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Abstract—This paper presents non-field-of-view (NFOV) tar-
get estimation incorporating an acoustic sensor, which consists
of two microphones. The proposed approach derives the in-
teraural level difference (ILD) of observations from the two
microphones for different target positions and stores the ILDs
as database a priori. Given a new acoustic observation on a
target, an acoustic observation likelihood is created by calcu-
lating the correlation of the ILD of the new observation to the
stored ILDs. A joint observation likelihood is then developed by
fusing the optical and acoustic observation likelihoods, and the
recursive Bayesian estimation updates and maintains belief on
the target using the joint observation likelihood. The proposed
approach detects a target positively using an acoustic sensor
even if it is outside the field of view of the optical sensor and
localizes the target accurately by estimating it within the RBE.
The efficacy of the proposed approach was first validated by
experimental studies. Further numerical demonstrations then
show the applicability of the proposed approach to the NFOV
target estimation.

I. INTRODUCTION

Optical sensors have been primary sensors for target track-

ing due to their high-precision localization capability. The

optical tracking is however effective only if the target stays

within the field-of-view (FOV), which is determined by the

range of the optical sensor and the line-of-sight (LOS) from

the optical sensor. The FOV is often significantly smaller

than the area the target explores. Once it has been lost from

the FOV and has not been immediately rediscovered, the

target moves over the vast area and may not be any longer

rediscovered for tracking.

Historically, the capability of tracking was improved by

enhancing the accuracy of target estimation where the en-

hancement was achieved by probabilistically handling sensor

observations and estimating the belief on the target. In order

to handle different levels of uncertainty, various recursive

Bayesian estimation (RBE) techniques have been developed

and utilized accordingly. The most successful techniques in

the early stage were Kalman filter (KF) and its variants

[15]. The KF-based techniques represent the observation in
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terms of Gaussian probability density and update the target

belief also in terms of the Gaussian probability density at the

acquisition of every observation. While the KF-based tech-

niques enhanced the accuracy by prioritizing the significance

of observations based on their density, the enhancement is

possible only when the target is within the FOV.

The problem of the KF-based techniques was tackled

by two approaches. One was the replacement of the KF-

based techniques by RBE techniques that can handle non-

Gaussian distributions such as the sequential Monte Carlo

(SMC) methods also known as the particle filter methods

[12], the sequential Quasi-Monte Carlo (SQMC) methods

[8] and their variants. The chance of losing the target

becomes less since the target location is estimated more

accurately. As the handling of non-Gaussian distributions

does not solely enhance the accuracy when the target is

lost, another approach attempted was the improved sensor

modeling where negative observations of no-detection are

treated as positive information. Mauler [13] described the

observation likelihood without a detection event in terms of

the negation of the probability of detection.

Furukawa, et al [2], [4], [5], [6] generalized the uni-

fied observation likelihood by defining the observable and

detectable regions and enabled RBE using the grid-based

method [1] due to the heavily non-Gaussian representation of

the no-detection observation likelihood. The grid-based RBE

further demonstrated successful real time estimation using

a graphics processing unit (GPU). Despite the successful

implementation, tracking with the unified observation likeli-

hood, however, has been found to frequently fail in practice.

This is because no-detection is not very positive information

without positively estimating where the target is likely to be.

Since the FOV of the optical sensor is significantly limited

compared to the target space, the detection of a target is not

easy when the target has been lost for some time.

This paper presents non-field-of-view (NFOV) target es-

timation incorporating an acoustic sensor, which consists of

two microphones. If the target is cooperative, it is possible

to communicate with the target and estimate its location via

sound. The proposed approach derives the interaural level

difference (ILD) of observations from the two microphones

for different target positions and stores the ILDs as database

a priori. Given a new acoustic observation, an acoustic ob-

servation likelihood is created by calculating the correlation

of the ILD of the new observation to the stored ILDs. A joint

observation likelihood is then developed by fusing the optical

and acoustic observation likelihoods, and the RBE updates

and maintains belief on the target using the joint observation
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likelihood. The proposed approach detects a target positively

using an acoustic sensor even if it is outside the FOV of

the optical sensor and localizes the target accurately by

estimating it within the RBE.

