sz

in which φz = φz(z̈d+λz ˙̃z, η̇,R
B
I ), K

−1

γ,z > O, and kpz >

0.
It is interesting to implement a simpler version of the

controller aimed at compensating the sole persistent dynamic

terms, i.e., those terms preventing a null steady state error,

yielding:

Z =
1

cosϕ cos θ
(γ̂z + kpzsz) (8)

˙̂γz = k−1

γ,zsz (9)

in which γz ∈ R embeds the joint contribution of the gravity

and the vertical wind effects.

B. Horizontal position control

Let us recall the elementary rotation around z as

Rz =

[

cos(ψ) sin(ψ)
− sin(ψ) cos(ψ)

]

and define as η̃xy =
[

xd − x yd − y
]T

∈ R
2 and sxy =

˙̃ηxy +λxyη̃xy ∈ R
2 with λxy > 0. The virtual inputs ϕ and

θ are selected as the solutions of:
[

cϕsθ
−sϕ

]

=
1

Z
Rz (Φxyγ̂v + kp,xysxy) ,

˙̂γv = K−1

γ,xyΦ
T

xysxy.

with Φxy = Φxy(η̈d,xy + λxy ˙̃ηxy, η̇,R
B
I ) ∈ R

2×16.

Also in this case, by only considering the persistent

dynamic terms, the controller reduces to a simple
[

cϕsθ
−sϕ

]

=
1

Z
Rz

(

γ̂xy + kp,xysxy
)

(10)

˙̂γxy = k−1

γ,xysxy (11)

where γ̂xy ∈ R
2 represents the sole wind effect supposed

constant in the inertial frame, and ϕ and θ can be easily

computed yielding the desired ϕd and θd sent to the orien-

tation controller.

C. Orientation control

The orientation control receives as input the desired roll,

pitch and yaw; the formers are obtained by the position

control equations. Notice that, in this case, it is necessary to

explicitly consider the presence of a coupling effect among

the desired and obtained forces as shown in eqs. (6)-(7). It is

worth noticing that neither the altitude nor the yaw control

loop are affected by r̃C . The convergence to a steady state

value for Zc and Nc can thus be assumed. In any case,

roll and pitch control can be designed by considering the

estimation error as an external, constant, disturbance:

K = Kc +
1

2

(

Zc +
b

d
Nc

)

r̃C,y

M = Mc +
1

2

(

Zc −
b

d
Nc

)

r̃C,x.

The disturbance value is unknown and its effect may be

compensated by resorting to several control laws well known

in the literature, in the following a PID is used.

D. Center of mass estimation

In case a simple PD control is used for pitch and roll

control, a steady state error occurs. This effect can be

counteracted linking the roll-pitch error to a proper integral

estimate of the center of mass position according to:
[

˙̂rC,x
˙̂rC,y

]

= −krC

[

θd − θ

ϕd − ϕ

]

(12)

to be used in eq. (5).

The stability analysis, not reported here for lack of space,

has been discussed in [22].
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Fig. 2. Sketch of the control loop

IV. EXPERIMENTAL RESULTS

The adaptive controller presented in the previous Sections

has been both validated via numerical case studies and

through actual experiments. The numerical tests have been

performed on the SwarmSimX simulation environment [27],

a software simulator developed by the Max Planck Institute

for Biological Cybernetics (MPI) to debug and tune the

controller parameters. The corresponding results are not

reported here for reasons of space.

The MPI facilities have also been used for the experi-

mental validation. The employed aerial vehicle is an im-

proved version of the MK-Quadro1 quadrotor. The TeleKyb

framework [28] has been used both for the adaptive con-

trol development and experimental-flow management. The

quadrotor is equipped with an Atmega1284p microcontroller

and a GNU-Linux onboard computer running a ROS-based

software2. The microcontroller has direct access to the on-

board Inertial Measurement Unit (IMU), consisting of a 3D

accelerometer and a 3D gyroscope. As for the quadrotor

position/orientation, we made use of an external infrared-

vision-based system with an accuracy of 0.001m in position

and 1 deg in orientation at the sampling frequency of 120Hz.
Roll and pitch angles and the attitude controller are executed

at a sampling frequency of 500Hz. The position controller

and all the remaining computations are run on the onboard

computer at 120Hz.
In order to test the controller with the minimal set of

parameters, we have implemented the sole reduced version,

i.e., the version in (8), (9), (10) and (11).

The desired trajectory is shown in figure 3 and it is the

same for all the results reported in this paper.

In a first set of tests, the controller is run with and without

the adaptive action, i.e., by imposing null adaptive gains. In

a second set of tests, the CoM is displaced by attaching a

weight, unknown to the controller, along the x-fixed direction

as shown in Figure 4. The new position of the CoM was not

exactly known, but, as a rough estimate estimate, it resulted

displaced of ≈ 2 cm. The four case studies are summarized

in table I.

