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Bayesian Non-Field-of-View Target Estimation Incorporating An
Acoustic Sensor
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Abstract— This paper presents non-field-of-view (NFOV) tar-
get estimation incorporating an acoustic sensor, which consists
of two microphones. The proposed approach derives the in-
teraural level difference (ILD) of observations from the two
microphones for different target positions and stores the ILDs
as database a priori. Given a new acoustic observation on a
target, an acoustic observation likelihood is created by calcu-
lating the correlation of the ILD of the new observation to the
stored ILDs. A joint observation likelihood is then developed by
fusing the optical and acoustic observation likelihoods, and the
recursive Bayesian estimation updates and maintains belief on
the target using the joint observation likelihood. The proposed
approach detects a target positively using an acoustic sensor
even if it is outside the field of view of the optical sensor and
localizes the target accurately by estimating it within the RBE.
The efficacy of the proposed approach was first validated by
experimental studies. Further numerical demonstrations then
show the applicability of the proposed approach to the NFOV
target estimation.

1. INTRODUCTION

Optical sensors have been primary sensors for target track-
ing due to their high-precision localization capability. The
optical tracking is however effective only if the target stays
within the field-of-view (FOV), which is determined by the
range of the optical sensor and the line-of-sight (LOS) from
the optical sensor. The FOV is often significantly smaller
than the area the target explores. Once it has been lost from
the FOV and has not been immediately rediscovered, the
target moves over the vast area and may not be any longer
rediscovered for tracking.

Historically, the capability of tracking was improved by
enhancing the accuracy of target estimation where the en-
hancement was achieved by probabilistically handling sensor
observations and estimating the belief on the target. In order
to handle different levels of uncertainty, various recursive
Bayesian estimation (RBE) techniques have been developed
and utilized accordingly. The most successful techniques in
the early stage were Kalman filter (KF) and its variants
[15]. The KF-based techniques represent the observation in
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terms of Gaussian probability density and update the target
belief also in terms of the Gaussian probability density at the
acquisition of every observation. While the KF-based tech-
niques enhanced the accuracy by prioritizing the significance
of observations based on their density, the enhancement is
possible only when the target is within the FOV.

The problem of the KF-based techniques was tackled
by two approaches. One was the replacement of the KF-
based techniques by RBE techniques that can handle non-
Gaussian distributions such as the sequential Monte Carlo
(SMC) methods also known as the particle filter methods
[12], the sequential Quasi-Monte Carlo (SQMC) methods
[8] and their variants. The chance of losing the target
becomes less since the target location is estimated more
accurately. As the handling of non-Gaussian distributions
does not solely enhance the accuracy when the target is
lost, another approach attempted was the improved sensor
modeling where negative observations of no-detection are
treated as positive information. Mauler [13] described the
observation likelihood without a detection event in terms of
the negation of the probability of detection.

Furukawa, et al [2], [4], [S], [6] generalized the uni-
fied observation likelihood by defining the observable and
detectable regions and enabled RBE using the grid-based
method [1] due to the heavily non-Gaussian representation of
the no-detection observation likelihood. The grid-based RBE
further demonstrated successful real time estimation using
a graphics processing unit (GPU). Despite the successful
implementation, tracking with the unified observation likeli-
hood, however, has been found to frequently fail in practice.
This is because no-detection is not very positive information
without positively estimating where the target is likely to be.
Since the FOV of the optical sensor is significantly limited
compared to the target space, the detection of a target is not
easy when the target has been lost for some time.

This paper presents non-field-of-view (NFOV) target es-
timation incorporating an acoustic sensor, which consists of
two microphones. If the target is cooperative, it is possible
to communicate with the target and estimate its location via
sound. The proposed approach derives the interaural level
difference (ILD) of observations from the two microphones
for different target positions and stores the ILDs as database
a priori. Given a new acoustic observation, an acoustic ob-
servation likelihood is created by calculating the correlation
of the ILD of the new observation to the stored ILDs. A joint
observation likelihood is then developed by fusing the optical
and acoustic observation likelihoods, and the RBE updates
and maintains belief on the target using the joint observation



likelihood. The proposed approach detects a target positively
using an acoustic sensor even if it is outside the FOV of
the optical sensor and localizes the target accurately by
estimating it within the RBE.

The paper is organized as follows. The following section
reviews the conventional RBE that uses an optical sensor
as well as the grid-based method. Section III presents
the proposed target estimation approach incorporating an
acoustic sensor. Section IV demonstrates the efficacy of the
proposed target estimation through experimental analysis,
and conclusions are summarized in the final section.

