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Abstract— As researchers are striving for developing robotic
systems able to move into the ’the wild’, the interest towards
novel learning paradigms for domain adaptation has increased.
In the specific application of semantic place recognition from
cameras, supervised learning algorithms are typically adopted.
However, once learning has been performed, if the robot is
moved to another location, the acquired knowledge may be not
useful, as the novel scenario can be very different from the
old one. The obvious solution would be to retrain the model
updating the robot internal representation of the environment.
Unfortunately this procedure involves a very time consuming
data-labeling effort at the human side. To avoid these issues,
in this paper we propose a novel transfer learning approach
for place categorization from visual cues. With our method
the robot is able to decide automatically if and how much its
internal knowledge is useful in the novel scenario. Differently
from previous approaches, we consider the situation where
the old and the novel scenario may differ significantly (not
only the visual room appearance changes but also different
room categories are present). Importantly, our approach does
not require labeling from a human operator. We also propose
a strategy for improving the performance of the proposed
method by fusing two complementary visual cues. Our extensive
experimental evaluation demonstrates the advantages of our
approach on several sequences from publicly available datasets.

I. INTRODUCTION

One of the main research challenges in mobile robotics
is to provide robots the capability to move autonomously in
real world unconstrained scenarios. In this context, devising
novel methods allowing the robots to adapt their internal
knowledge and behavior over time is crucial. Therefore,
it is clear how lifelong, online and transfer learning tech-
niques are fundamental components for building mobile
robot systems operating in highly dynamic environments.
While learning and adaptation are of fundamental importance
in many mobile robot tasks, including mapping, navigation,
or manipulation, in this paper we focus on the specific
application of semantic place recognition from visual cues.

Recent works on visual place recognition [1], [2], [3], [4]
have demonstrated that good performance can be obtained
in many real world indoor settings, even in challenging
scenarios (e.g. varying illuminations conditions). The vast
majority of place recognition approaches, although based
on state-of-the-art supervised learning algorithms, makes a
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Fig. 1: Illustration of the idea behind the proposed method:
the robot performs visual place categorization using images
collected in a novel unknown environment (e.g. the target
data) and reasons about transferring knowledge available
from a different scenario (i.e. the source data).

rather simplifying assumption: the robot operates in the same
scenario where learning has been performed, i.e. training and
future data are supposed to be drawn from the same distribu-
tion. In practice, in real-world applications, this assumption
does not hold. To overcome this issue, knowledge transfer
approaches are required with the purpose of improving the
performance of the learning algorithm by avoiding expensive
labeling of data in the novel domain. In recent years, many
transfer learning algorithms have been proposed in the ma-
chine learning community [5], [6]. However very few works
[7], [8] have considered how these methods can be employed
for semantic place classification in robotics. Moreover, these
works assume that in the novel domain labeled data are
available and that the set of categories (e.g. room types) does
not change during the learning process.

To overcome these limitations, in this paper we present a
novel transfer learning approach for semantic place recogni-
tion. The main idea behind our method is illustrated in Fig.1.
A robot must perform a visual place categorization task (e.g.
recognizing rooms at university such as offices, corridors,
etc) in a novel unknown scenario. As data-labeling is a very
time consuming task no information about room categories
is available in the new location. Can the robot use data
gathered from other sources, i.e. images depicting different
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scenarios (e.g. rooms of a different university), collected by
another robot, to build a robust place recognition system,
being able to select only the relevant data and discarding
the misleading ones? To answer this question, we propose a
new transfer learning approach, allowing a robot to perform
place categorization in a novel environment using previous
data collected in a different scenario. Importantly the robot
is able to automatically determine what and how much to
transfer by quantifying the distance between the distribution
of the past and the novel data. The proposed approach is also
empowered with a strategy for fusing multiple visual cues,
further enhancing recognition accuracy.

