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Abstract— This paper proposes a set-membership method
based on interval analysis to solve the pose tracking problem for
a team of robots. The originality of this approach is to consider
only weak sensor data: the visibility between two robots. The
paper demonstrates that with this poor information, without
using bearing or range sensors, a localization is possible. By
using this boolean information (two robots see each other or
not), the objective is to compensate the odometry errors and be
able to localize in an indoor environment all the robots of the
team, in a guaranteed way. The environment is supposed to be
defined by two sets, an inner and an outer characterizations.
This paper mainly presents the visibility theory used to develop
the method. Simulated results allow to evaluate the efficiency
and the limits of the proposed algorithm.

I. INTRODUCTION

Robot localization is an important issue in mobile robotics

[1], [2], [3] since it is one of the most basic requirement

for many autonomous tasks. The objective is to estimate the

pose (position and orientation) of a mobile robot by using

the knowledge of an environment (e.g. a map) and sensor

data.

In this paper the pose tracking problem is considered: the

objective is to compute the current pose of a robot knowing

its previous one and avoiding its drifting. To compensate the

drifting, due to odometry errors, external data are necessary.

Contrary to most of the localisation approaches that use range

sensors [4], [5], [6] this paper tends to prove that only weak

informations can lead to an efficient localization too. The

information to be considered is the visibility between robots:

two robots are visible if there is no obstacle between them,

else there are not visible. It can be noticed that visibility

sensors have already been considered for localization and

mapping [7], [8], [9]. But those approaches associate the

visibility information to bearing and/or range measurements.

In this paper the proposed visibility corresponds to a boolean

information (true or false), illustrated in Figure 1 and pre-

sented in Section III. This information can be obtained using

360◦ camera for example.

Note that the presented visibility information does not

depend of the robots’ orientations (it is assumed that the

robots can see all around themselves). In order to simplify

the localization problem it is assumed that each robots are

equipped with a compass. Thus the objective is to estimate

the position xi = (x1i , x2i) of a robot ri.

A robot ri is characterized by the following discrete time

dynamic equation: qi(k + 1) = f(qi(k),ui(k)), with k the

discrete time, qi(k) = (xi(k), θi(k)) the pose of the robot,

xi(k) = (x1i(k), x2i(k)) its position, θi(k) its orientation
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(associated to the compass) and ui(k) the input vector

(associated to the odometry). The function f characterizes

the robot’s dynamics. In order to exploit the visibility in-

formation a team of n robots R = {r1, · · · , ri, · · · , rn} is

considered.

The environment is assumed to be an indoor environment

E composed by m obstacles εj , j = 1, · · · ,m. This envi-

ronment is not known perfectly but is characterized by two

known sets: E− an inner characterization, and E+ an outer

characterization, presented in the Section II-B.

To solve this problem a set-membership approach of the

localization problem based on interval analysis is considered

as in [10], [11].

II. ALGEBRAIC TOOLS

This section introduces some algebraic needful tools.

A. Interval analysis

An interval vector [12], or a box [x] is defined

as a closed subset of R
n: [x] = ([x1], [x2], · · · ) =

([x1, x1], [x2, x2], · · · ).
The size of an interval [x1] is defined as w([x1]) = (x1−

x1). For instance w([2, 5]) = 3.

It can be noticed that any arithmetic operators such as

+,−,×,÷ and functions such as exp, sin, sqr, sqrt, ... can

be easily extended to intervals, [13].

A Constraint Satisfaction Problem (CSP) is defined by

three sets. A set of variables V , a set of domains D for

those variables and a set of constraints C connecting the

variables together. Example of CSP:






V = {x1, x2, x3}
D = {x1 ∈ [7,+∞], x2 ∈ [−∞, 2], x3 ∈ [−∞, 9]}

C = {x1 = x2 + x3}







.

(1)

Solving a CSP consists into reducing the domains by re-

moving the values that are not consistent with the constraints.

It can be efficiently solved by considering interval arithmetic

[14]. For the example (1):

x1 = x2 + x3 ⇒ x1 ∈ [x1] ∩ ([−∞, 2] + [−∞, 9]),
⇒ x1 ∈ [7,+∞] ∩ [−∞, 11] = [7, 11].

x2 = x1 − x3 ⇒ x2 ∈ [x2] ∩ ([7, 11]− [−∞, 9]),
⇒ x2 ∈ [−∞, 2] ∩ [−2,+∞] = [−2, 2].

x3 = x1 − x2 ⇒ x3 ∈ [x3] ∩ ([7, 11]− [−2, 2]),
⇒ x3 ∈ [−∞, 2] ∩ [5, 13] = [5, 13].