The paper is organized as follows. The following section

reviews the conventional RBE that uses an optical sensor

as well as the grid-based method. Section III presents

the proposed target estimation approach incorporating an

acoustic sensor. Section IV demonstrates the efficacy of the

proposed target estimation through experimental analysis,

and conclusions are summarized in the final section.

II. OPTICAL RECURSIVE BAYESIAN ESTIMATION

A. Target Motion Model and Optical Sensor Model

Consider a target t of concern, the motion of which is

discretely given by
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is the “system noise” of the target. For simplicity, the target

state describes the two-dimensional position.

In order for the formulation of the NFOV target estimation

problem, this moving target is observed by a sensor platform

s. To focus on the estimation of a mobile target, let the sensor

platform be stationary and its global state be accurately

known as x̃
s ∈ X s. Note that (̃) is an instance of (). The

sensor platform carries an optical sensor to observe the target.
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where scv
t

k
represents the observation noise, and ø represents

an “empty element”, indicating that the optical observation

contains no information on the target or that the target is

unobservable when it is not within the observable region.

B. Recursive Bayesian Estimation

The RBE updates belief on a dynamical system, given

by a probability density, in both time and observation.

Let a sequence of observations of a moving target t by

a stationary sensor platform s from time step 1 to time

step k be s
z̃

t

1:k
≡ {s

z̃
t
κ
|∀κ ∈ {1, ..., k}}. Given the initial

belief p (xt
0) , the sensor platform state x̃

s and a sequence

of observations s
z̃

t

1:k
, the belief on the target at any time step

k, p (xt

k
|sz̃t

1:k
, x̃s) , can be estimated recursively through the

two stage equations; update and prediction.

In the prediction process, the target belief is updated

in time. The target belief p
(
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)

is updated
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by Chapman-Kolmogorov equation as
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where p
(
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is a probabilistic form of the motion

model (1). Note that p
(
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= p (xt
0) when

k = 1.
The correction process, on the other hand, updates the

belief in observation. The target belief p (xt

k
|sz̃t

1:k
, x̃s) is

corrected from the corresponding state estimated with the

observations up to the previous time step p
(
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)
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and l (xt

k
|sz̃t

k
, x̃s) represents the likelihood of x

t

k
given s

z̃
t

k

and x̃
s, which is a probabilistic version of the sensor model;

i.e., Equation (2) if the sensor is optical. It is to be noted

that the likelihood does not need to be a probability density

since the normalization in Equation (4) makes the output

belief be a probability density regardless of the formulation

of the likelihood.

C. Modeling of Optical Observation Likelihood

The optical observation likelihood is modeled by first

defining the “detectable region”. Due to the existence of

uncertainty, the observation of a no-empty element does not

necessarily indicate that the target has been reliably detected.

The detectable region of the optical sensor sc that describes

the region within which the sensor confidently detects the

target is thus defined as:
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where ǫt is a positive threshold value which judges the

detection of the target. Given the observation s
z̃

t

k
, the optical

observation likelihood is resultantly stated as
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where, depending on whether there exists a target within the

detectable region, the upper and lower formulas return like-

lihoods with detection and no-detection events, respectively.

Figure 1 illustrates the configuration of the unified ob-

servation likelihood when a sensor platform is in a one-

dimensional target space. When a target is not detected

without having it in the detectable region, the likelihood tells

where the target is unlikely to be and represented as a heavily

non-Gaussian distribution. When the target is detected, the

likelihood becomes Gaussian or near-Gaussian with its peak

located at the observed location by the detection. The closer

the target to the sensor platform, the more accurate the

estimation.
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position. The ILD configuration is different even when the

target is out of the LOS and thus in the NFOV. The capability

of the proposed approach in detecting the target in the NFOV

can be expected from this result.

(a) [2.8, 9] (NFOV) (b) [2.8, 5] (NFOV)

(c) [2.8, 1] (FOV) (d) [5, 1] (FOV)

(e) [6, 5] (NFOV) (f) [5, 4.3] (NFOV)

Fig. 8. ILDs at six positions of the 65 positions

Figure 9 shows the acoustic observation likelihoods when

the target moved and emitted sound at the four target

positions marked by red circles, which are at the 1st, 7th,

35th and 51th steps. The target is in the FOV only at the 1st

step. The acoustic observation likelihood is seen to be multi-

modal due to the excitation of reflected sounds even when the

target is within the FOV and thus on the LOS. The proposed

approach has, however, been able to correctly capture the true

target position at one of the peaks and successfully detect it

except for the 7th step.