The following gains have been used for all the four case

studies: λz = 3, kp,z = 5.5, λxy = 3, kp,xy = 3, kv,ϕθψ = 1,
kp,ϕθψ = 1. For the sole adaptive cases, i.e., cases b and

d, the adaptive gains were different from zero: kγ,z = 1.5,
kγ,xy = 1 and krC = 0.1.

1http://www.mikrokopter.de
2www.ros.org

0 20 40 60 80 100 120 140

−1.5

−1

−0.5

0

0.5

1

time [s]

η
1
,d
[m

]

Fig. 3. Desired trajectory for the four experiments illustrated, blue denotes
the inertial x component, green the y and red the z.

additional
weight

Fig. 4. mikrokopter with the unknown weight attached

Figure 5 reports the norm of the 3D position errors for

the cases a) and b). It is worth noticing that the error is

comparable during the transient, due to the intentional choice

to adapt only with respect to the persistent terms, while it re-

sults considerably reduced for the adaptive version during the

steady state. The error present in the non-adaptive version are

mainly due to small external disturbances, unproper weight

compensation as well as errors in the Vicon calibration.

Orientation errors, forces/moments at the vehicles and

thrust for cases a) and b) are omitted to preserve space. It

is interesting to discuss the cases c) and d), i.e., when an

unknown wheight is attached to the vehicle. Figure 6 reports

the norm of the 3D position errors. The same comments

made for the cases a) and b) hold also in this case, but

now the non-adaptive version exhibits larger errors while the

adaptive one is able to compensate for the displaced center

of mass.

It is also interesting to show the roll and pitch angles for

the cases c) and d) in Figure 7. At steady state the adaptive
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case weight adaptive

a) no no
b) no yes
c) yes no
d) yes yes

TABLE I

TYPE OF EXPERIMENTS

0 20 40 60 80 100 120 140
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

time [s]

∥ ∥

η
1
,d
−
η
1

∥ ∥

[m
]

Fig. 5. Norm of the 3D position errors for the cases a) (in blue) and b)
(in green)

controller compensates for the asymmetric CoM position by

properly adapting the gain (and thus with null pitch), while

the non adaptive case reaches a steady state with a non-zero

pitch (and a corresponding non-zero position error).

Figure 8 reports the time history of the parameters for case

d). It can be noticed that the parameter rC , i.e., the CoM

estimation, is coherent with the rough estimate available.

Figure 9 reports the generalized forces for the cases c) and

d). It can be noticed that the improvement achieved in case

d) is not due to an increased control effort.

Finally, a quantitative index has been used to verify the

improvement in terms of position error, i1, and the possible

increase of control effort, i2. By letting n represent the

number of samples of the experiment, index i1 is defined

as

i1 =
1

n

n
∑

k=1

∥

∥η
1,d(tk)− η

1
(tk)

∥

∥

while i2 is defined as

i2 =
100

U

n
∑

k=1

4
∑

j=1

|uj(tk)|

i.e., normalized to 100 with respect to U , the maximum

among the 4 case studies presented in this paper.

The result are shown in table II. It can be noticed that the

errors are reduced without requiring an increase of control

effort.

CONCLUSIONS

This paper presented the experimental validation of a new

adaptive control law for quadrotors. For the system at hand,

the disturbances were the vehicle weight, the center of mass

position and the presence of a 6 DOFs external disturbance.

The experiments, run at the Max Planck Institute facilities,

0 20 40 60 80 100 120 140
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0.05

0.1

0.15

0.2

0.25

0.3

0.35

time [s]

∥ ∥

η
1
,d
−
η
1
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[m
]

Fig. 6. Norm of the 3D position errors for the cases c) (in blue) and d)
(in green)
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Fig. 7. Roll (top) and pitch (bottom) angles for the cases c) (in blue) and
d) (in green)
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[N

]
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C
[m
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Fig. 8. Time history of the parametes for the case d). Top: parameter γz ,
center: parameter γ̂xy , bottom: parameter rC . It can be noticed that the
center of mass estimation is coherent with the rough estimate done
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[N
m
]

M
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m
]

N
[N

m
]

Fig. 9. Control forces for the cases c) and d)

case i1 [cm] i2 [-]

a) 12.4 86.2
b) 3.6 89.4
c) 15.7 99.7
d) 3.7 100.0

TABLE II

ERROR AND EFFORT INDEXES

confirm the efficiency of the proposed controller. Reliability

and robustness of MAV control will consistently be enhanced

by using the proposed adaptive scheme, especially in pres-

ence of wind and during pick and place operations of small

loads.
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