The solutions of that CSP are the following contracted

domains [x1]
∗ = [7, 11], [x2]

∗ = [−2, 2] and [x3]
∗ = [5, 13].

In this example a backward/forward propagation method is

used to contract the domains. The forward propagation refers
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Fig. 1. In the left figure: (x1Vx2)εj , (x2Vx3)εj and (x1Vx3)εj .
The right figure illustrates an environment E (black shapes) and its
characterizations E− (light grey segments) and E+ (dark grey segments).
It can be noticed that an obstacle can have an empty inner characterization.

to the contraction of [x1], then the earned information is

propagated to the domains [x2] and [x3], which corresponds

to the backward step. In the proposed localization method,

the backward/forward propagation is used to contract the

robots’ poses.

B. The environment and its characterizations

An environment E =
⋃m

j=1
εj corresponds to a set of m

obstacles, with ε1, · · · , εj , · · · , εm connected subsets of R2.

The environment is never known perfectly but always

approximated, using maps for example. In order to deal with

uncertain environments and to provide guaranteed results, we

consider an inner E− and an outer E+ characterizations of

the environment E such that E− ⊆ E ⊆ E+.

Those characterizations are considered to be sets of seg-

ments (Figure 1): E− =
⋃m′

j=1
εs−j and E+ =

⋃m′′

j=1
εs+j ,

with εsj = Seg(e1j , e2j ) the segment defined by the points

e1j and e2j .

III. VISIBILITY PRESENTATION

All the points and sets are assumed to be in R
2.

A. Point Visibility

1) According to an obstacle εj: The visibility relation

between two points x1, x2 regards to an obstacle εj is

defined as (x1Vx2)εj ⇔ Seg(x1,x2) ∩ εj = ∅, with

Seg(x1,x2) the segment defined by the two points x1 and

x2. The complement of this relation, named the non-visibility

relation, is denoted (x1Vx2)εj .

Examples of visibility and non-visibility relations are

presented Figure 1. It can be noticed that

(x1Vx3)εj ⇔ Seg(x1,x3) ∩ εj 6= ∅, (2)

(x1Vx2)εj ⇔ (x2Vx1)εj , (x1Vx3)εj ⇔ (x3Vx1)εj . (3)

The visible space of a point x regards to an obstacle εj ,

with x ∩ εj = ∅, is defined as Eεj (x) = {xi|(xVxi)εj},

and the non-visible space of x regards to εj is defined as

Eεj (x) = Ec
εj
(x). Examples of visible and non-visible spaces

are presented in Figure 2.

2) According to an environment E: As the robots are

moving in a environment E composed by m obstacles, it

is needed to extend the previous definitions to multiple

obstacles: (x1Vx2)E ⇔ Seg(x1,x2) ∩ E = ∅, EE(x) =
{xi|(xiVx)E}, Ec

E(x) = EE(x).

Fig. 2. The light grey space represents Eεj (x) whereas the dark grey

space represents Eεj (x). The black shape corresponds to εj .

It is possible to characterize the visibility over an environ-

ment by considering the visibility regards to the obstacles

that composed this environment.

Lemma 1: Let x1 and x2 be two distinct points and E an

environment, with x1 6∈ E and x2 6∈ E . Then

(x1Vx2)E ⇔
m
∧

j=1

(x1Vx2)εj , (4)

(x1Vx2)E ⇔
m
∨

j=1

(x1Vx2)εj . (5)

Lemma 2: Let x be a point and E an environment such

as x 6∈ E . Then

EE(x) =
m
⋂

j=1

Eεj (x), EE(x) =
m
⋃

j=1

Eεj (x). (6)

3) According to the environment characterizations E+ and

E−: As noticed in the Section II-B, the environment is

not known but characterized by two sets, E+ and E−. The

following lemma provides a relation between the visibility

according to the environment and the characterizations.

Lemma 3: Let x1 and x2 be two points, E an environment

such as x 6∈ E , and E− and E+ the inner and outer

characterizations of the environment. Then

(x1Vx2)E ⇒ (x1Vx2)E− , (7)

(x1Vx2)E ⇒ (x1Vx2)E+ . (8)

B. Set Visibility

This Section extends the previous visibility notions to

connected sets. Let X be a connected set and εj an obstacle

such that X ∩ εj = ∅. The visible space of X regards to εj
is defined by Eεj (X) = {xi|∀x ∈ X, (xiVx)εj}.