There are many concrete scenarios where the proposed
risk sensitive transfer approach could make the difference.
The RobotEarth platform [9], for instance, aims to collect
the robots experiences and share them in the World Wide
Web. In this context the robot could easily accesses to a huge
amount of data, thus the proposed transfer learning frame-
work gains a great importance. Another possible scenario
is the place categorization under dynamic conditions. For
instance consider the case of a robot operating under different
illumination conditions: the proposed approach permits to
adapt the knowledge gathered under daylight conditions for
night exploration sessions.

To summarize the main contributions of this paper are: (i)
we cast the problem of place categorization in an unknown
scenario within a transfer learning framework, (ii) differently
from previous works [7], [8], we do not consider a supervised
learning approach, thus keeping the human annotation effort
as low as possible, (iii) the proposed method permits to
quantify the similarity between the data from the original and
the novel scenario, thus avoiding the dangerous situations of
’negative transfer’ (decrease in recognition accuracy due to
the discrepancy between source and target domains), (iv) we
show how our transfer learning approach can be extended
to integrate informations from multiple modalities, i.e. from
two different visual cues.

II. RELATED WORKS

In the last few years several efforts have been made to
develop robotic systems with the ability of building robust
semantic space representations of environments. In the spe-
cific context of place categorization from visual cues, many
works have been proposed in the robotics community [1], [2],
[3]. Few of them [7], [8], [10] specifically address the domain
adaptation challenge. In [7] an algorithm based on support
vector machines is proposed for knowledge transfer across
two robotic platforms. However, both robots are assumed
to perform the same task. Moreover, the robot updates its
internal model as new data arrives, discarding progressively
the old data and without selecting them according to their
importance, e.g. the similarity with the novel samples. In
[8] a multi-robot transfer learning approach is presented for
indoor place categorization which allows the robot to select
the type and the amount of information to be transferred.
However, both these works [7], [8] rely on supervised
learning methods, thus requiring labeled data provided by

a human operator. This may be disadvantageous in practical
situations where a robot is moved to another scenario, where
semantic categories are different from the learned ones and
no trained data are available in the new setting. Our approach
aims to address this more challenging situation. In [10]
a transfer learning approach is proposed for a different
application, i.e. perceptual classification of objects. Objects
are described though an intermediate representation, via a
combination of properties derived from different modalities
(e.g. color, texture, shape). Knowledge transfer between
multiple heterogeneous robots is realized by sharing the
learned object models.

In the machine learning and the computer vision commu-
nities transfer learning techniques have received considerable
attention in the last few years [5]. However few works [11],
[12] have addressed the problem of transfer learning with
different categories in the source and the target data. In
this paper, we consider the approach described in [11] and
we show how it can be used effectively for semantic place
recognition. We also extend the algorithm in [11] to the case
where multiple visual cues are used for place categorization.
The importance of combining multiple modalities for visual
tasks has been demonstrated in several works [2], [13], [14].
For example in the context of semantic place recognition
in [2] features extracted from cameras and laser are used
for improved performance. However no previous works have
addressed this problem into a transfer learning framework.

III. TRANSFER LEARNING FOR PLACE RECOGNITION

In this section we describe the proposed knowledge trans-
fer approach for place categorization. Suppose that a robot
is operating in a completely unknown scenario. In this paper
we focus on the task of semantic place recognition in an
indoor setting, i.e. on the classification of rooms as the robots
moves around in a university. While the robot has no a-priori
information regarding the novel location, we assume that it
has access to other data, e.g. to videos recorded in other
similar scenarios from a different robot, for which labels
are available. Can the robot use these data and importantly
decide autonomously if these data are useful for the current
task, i.e. how much the past video sequences are similar to
those it observes in the the current scenario?

The main intuition behind out approach articulates in two
main steps. First it computes the similarity between the two
distributions of images. This step aims to understand if the
two locations have similar appearances and sets the risk
accordingly to the divergence measure. Then, if the transfer
risk is small, in the second step, we can take advantage of
the category constraints from the labeled data to perform
clustering in the novel scenario and we include them in the
optimization function. Otherwise, if the risk is high, we only
rely on the images from the new location.