The effectiveness of the proposed approach is further

understood comparatively by seeing Figure 10 with optical

observation likelihoods. The optical sensor can identify the

target accurately when it is within the FOV. The observation

likelihood with the target outside the FOV can however pro-

vide no positive information on the target. Finally, Figure 11

shows the joint optical/acoustic observation likelihoods. It

is seen that the joint observation likelihoods most narrow

down the possible target locations by detecting the target

dominantly with the optical observation likelihood when the

(a) k = 1 (FOV) (b) k = 7 (NFOV)

(c) k = 35 (NFOV) (d) k = 51 (NFOV)

Fig. 9. Acoustic observation likelihoods

target is within the FOV and with the acoustic observation

likelihood when the target is outside the FOV. The wrong

computation at the 7th step, however, remains and necessi-

tates RBE for target estimation.

(a) k = 1 (FOV) (b) k = 7 (NFOV)

(c) k = 35 (NFOV) (d) k = 51 (NFOV)

Fig. 10. Optical observation likelihoods

B. Effectiveness of the Proposed RBE in Target Estimation

Having understood the limitation of the target detection

with observations only in the last section, the effectiveness of

the proposed RBE approach was investigated by performing

RBE with the same joint optical/acoustic observation like-

lihoods. Without knowing the target motion well, the target

motion model was given by a random walk model assuming
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(a) k = 1 (FOV) (b) k = 7 (NFOV)

(c) k = 35 (NFOV) (d) k = 51 (NFOV)

Fig. 11. Joint optical/acoustic observation likelihoods

that the target is a human who could move to any direction

with equal probability.

Figure 12 shows the target belief estimated via RRE with

the joint optical/acoustic observation likelihoods. The result

shows that the target position is well estimated with all the

time steps including the 7th step where the joint observation

likelihood did not detect the target with the highest peak.

Since the prediction supports the continuous movement of

the target, the proposed approach was able to eliminate

wrong detections and estimate the target position near the

true position.

(a) k = 1 (FOV) (b) k = 7 (NFOV)

(c) k = 35 (NFOV) (d) k = 51 (NFOV)

Fig. 12. Proposed optical/acoustic target estimation

Figure 13 shows the target belief estimated conventionally

with the optical observation likelihoods only to compara-

tively verify the effectiveness of the proposed approach. The

result with the optical observation likelihoods is seen to

estimate the target position wrongly when the target is in the

NFOV. Because an inaccurate random-walk motion model

is used, the target is estimated continuously at the location

where it was lost. Finally, Figure 14 shows the results

quantitatively evaluating the performance of the proposed

approach. Figure 14(a) shows the transition of the error of

the estimated target position from the true position whereas

the transition of the Kullback-Leibler (KL) divergence is

exhibited in Figure 14(b). The error transition indicates that

the proposed approach maintains low error even when the

target has not been lost from the FOV for some time whilst

the conventional RBE with optical observation likelihoods

increases the error with high gradient. The KL divergence

transition also shows this behavior, indicating that the pro-

posed approach maintains maintains target information with

the use of the acoustic sensor.

(a) k = 1 (FOV) (b) k = 7 (NFOV)

(c) k = 35 (NFOV) (d) k = 51 (NFOV)

Fig. 13. Conventional optical target estimation

(a) Error vs time step (b) KL divergence vs time
step

Fig. 14. Quantitative analysis
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V. CONCLUSIONS

This paper has presented target estimation incorporating

an acoustic sensor. The proposed approach derives and stores

the ILDs for different target positions a priori. Given a new

acoustic observation, an acoustic observation likelihood is

calculated and, further fused with the optical observation

likelihood, creates a joint optical/acoustic observation likeli-

hood. The RBE updates and maintains the target belief using

the joint observation likelihood. The proposed approach not

only guarantees the estimation performance of the optical

RBE but also enables positive target estimation regardless of

the observability of the target. The first set of experimental

investigations has shown the effectiveness of the acoustic

observation likelihood and the joint optical/acoustic observa-

tion likelihood in NFOV target detection. After verification,

the superiority of the RBE with the joint optical/acoustic

observation likelihood to the conventional optical RBE has

been demonstrated in NFOV target estimation.