The non-visible space of X regards to εj is defined by

Eεj (X) = {xi|∀x ∈ X, (xiVx)εj}.

Remark 1: When considering a set, a third visibility space

has to be defined. This space, named partial-visibility space,

corresponds to all the points that are neither in the visible

nor non-visible spaces of the set:

Ẽεj (X) = {xi|∃x1 ∈ X, ∃x2 ∈ X, (xiVx1)εj ∧ (xiVx2)εj}.
(9)

Examples of visibility spaces considering a connected set

are presented in the Figure 3.
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Fig. 3. Left Figure: The light grey space represents Eεj (X), the dark grey

space represents Eεj (X) and the medium grey space represents Ẽεj (X). The
black shape corresponds to εj and the white one to X. Right Figure: In

this example it can be noticed that EE (X) (the union of the hatched and

dark grey) includes Eε1 (X) ∪ Eε2 (X) (dark grey without hatched).

It is possible to extend those notions to an environment

EE(X) = {xi|∀x ∈ X, (xVxi)E}, (10)

EE(X) = {xi|∀x ∈ X, (xVxi)E}. (11)

The visibility over an environment can be characterized

by considering the visibility regards to the obstacles that

composed this environment.

Lemma 4: Let X be a connected set and E an environment

with X ∩ E = ∅. Then,

EE(X) =

m
⋂

j=1

Eεj (X), EE(X) ⊇
m
⋃

j=1

Eεj (X). (12)

Figure 5 illustrates the inclusion of Equation 12.

The following lemma provides a relation between the visi-

bility according to the environment and the characterizations.

This represents the basis of the proposed localization method.

Lemma 5: Let x1 ∈ X1 and x2 ∈ X2 be two distinct

points, with X1, X1 two connected sets such as X1∩X2 = ∅.

Considering an environment E with its characterizations E+

and E−

(x1Vx2)E ⇒

{

X1 ⊆ X1 ∩ (
⋂m′

j=1
E
c

ε
s−

j
(X2))

X2 ⊆ X2 ∩ (
⋂m′

j=1
E
c

ε
s−

j
(X1))

(13)

(x1Vx2)E ⇒







X1 ⊆ X1 ∩ (
⋃m′′

j=1
Ec

ε
s+

j

(X2))

X2 ⊆ X2 ∩ (
⋃m′′

j=1
Ec

ε
s+

j

(X1))
(14)

This lemma is an extension of Lemma 3.

IV. THE CONTRACTORS

In this section the two contractors CV([x1], [x2], ε
s
j) and

CV([x1], [x2], ε
s
j) are presented. A contractor is an operator

that can remove the points of the domains ([x1] and [x2])
that are not consistent with a given constraint (visibility

information). In our case the contractor CV contracts over

the visibility relation and CV over the non-visibility relation.

The Figure 4 presents an example of contraction according

to the visibility and non-visibility. Those contractors are

based on Equations 13 and 14. It can be noticed that the

computation of the visible and non-visible spaces E
ε
s+

j
([x2])

and E
ε
s−

j
([x2]) are needed to contract the domains [x1] and

[x2].

Fig. 4. Left Figure: Let x1 ∈ [x1] and x2 ∈ [x2] be two points such
that (x1Vx2)εs

j
, then using the contractor CV([x1], [x2], εsj) it is possible

to remove the hatched parts of the domains [x1] and [x2]. Right Figure:

With (x1Vx2)εs
j

, it is possible to contract the hatched parts.

Considering a segment εsj as an obstacle, the visible and

non-visible spaces of a box [x] regards to the obstacle are

delimited by lines. Those lines are passing throw the segment

bounds and the box vertices (Figure 5). The objective is

to identify the extremal lines that characterize the visible

and non-visible spaces. It can be noticed that those lines

correspond to the lines with the maximal and minimal slopes

(Figure 5).

Fig. 5. Eεs
j
([x1]) (light grey), Ẽεs

j
([x1]) (medium grey) and Eεs

j
([x1])

(dark grey) are delimited by lines defined by the segment and box vertices.

Remark 2: In order to avoid line singularities, the deter-

minant is used to characterize the lines. Let a = (a1, a2),
b = (b1, b2) and c = (c1, c2) be three points, the sign of

det(a− b|c− b) = (a1 − b1)(c2 − b2)− (a2 − b2)(c1 − b1)

indicates the side of a regards to the vector
−→
bc (Figure 6).