This problem can be formalized as follows. We are given
a set S = {(xs1, ys1), (xs2, ys2), . . . , (xsNs

, ysNs
)} (the source

data), where xsi ∈ IRD are visual features extracted from
video frames and ysi ∈ {1, 2, . . . ,KS

C} are the corresponding
labels indicating the rooms types (e.g. corridor, office, etc),
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and a set T = {xt1,xt2, . . . ,xtNt
} (the target data), where

xti ∈ IRD are visual features extracted in the novel scenario
for which labels are not available. We are interested in
learning a model in order to classify the target data. Note
that the categories of the target data are not the same of the
KS
C classes in S. As the target and the source data belongs

to different distributions, respectively PS and PT , we would
also like to measure the distance between them in order to
quantify the risk of knowledge transfer, i.e. of using the
source data to build a suitable model for the target data.

A. Clustering-based Transfer Risk

To measure the distance between the source and target
distributions PS and PT in this paper we adopt the method
proposed in [11]. A popular approach to quantify the distance
between two probability distributions is the Kullback-Leibler
(KL) divergence, defined as:

KL(S, T ) =
∑
x

PT (x) log
PT (x)

PS(x)
(1)

As calculating the KL divergence directly from the data can
be quite time consuming, in [11] a more practical solution is
proposed, where an approximation of KL distance is com-
puted based on the output of a clustering algorithm operating
on the combined data (source and target data together). More
specifically the following definition of Clustering-based KL
divergence is proposed:

KLc(S, T ) =
2

|T |

|C|∑
c=1

(
|T ∩ Cc|
|Cc|

log
|T ∩ Cc|
|S ∩ Cc|

) + log
|S|
|T | (2)

where ∀c the centroid of the data from T corresponding to
cluster Cc and the centroid of the data from S corresponding
to cluster c are the same. The computation of the clustering-
based KL divergence is illustrated in Fig.2. Due to lack
of space we refer to the original paper for details on the
derivation of (2). Having computed the distance between
distributions PS and PT , the risk of transferring source data
information while learning from target data is defined as:

RS,T =
1

1 + e(γ−KLc(S,T ))
(3)

where γ is a fixed parameter which is set equal to e2 in our
experiments.

B. Transfer Learning with Different Class Labels

The transfer learning approach we adopt in this paper is an
extension of the Normalized-Cut algorithm [15]. It amounts
into solving the following optimization problem:

min
U

UTLU

UTDU
+ β((1−RS,T )‖MSU‖2 +RS,T ‖MTU‖2) (4)

where L = D −W is the Laplacian matrix, W is the
similarity matrix computed on the entire dataset S ∪T , D =
diag(We) and e is a vector with all the coordinates set to 1.
The matrix MS = [m1m2 . . .mNs

c
]T where mi ∈ IRNs+Nt

is a vector with 1 in the i-th position and −1 in the j-th

Fig. 2: KL divergence computation. |S| and |T | represent
respectively the cardinality of the source and the target data
set, while |Cc| indicates the size of cluster c. The term |S ∩
Cc| (|T ∩ Cc|) represents the cardinality of the intersection
between the source (or target) set and the cluster c.

position if the source data points xi and xj have the same
labels. The matrix MT is similarly defined on the target
data. However, as for the target data labels are not provided,
a preprocessing phase where the target data are clustered
with Normalized-Cut [15] is performed. The matrix MT is
then defined using as labels the vectors indicating the cluster
membership.

The objective function in (4) is the sum of two terms.
The first term simply aims to cluster the entire dataset
using Normalized-Cut, while the second term enforces that
the learned clustering structure respect some constraints.
More specifically two sets of constraints are imposed. One
guarantees that the learned projection matrix leads to clusters
consistent with the labels of the source data. The second set
of constraints imposes some coherence between the novel
clustering results and those that are obtained only grouping
the target data. The trade-off between transferring source data
information and not using it is regulated by the risk RS,T .