The paper has demonstrated the new concept of incor-

porating an acoustic sensor for NFOV target estimation, and

many challenges are still open for future study. The approach

was so far proposed for the stationary sensor platform. The

ongoing research is aimed at generalizing the approach to

handle dynamic sensor platforms. Other issues of immediate

interest include the enhancement of acoustic sensing using

the interaural time difference (ITD) and the interaural phase

difference (IPD) as well as the use of non-white noise sound

so that the approach could be used for various applications.

REFERENCES

[1] Bergman, N. Recursive Bayesian Estimation Navigation and
Tracking Applications, Ph.D Dissertation, Linkopings Univer-
sity, 1999.

[2] Bourgault, F., Goktogan, A., Furukawa, T. and Durrant-Whyte,
H. F., “Coordinated Search of a Lost Target in a Bayesian
World,” Journal of Advanced Robotics, pp. 187-195, 2004.

[3] F. Bourgault, T. Furukawa and H. F. Durrant-Whyte, Optimal
Search for a Lost Target in a Bayesian World, in Proc. Int.
Conf. on Field and Service Robotics, Mt. Fuji, pp. 239-246
(2003).

[4] Bourgault, T., Furukawa, T. and Durrant-Whyte, H. F., “Op-
timal Search for a Lost Target in a Bayesian World,” Eds. S.
Yuta and H. Asama, Field and Service Robots IV, Springer
Tracts in Advanced Robotics (STAR), Springer-Verlag, Vol.
24, pp. 209-222, 2006.

[5] Furukawa, T., Bourgault, F., Lavis, B. and Durrant-Whyte,
H.F., “Bayesian Search-and-Tracking Using Coordinated
UAVs for Lost Targets,” 2006 IEEE International Conference
on Robotics and Automation, Orlando, May 14-18, 2006, pp.
2521-2526, 2006.

[6] Furukawa, T., Mak, L.D., Durrant-Whyte, H.F. and Madhevan,
R., “Autonomous Bayesian Search and Tracking and its Ex-
perimental Validation,” Advanced Robotics, Vol. 26, No. 5-6,
pp. 461-485, 2012.

[7] B. Grochosky, Information-theoretic Control of Multiple Sen-
sor Platforms, Ph.D thesis, University of Sydney (2002).

[8] Guo, D. and Wang, X., “Quasi-Monte Carlo Filtering in
Nonlinear Dynamic Systems,” IEEE Transactions on Signal
Processing, 54(6), pp. 2087-2098, 2006.

[9] Hammersley, J. M. “Monte Carlo Methods for Solving Multi-
variable Problems,” Ann. New York Acad. Sci., 86, pp. 844-874,
1960.

[10] Kimoto, D. and Kumon, M., “Optimization of the Ear Canal
Position for Sound Localization Using Interaural Level Dif-
ference,” Proceedings of the 36th Meeting of Special Interest
Group on AI Challenges, pp.14-18, 2012 (in Japanese).

[11] Kumon, M. and Kimoto, D., “On Sound Direction Estimation
by Binaural Auditory Robots with Pinnae,” Proceedings of
the 35th Meeting of Special Interest Group on AI Challenges,
pp.48-53, 2011 (in Japanese).

[12] Liu, J.S. and Chen, R., “Sequential Monte Carlo Methods
for Dynamic Systems,” Journal of the American Statistical
Association, 93(443), pp. 1032-1044, 1998.

[13] Mauler, R., Objective Functions for Bayesian Control-
Theoretic Sensor Management, II: MHC-Like Approximation,
in Recent Developments in Cooperative Control and Optimiza-
tion, S. Butenko, R. Murphey and P. Pardalos (Eds.), pp. 273-
316, Kluwer Academic Publishers, Norwell, MA (2003).

[14] Noda Y. and Kumon, M., “Sound Source Direction Estimation
in the Median Plane by Two Active Pinnae,” Proceedings of
the 13th SICE System Integration Division Annual Conference,
pp.1643-1646, 2012 (in Japanese).

[15] Sorenson, H.W. Ed., Kalman Filtering: Theory and Applica-
tion, New York: IEEE, 1985.

3432