Fig. 6. The sign of det(a− b|c− b) depends of the side of a regards
to Seg(b, c).

1) Equation of the non-visible space of a box: The non-

visible space of a box [x] regards to an obstacle εsj =
Seg(e1j , e2j ) corresponds to the intersection of the non-

visible spaces of the vertices of the box: Eεs
j
([x]) =

⋂4

z=1
Eεs

j
(xz), with x1, x2, x3, x4 the vertices of the box

[x] (Figure 5).

Remark 3: The following equations correspond to the

non-visible space of a point xz regards to an obstacle εsj =
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Seg(e1j , e2j )

Eεs
j
(xz) = {xi| ζxz

det(xi − e1j |e2j − e1j ) ≤ 0 ∧

ζxz
det(xi − xz|e1j − xz) ≥ 0 ∧

ζxz
det(xi − xz|e2j − xz) ≤ 0 },

(15)

with ζxz
=

{

1 if det(xz − e1j |e2j − e1j ) > 0,

−1 else.

The Figure 7 presents an example of non-visibility

characterization. In this example ζxz
= −1 (Figure 6).

Eεs
j
(xz) is then characterized by the points xi such that

det(xi − e1j |e2j − e1j ) ≥ 0 and det(xi − xz|e1j − xz) ≤
0 and det(xi − xz|e2j − xz) ≥ 0 (Equation 15). This

corresponds to all the points above the line (e1j , e2j ), under

the line (xz, e1j ) and above the line (xz, e2j ) (Figure 6).

Fig. 7. Example of the non-visible space characterizations. Eεs
j
(xz)

corresponds to all the points that are under the line (xz , e1j ) and above

the line (xz , e2j ) and above the line (e1j , e2j ).

It can be deduced that (x1Vx2)εj ⇒ [x1]
∗ = [x1] ∩

(
⋃4

z=1
E
c

εs
j
(x2z )), with x1 ∈ [x1] and x2 ∈ [x2].

According to the previous equations it is possible to build

the visibility contractor CV([x1], [x2], ε
s
j), presented in the

Algorithm 1. This contractor uses the backward/forward

propagation presented in the Section II-A. It can be noticed

that the equations lines 4 to 6 correspond to the complement

of the Equation 15 (the ∧ become ∨ and the signs change).

Algorithm 1: CV([x1],[x2], εsj)

Data: [x1], [x2], ε
s
j = Seg(e1j , e2j )

1 \\ contraction of [x1] ;

2 for z = 1 to 4 do

3 backward/forward propagation over

4 ζx2z
det([x1]− e1j |e2j − e1j ) > 0∨

5 ζx2z
det([x1]− x2z |e1j − x2z ) < 0∨

6 ζx2z
det([x1]− x2z |e2j − x2z ) > 0;

7 \\ The resulting box is noted [x1]
∗
z;

8 [x1]
∗ =

⋃4

z=1
[x1]

∗
z;

9 \\ The same idea for the contraction of [x2] ;

Result: [x1]
∗, [x2]

∗.

2) Equation of the visible space of a box: Whereas

the computation of the non-visible space of a box can be

simplified to the computation of the non-visible spaces of

its vertices, for the visible space it is needed to test all the

possible lines. Let [x] be a box with xz , z = 1, · · · , 4 its

vertices and εsj an obstacle, the visible space of the box

regards to the obstacle can be defined as

Eεs
j
([x]) =

4
⋂

z=1

{xi|(ζxz
det(xi − e1j |xz − e1j ) > 0 ∧

ζxz+1
det(xi − e1j |xz+1 − e1j ) > 0 ∨

ζxz
det(xi − e2j |xz − e2j ) < 0 ∧

ζxz+1
det(xi − e2j |xz+1 − e2j ) < 0 ∨

ζxz
det(xi − e1j |e2j − e1j ) > 0 ∧

ζxz+1
det(xi − e1j |e2j − e1j ) > 0) ∧

(ζe1 det(xi − e1j |xz − e1j ) > 0 ∨

ζe1 det(xi − e1j |xz+1 − e1j ) < 0) ∧

(ζe2 det(xi − e2j |xz − e2j ) > 0 ∨

ζe2 det(xi − e2j |xz+1 − e2j ) < 0) }. (16)

with x5 = x1,

ζxz
=

{

1 if det(xz − e1j |e2j − e1j ) > 0,

−1 else.

ζxz+1
=

{

1 if det(xz+1 − e1j |e2j − e1j ) > 0,

−1 else.