Defining the matrix A = L + β((1 − RS,T )M
T
SMS +

RS,TM
T
TMT ) the optimization problem (4) can be refor-

mulated as follows:

min
U

UTD−
1
2AD−

1
2U

UTU
(5)

The details of the derivation can be found in the original pa-
per [11]. The resulting transfer learning method is presented
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Algorithm 1 Transfer Learning algorithm
Input: source data S, target data T , number of target categories
KT

C , total number of categories KC , β

procedure COMPUTERISK(W, KC , S, T )
Set D with Dii =

∑
j Wij

Set L = D - W
U = eig(D−

1
2LD−

1
2 , KC )

U = D−
1
2U

Normalize U by row where Uij = Uij/
√∑KC

l=1 U
2
il

C = kmeans(U, KC )
Compute RS,T using (2) and (3)

end procedure

W = computeSimilarityMatrix(S, T )
MS = computeSourceConstraints(ys)
RS,T = computeRisk(W, KC , S, T )
Set D with Dii =

∑
j Wij

Set L = D - W
MT = computeTargetConstraints(W, KT

C )
A = L+ β((1−RS,T )MT

SMS +RS,TM
T
TMT )

U = eig(D−
1
2AD−

1
2 , KT

C ).
U = D−

1
2U

Normalize U by row where Uij = Uij/

√∑KT
C

l=1 U
2
il

C = kmeans(U, KT
C )

Output: Target set label C

in Algorithm (1).

C. Transfer Learning with Complementary Visual Cues

In this paper we extend the transfer learning approach
proposed in [11] and described in the previous section in
order to operate with two complementary visual cues. In
particular in the context of indoor place recognition we
adopt two different descriptors: the spatial pyramid match-
ing kernel (SPMK) originally proposed in [16] and the
Spatial Principal component Analysis of Census Transform
histograms (SPACT) descriptor [17]. A detailed description
of the adopted features can be found in the following section.

Given LS = D
− 1

2

S WSD
− 1

2

S and LC = D
− 1

2

C WCD
− 1

2

C ,
where WS and WC are respectively the SPMK and the
SPACT kernels and DS = diag(WSe), DC = diag(WCe),
the problem of transfer learning can be formulated as fol-
lows:

max
US ,UC

∑
i∈{S,C} tr(U

T
i BiUi) + λA(US ,UC) (6)

s.t. UT
SUS = I , UT

CUC = I

with:

BS = LS − βS(1−RS
S,T )M

T
SMS +RS

S,TM
T
TSMTS (7)

BC = LC − βC(1−RC
S,T )M

T
SMS +RC

S,TM
T
TCMTC (8)

where λ is an appropriate regularization parameter and
A(US ,UC) is the agreement term between the two views
defined as follows:

A(US ,UC) = tr(USU
T
SUCU

T
C) (9)

In practice the proposed optimization problem (6) is a sum of
two main terms. The first aims to reason about transferring

Algorithm 2 Multi-Cue Transfer Learning
Input: source data S, target data T , number of target categories
KT

C , total number of categories KC , βS , βC , λ, number of
iteration T

WS = computeSPMKernel(S, T )
WC = computeCENTRISTKernel(S, T )
MS = computeSourceConstraints(ys)
RS
S,T = computeRisk(WS , KC , S, T )

RC
S,T = computeRisk(WC , KC , S, T )

MTS = computeTargetConstraints(WS , KT
C )

MTC = computeTargetConstraints(WC , KT
C )

Compute BS and BC using (7) and (8)
US = eig(BS , KT

C ).
for t = 1, . . . , T do
UC = eig(BC + λUSU

T
S , KT

C ).
US = eig(BS + λUCU

T
C , KT

C ).
endfor
Normalize US and UC

C = kmeans([US UC ], KT
C )

Output: Target set label C

knowledge from source data separately for each modality,
the second is meant to impose consistency between the
two projected eigenspaces. To solve this problem efficiently
an alternating optimization approach is adopted, solving
separately for US and UC . In particular for a given UC

we get:

max
US

tr
{
UT
S (BS + λUCU

T
C)US

}
(10)

s.t. UT
SUS = I

which can be easily solved using spectral decomposition
methods. Similarly when US is fixed an analogous problem
must be solved with respect to UC . The main steps of the
proposed multi-cue transfer learning method are shown in
Algorithm (2).

IV. EXPERIMENTAL RESULTS

A. Datasets

To demonstrate the effectiveness of our approach in dif-
ferent scenarios with several place categories, we select
sequences from three datasets: the COLD [18], the KTH-
IDOL2 [19] and the VPC [20] datasets.

The first datasets consists of several video sequences
gathered in three indoor university environments of different
European cities: Freiburg, Ljubljana and Saarbrücken. The
video sequences have been collected using three different
robotic platforms (an ActivMedia People Bot, an ActiveMe-
dia Pioneer-3 and an iRobot ATRV-Mini) with two Videre
Design MDCS2 digital cameras to obtain perspective and
omnidirectional views. Each frame is registered with the
associated absolute position recovered using laser and odom-
etry data and annotated with a label representing the corre-
sponding place. The acquisition was performed in several
rooms of different functionality, under different illumination
conditions (cloudy, night and sunny). Each dataset has some
place category in common with the other datasets, e.g.
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Fig. 3: Sample images for all the place categories extracted in the three datasets used. Red rectangles group together room
categories belonging only to a subset of datasets, the green rectangles show the categories which are common to all the
datasets and the blue ones highlight specific rooms in each database.

Corridor (CR), Printer Area (PA) or Bathroom (TL), but also
contains dataset specific rooms, e.g. the Robotics Lab in the
Saarbrücken sequences or the Stairs Area in the Freiburg
data. Moreover rooms of different datasets associated to the
same labels may have very different appearance. An example
is the Corridor (CR) class: the separating walls between
offices in the Freiburg data are made of glass, while in
the Saarbrücken and Ljubljana sequences concrete walls are
depicted. Therefore, transfer learning is very challenging.

The IDOL2 dataset is similar to COLD: it contains sev-
eral image sequences recorded under various weather and
illumination conditions. The acquisition was performed in
an indoor environment that contains five types of rooms:
One-Person Office (OO), Two-person Office (TO), Corridor
(CR), Kitchen (KT) and Printer Area (PA). The robotic plat-
forms used were a MobileRobots PeopleBot and a PowerBot
equipped with a Canon VC-C4 camera.

Finally the VPC dataset consists of several sequences
collected in six houses with different room categories.
The dataset was recorded using a camera (JVC GR-HD1)
mounted on a mobile tripod.

Figure 3 shows some sample images for all the place
categories of the considered datasets.

B. Experimental Setup

To properly evaluate the performance of our method,
we choose sequences extracted from all the four datasets
and recorded at different illumination conditions. In every
experiment we select sequences where the source and the
target data have different place categories. We only require
that they have at least one specific room type (one class) in
common. This is meant to show the validity of our method
which operates in the realistic situation where transferring
knowledge across different scenarios and determining auto-
matically how much to transfer is essential.

We compute two different set of visual features, one based
on the state of the art Spatial Pyramid Matching Kernel
scheme proposed by [16], the other based on the more recent
SPACT descriptor [21]. The SPMK representation has been
shown to be very effective and has been widely used for place
recognition applications in the context of robotic systems.
Specifically the pyramid matching strategy works by dividing
the image into a set of increasingly coarser grids and
computing a weighted sum of the matches that occurs at each
level. Two points are said to match if they are in the same
cell, given a certain resolution. According to this scheme
the matching kernel is computed calculating the histogram
intersection between the vectors formed by concatenating
the weighted histograms at all resolutions. More specifically
we use the SIFT descriptors [22] to extract interest points
from images. Then we create a vocabulary of 400 visual
words following the standard Bag-of-Words approach using
800 images as training set. Finally the histograms for each
image are constructed projecting the extracted SIFT in the
vocabulary at each level of resolution and for each cell. We
choose L = 3 as the number of pyramid levels. The similarity
matrix W is then obtained computing histogram intersection.