ζe2 =

{

1 if det(e1j − xz|xz+1 − xz) > 0,

−1 else.

ζe2 =

{

1 if det(e2j − xz|xz+1 − x1) > 0,

−1 else.

The first six relations of the Equation 16 determinate the

lines with the maximal and minimal slopes. The last four

equations deal with a singularity presented in the Figure

8. Without those four equations, the partial-visible space

(medium grey) could be considered as included in the visible

space.

Fig. 8. Example of the visible space characterizations (light grey space).
The arrows correspond to the several constraints of the Equation 16
(ten relations, ten arrows). The filled arrows correspond to the first six
constraints, and the empty ones to the last four constraints. As in the other
figures, the light grey area corresponds to the visible space, the medium
grey to the partial-visible space and the dark grey to the non-visible space.

Note that the non-visibility contractor CV([x1], [x2], ε
s
j)

can be built as it is done for the visibility contractor presented

in the Section IV-.1.
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V. THE POSE TRACKING ACCORDING TO THE

VISIBILITY

A. The Pose Tracking Algorithm

As mentioned in the introduction we are interested in the

pose tracking localization problem. Knowing the initial pose

qi(k0) of a robot ri, the objective is to estimate the pose

qi(k) at each time k. Using the dynamic equation of the

system (Section I) it is possible to compute the pose of the

robots at time k knowing the pose at time k− 1. To be able

to compute the new pose, the orientation θi(k) is measured

by the compass and the input vector ui(k) is estimated by

the odometry. In order to deal with the sensor imprecisions,

we consider a bounded error context. Thus it is possible to

define [θi(k)] and [ui(k)] according to the sensors’ mea-

surements, such that θi(k) ∈ [θi(k)] and ui(k) ∈ [ui(k)],
and [qi(k0)] the initial robot’s pose estimation such that

qi(k0) ∈ [qi(k0)]. In this context it is possible to compute

the pose [qi(k + 1)] = f([qi(k)], [ui(k)]) using interval

analysis principles.

In order to avoid the drifting of the robots (the increase of

[qi(k)] size), the visibility information between the robots

is considered. At each time k each robot computes the

visibility information regards to the other robots of the team.

Let ri and ri′ be two different robots of R, ri sees ri′ ⇔
(xiVxi′)E , and ri does not see ri′ ⇔ (xiVxi′)E . It is also

needed that at each time k, each robot ri communicates its

current pose estimation [qi(k)] with the team R.

Algorithm 2 presents the proposed pose tracking approach.

First, Line 1, the initial poses of the robots are defined.

Line 3, for each robots, the new pose is estimated regards

to the knowledge of the previous one. Line 4, the robots

share their pose estimations with the team. Finally, Lines 5

to 9 the visibility information is used to contract the robot’s

pose estimations. Lines 7 and 9, two contractors are used:

the visibility contractor CV and the non-visibility contractor

CV. The objective of those functions is to remove from the

domains [xi] and [xi′ ], the values that are not consistent with

the visibility and non-visibility informations. Those functions

are detailed in the previous Section.

Algorithm 2: The pose tracking algorithm

Data: R, E−, E+

1 ∀ri ∈ R, initialize [qi(k0)] ;

2 for k = 1 to end do

3 ∀ri ∈ R, [qi(k)] = f([qi(k − 1)], [ui(k − 1)]);
4 ∀ri ∈ R, share [qi(k)] with the team;

5 forall the ri ∈ R, ri′ ∈ R, ri 6= ri′ do

6 if ri sees ri′ then

7 ([xi(k)]
∗, [xi′(k)]

∗) =
⋂

∀εs−
j

∈E−{CV([xi(k)], [xi′(k)], ε
s−
j )};

8 else

9 ([xi(k)]
∗, [xi′(k)]

∗) =
⋃

∀εs+
j

∈E+{CV([xi(k)], [xi′(k)], ε
s+
j )};

Fig. 9. The three simulated environments E1, E2 and E3. The black shapes
correspond to the obstacles and the grey doted lines delimited the space of
the robots moves.