The CENTRIST descriptor [21] was originally proposed
for scene classification tasks and has been shown to be
very effective as it captures the structural properties of
the scenes. The Census Transform is a nonparametric local
transform introduced to compare local patches. It compares
the intensity of a pixel with its eight neighbors and the
binary values obtained replaces the pixel itself. Thus the
CENTRIST descriptor has 256 bins where each bin counts
the occurrences of a value in the range [0 255] after the
application of the Census Transform to the entire image.
Following the approach in [21] to obtain our final descrip-
tor we also apply the spatial-pyramid [16] to capture the
global structure of the image at a large scale and Principal
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Component Analysis (PCA) to reduce the dimensionality
of histograms and obtain a more compact representation.
Specifically we set the number of pyramid levels to L = 3
and the number of principal components equal to 40. The
final descriptor is called SPACT (spatial Principal component
Analysis of Census Transform histograms). After computing
the SPACT histograms, we use the RBF kernel to calculate
the similarity matrix W.

In our experiments we first tested the proposed transfer
learning approach using a single visual cue. We perform
experiments both for the SPMK and the SPACT descriptors.
We also compare our approach against two baselines: a
No-Transfer method which applies a clustering algorithm
(specifically Normalized Cut [15]) to the union of the source
and the target data and a Full Transfer algorithm where the
knowledge gathered from source is completely transferred
in the target i.e. without considering the risk of transferring
potentially harmful information. This situation is obtained
setting R(S, T ) = 0.

A second series of experiments aim to test the proposed
multi-cue approach. As baselines we again consider the No-
Transfer and Full Transfer methods. In this case the two
visual cues are simply combined taking the average of the
two computed kernels. In both single-cue and multi-cues tests
the parameters β in Eqn. 4 and βS and βC in Eqn. 6 are
set to 1. Since the output of our algorithm consists into a
set of clusters representing place categories we measure the
performance in terms of clustering accuracy [23]:

Accuracy =
∑NT

i=1 δ(yi,map(ci))

NT
(11)

where NT is the total number of images on target data, yi
is the true label for the i-th image, ci is the cluster label.
δ(y, c) is a function that is 1 if true label and cluster label
are the same and 0 otherwise and map(·) is a permutation
function that maps cluster labels to true labels. The optimal
matching is found using the Hungarian algorithm [24]. Due
to the variability introduced by the k-means algorithm, we
repeat the clustering step after the spectral decomposition 10
times. The resulting average accuracy is considered.

C. Quantitative Evaluation

In a first series of experiments we show some place
recognition results on target sequences using a single visual
cue. We perform several tests on various sequences extracted
from all the three datasets. Our aim here is to demonstrate
the capability of the proposed method to understand what to
transfer, avoiding negative transfer and maximizing the use
of information gathered from the source data.

Figures 4 and 5 show the obtained results respectively
for the SPMK and SPACT experiments. The labels of the
source data provided in the ground truth files in the datasets
are used to specify the set of source constraints and define
MS in (4). We compare our method against the Full-Transfer
and the No-Transfer algorithms. It is evident that our transfer
learning approach outperforms the two baselines in almost
all the experiments. For example in cases where transferring
knowledge is helpful the KL divergence is very low and

the transfer risk is correctly set to a value close to zero. In
the Freiburg-Freiburg experiments (Fig. 4.a) the No-Transfer
algorithm achieves an accuracy of 72.50% while the Full-
Transfer approach reaches 77.7% with the Spatial Pyramid
Matching Kernel features. Similar results are obtained in case
of the SPACT features where they get respectively 57.2% and
59.39% (Fig. 5.a). In both configurations, since the source
and the target distributions are similar, (i.e. rooms have sim-
ilar visual appearance) the transfer risk is close to zero and
our strategy correctly determines that the source knowledge
helps clustering the target data: we get 78.1% with the SPMK
features and 62.04% with SPACT. In the Freiburg-IDOL2
and Freiburg-Saarbrücken experiments we observe similar
results: in the first experiment (Fig.4.b and Fig.5.b) we obtain
53.40% with SPMK features and 68.50% with the SPACT
features while the No-Transfer case only reaches 38.8% and
46.70%; in the second test (Fig.4.c and Fig.5.c) our approach
correctly classify 50.19% of the frames with the first type
of features and 57.65% with the second one, while the No-
Transfer algorithm gets 40.54% and 42.60% respectively. We
perform a further test on the Freiburg-Saarbrücken sequences
(Fig.4.d and Fig.5.d) by changing the illumination conditions
of the target sequence in order to prove the robustness of our
method: even in this case we improve the clustering accuracy
by more than 10% with respect to the No-Transfer algorithm
with both set of features.

Tests on the Ljubljana-Saarbrücken (Fig.4.f and Fig.5.f)
and VPC-Freiburg (Fig.4.g and Fig.5.g) sequences show how
our distribution sensitive method avoids negative transfer.
In these cases the place categories in the source and the
target data are very different so transferring knowledge from
the source may worsen clustering performance on target
data. The KL divergence detects this situation and set the
transfer risk to a value close to 1. Due to this effect, in the
first sequence we get 58.30% and 63.40% while the Full-
Transfer algorithm reaches 54.15% and 51.20% respectively
for the SPMK and SPACT kernels; in the second sequence
we obtain 61.30% and 64.50% against 51.95% and 48.93%.
The proposed approach also outperforms the No-Transfer
baseline, meaning that a small amount of information from
the source data could be effectively used for improving the
performance on clustering target data. This is reflected by
the value of the risk which is slightly lower than 1.

The test on the Ljubljana-Freiburg sequences (Fig.4.e and
Fig.5.e) considers another possible scenario. Here the source
and the target sequences share some categories, while the
other are deeply different. In this case the transfer risk has
on an intermediate value between 0 and 1. In this case our
approach obtains a higher clustering accuracy with respect
to both the No-Transfer and the Full-Transfer methods.

Finally Fig.4.h and Fig.5.h show an example where our
method fails. The computation of the clustering-based KL
divergence is not accurate and a risk close to 1 is obtained de-
spite the Saarbrücken and the Freiburg sequences share some
similar patterns. This is probably due to a large number of
categories. In this case the Full-transfer method outperforms
both our approach and the No-transfer algorithm.
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(a) Fr.(Std A) c.1-Fr.(Ext A) c.1 (b) Fr.(Std A) c.1-IDOL2 Minnie c.2 (c) Fr.(Std A) c.1-Saar.(Std A) c.2 (d) Fr.(Std A) c.1-Saar.(Ext A) n.1

(e) Ljub.(Std A) s.1-Fr.(Std A) c.1 (f) Ljub.(Std A) s.1-Saar.(Ext A) n.1 (g) VPC 1 Floor 2-Fr.(Std A) cloudy1 (h) Saar.(Ext A) s.2-Fr.(Ext A) c.1

Fig. 4: Place recognition accuracy obtained with SPMK features.

(a) Fr.(Std A) c.1-Fr.(Ext A) c.1 (b) Fr.(Std A) c.1-IDOL2 Minnie c.2 (c) Fr.(Std A) c.1-Saar.(Std A) c.2 (d) Fr.(Std A) c.1-Saar.(Ext A) n.1

(e) Ljub.(Std A) s.1-Fr.(Std A) c.1 (f) Ljub.(Std A) s.1-Saar.(Ext A) n.1 (g) VPC 1 Floor 2-Fr.(Std A) c.1 (h) Saar.(Ext A) s.2-Fr.(Ext A) c.1

Fig. 5: Place recognition accuracy obtained with SPACT features.
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TABLE I: Place recognition accuracy obtained with a single visual cue and with cues combination.