number of robots
4 8 12 16 20 24

E1

average w([x1i ]) 439 310 196 131 127 115
average w([x2i ]) 460 334 176 147 121 117

final w([x1i ]) 897 668 172 147 121 117
final w([x2i ]) 919 674 193 167 159 133

iteration time 3 28 92 204 351 589

E2

average w([x1i ]) 545 355 183 102 93 84
average w([x2i ]) 552 375 185 115 108 97

final w([x1i ]) 1029 780 440 107 100 62

final w([x2i ]) 1038 811 435 110 97 95
iteration time 11 65 191 443 745 1160

E3

average w([x1i ]) 404 120 75 62 63 56
average w([x2i ]) 325 77 59 50 47 46

final w([x1i ]) 817 126 81 69 87 47
final w([x2i ]) 688 65 58 50 57 45
iteration time 15 116 313 646 1058 1727

Without the visibility information
- odometry and compass only -

average w([x1i ]) 588 final w([x1i ]) 1075

average w([x2i ]) 595 final w([x2i ]) 1084

TABLE I

EXPERIMENTAL RESULTS (the values are in cm and ms).

B. Experimental Results

In order to test this approach, a simulator has been

developed. The efficiency of the algorithm has been tested

for three different environments E1, E2 and E3 (Figure 9).

Each environment has a 10× 10 m2 size. It can be noticed

that the simulated environments are polygonal. This has

been done in order to simplify the computation of simulated

data. The proposed algorithm manipulates only the inner and

outer characterisations and would work as well in a non-

polygonal environments (the characterisations considered for

the presented experimentations are not perfect and could have

been associated to non-polygonal shapes).

The following table presents the number of segments of

the characterisations of each environment:

E1 E2 E3
E− 19 59 89
E+ 26 69 101

At each iteration (one moving and one contraction step)

a robot does a 20cm distance move, with a bounded error

of ±1%, and has a bounded compass error of ±1 deg. Note

that ∀ri ∈ R, [xi(k0)] = [xi(k0)− 50cm,xi(k0) + 50cm].
The processor used for the simulations has the following

characteristics: Intel(R) Core(TM) CPU - 6420 @ 2.13GHz.

During those tests the simulated robots moved randomly

in the environment, from k0 = 0 to k = 1500. The results

of the experimentations are presented in the Table I. Note

that average w([x{1,2}i
]) corresponds to the average size of
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[x{1,2}i
] during the all experimentation and final w([x{1,2}i

])
corresponds to the average of [x{1,2}i

] just for the final step.

As it can be noticed that the size of the initial boxes

w([x{1,2}i
]) are equal to 100cm (initial incertitude about

the position). It can be concluded that the experimentations

providing a final incertitude around 100cm (or smaller)

lead to successful localizations (avoiding the drifting of the

robots). In addition to that it is possible to classify as success-

ful the experimentations that have: average w([x{1,2}i
]) ≈

final w([x{1,2}i
]) (the imprecision is maintained and do not

increase). Those successful experimentations are depicted in

bold in Table I. Iteration time correspond to the average

iteration time of the 1500 iteration step time (in ms).

Looking at those results it appears that two elements are

important factors for the success of the localization: the

topology of the environment and the number of robots.

For a given environment a minimal number of robots is

necessary to perform an efficient pose tracking. It can be

explained by the fact that with few robots, the visibility

measurements carry few informations. In our experimenta-

tions, at least 8 robots are necessary to perform an efficient

localization in the environment E3, 12 for the environment

E1 and 16 for the environment E2. On the other hand, too

many robots does not improve significantly the localization

but increase the computation time.

It also appears that for a given number of robots the

localization process can be efficient in one environment

whereas it is not in the others. For instance with a team of

8 robots, the algorithm provides a good localization in the

environment E3, but not in the environment E1 neither in E2.

The number of obstacles, their sizes and their dispositions

in the environment are important factors for an efficient

localization. It can be explained by the fact that without any

obstacle, or with too small obstacles, the robots see each

other constantly, thus the visibility sensor will return always

the same value and will not provide useful information. It is

the same argument with too many obstacles.

C. Conclusion

In this paper it is shown that using interval analysis it

is possible to localize a team of robots only assuming weak

informations: the visibility between the robots. The proposed

algorithm is a guaranteed method that is able to exploit this

boolean information. Note that the context of the presented

experimentations is borderline as it only considers the weak

boolean visibility information. In practice this information

can be added to classical localization methods, using range

sensors for example, when a team of robots is considered,

as in [15], [16].

It appears in Section V-B that the topology of an en-

vironment is an important factor for the efficiency of the

proposed localization. In a future work it could be interesting

to characterize the environments, allowing to calculate for a

given environment, a minimal number of robots required to

perform a pose tracking.

Finally we are planning to consider a maximal range for

the visibility information and to restrain the field of vision

of the robots.
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