SPMK SPACT Cues Combination
Freiburg(StdA) cloudy 1 - Freiburg(ExtA) cloudy 1 Risk = 0.02 78.1 % ± 0.1 Risk = 0.03 62.04 % ± 0.11 82,67 % ± 0.06
Freiburg(StdA) cloudy 1 - IDOL2 Minnie cloudy 2 Risk = 0.12 53.40 % ± 0.2 Risk = 0.07 68.50 % ± 0.25 73,13 % ± 0.05

Freiburg(StdA) cloudy 1 - Saarbrücken(StdA) cloudy 2 Risk = 0.05 50.19 % ± 0.2 Risk = 0.04 57.65 % ± 0.1 61,27 % ± 0.03
Freiburg(StdA) cloudy 1 - Saarbrücken(ExtA) night 1 Risk = 0.1 53.20 % ± 0.1 Risk = 0.13 56.20 % ± 0.12 60,89 % ± 0.04
Ljubljana(StdA) sunny 1 - Freiburg(StdA) cloudy 1 Risk = 0.6 79.20 % ± 0.19 Risk = 0.55 59.30 % ± 0.14 85.65 % ± 0.07

Ljubljana(StdA) sunny 1 - Saarbrücken(ExtA) night 1 Risk = 0.93 58.30 % ± 0.16 Risk = 0.72 63.40 % ± 0.13 69.61 % ± 0.05
VPC Home 1 Floor 2 - Freiburg(StdA) cloudy 1 Risk = 0.89 61.30 % ± 0.09 Risk = 0.85 64.50 % ± 0.08 72.3 % ± 0.07

Saarbrücken(ExtA) sunny 2 - Freiburg(ExtA) cloudy 1 Risk = 0.95 60,02 % ± 0.09 Risk = 0.8 59,82 % ± 0.11 62,43 % ± 0.12

In a second series of experiments we aim to test our
distribution sensitive transfer learning approach with com-
plementary visual cues. After the computation of the transfer
risk for both SPMK and SPACT features, we aim to combine
their contributions to improve performance with respect to
the single visual features tests. The value of the parameter
λ in Eqn. (6) is set to 0.5 in all our experiments. We
compare the multiple cue approach with the single features
one. Results are shown in Table I. It is evident how the multi-
cue strategy is beneficial for place recognition accuracy.
For example in the first experiment (Freiburg(Std A) cloudy
1 - Freiburg(Ext A) cloudy 1) an accuracy of 78.1% and
62.04% is obtained using the SPMK and the SPACT features
respectively, while with the proposed multiple cue transfer
learning strategy the accuracy increases to a value of 82.67%.

It is worth nothing that the recognition accuracy obtained
with the proposed approach is generally lower with respect
to that we can get using supervised learning approaches
(e.g. Support Vector Machines) considered in previous works
[2], [7]. However we point out that we operate in a more
challenging scenario where the categories in the source and
in the target data are different and no labels are provided
for the target data. In this way no human intervention for
annotating data is required.

V. CONCLUSIONS

We presented a novel transfer learning approach for se-
mantic place recognition which operates integrating two
complementary visual cues. Our risk sensitive transfer al-
gorithm allows the robot to perform semantic place catego-
rization incorporating in the learning process the previous
knowledge collected in different environments. Importantly,
with the proposed strategy, we avoid the negative transfer
by measuring the similarity among the source and the tar-
get data distribution. Our extensive evaluation demonstrates
that our approach significantly outperforms the baselines.
Future works include developing a more robust approach
in alternative to the KL distance to measure the transfer
risk and extending the proposed framework to operate in an
incremental manner without having all target data available
at the beginning and with more than two sets of features,
eventually including RGB-D data.
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