II. OPTICAL RECURSIVE BAYESIAN ESTIMATION
A. Target Motion Model and Optical Sensor Model

Consider a target ¢t of concern, the motion of which is
discretely given by

Xjq =1 (xi,ui,wi) €))
where x! € X is the state of the target at time step k, u}, €
U* is the set of control inputs of the target, and wi, € W*
is the “system noise” of the target. For simplicity, the target
state describes the two-dimensional position.

In order for the formulation of the NFOV target estimation
problem, this moving target is observed by a sensor platform
s. To focus on the estimation of a mobile target, let the sensor
platform be stationary and its global state be accurately
known as X* € X®. Note that () is an instance of (). The
sensor platform carries an optical sensor to observe the target.
The FOV, or more precisely the “observable region”, of the
optical sensor s. can be expressed with the probability of
detecting the target Py (x4|x®) as

s Xt = {x0]0 < Py (xb|%*) < 1}

Accordingly, the target position observed from the optical
sensor, *cz! € X%, is given by

s t t S Scxt t s t
5czi = { °h (kax ’ Cvk) Xy, € %X,
’ 9]

< gt

where *ev! represents the observation noise, and ¢ represents
an “empty element”, indicating that the optical observation
contains no information on the target or that the target is
unobservable when it is not within the observable region.

B. Recursive Bayesian Estimation

The RBE updates belief on a dynamical system, given
by a probability density, in both time and observation.
Let a sequence of observations of a moving target ¢ by
a stationary sensor platform s from time step 1 to time
step k be *z¢, = {*z'|Vk € {1,...,k}}. Given the initial
belief p (x}) , the sensor platform state X* and a sequence
of observations *z! , , the belief on the target at any time step
k, p (x}|°Z},,,%%) , can be estimated recursively through the
two stage equations; update and prediction.

In the prediction process, the target belief is updated
in time. The target belief p (x}|°z}.,_;,%*) is updated
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from that in the previous time step p (x}_,|°Z},_;,%°)
by Chapman-Kolmogorov equation as
p (X}fclszizkfhis)
_ t gt t |sgt < t
= /ti (xhlxfo1) P (xf_y°20 1, X°) dx_g,
3)
where p (x}|x}_,) is a probabilistic form of the motion
model (1). Note that p (x}_[°z%,_;,x°) = p(x}) when
k=1
The correction process, on the other hand, updates the
belief in observation. The target belief p (x} |5z}, %x%) is
corrected from the corresponding state estimated with the
observations up to the previous time step p (Xj;C I°z% .1, 5(5)
and a new observation *z} as
q (X5 "%} 4, X°)
(X3 [°2] ., %) dx)_y

; “

p (X424, %) =

El 21k fxt q

where
q(-) =1 (x3]"2, X°) p (XL * 2141, X°) )
and [ (x} |z}, %®) represents the likelihood of x} given *z}
and x°, which is a probabilistic version of the sensor model;
i.e., Equation (2) if the sensor is optical. It is to be noted
that the likelihood does not need to be a probability density
since the normalization in Equation (4) makes the output

belief be a probability density regardless of the formulation
of the likelihood.

C. Modeling of Optical Observation Likelihood

The optical observation likelihood is modeled by first
defining the ‘“detectable region”. Due to the existence of
uncertainty, the observation of a no-empty element does not
necessarily indicate that the target has been reliably detected.
The detectable region of the optical sensor s. that describes
the region within which the sensor confidently detects the
target is thus defined as:

e Xy = {x}|e" < Py (x}|x%) <1} C >,

where €' is a positive threshold value which judges the

detection of the target. Given the observation *z,, the optical
observation likelihood is resultantly stated as
e e = { PO S
1— Py(xt|xs) Pzl € sxl,
where, depending on whether there exists a target within the
detectable region, the upper and lower formulas return like-
lihoods with detection and no-detection events, respectively.
Figure 1 illustrates the configuration of the unified ob-
servation likelihood when a sensor platform is in a one-
dimensional target space. When a target is not detected
without having it in the detectable region, the likelihood tells
where the target is unlikely to be and represented as a heavily
non-Gaussian distribution. When the target is detected, the
likelihood becomes Gaussian or near-Gaussian with its peak
located at the observed location by the detection. The closer
the target to the sensor platform, the more accurate the
estimation.

(©)
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Fig. 1. Optical observation likelihood

D. Grid-based Method

Handling the heavily non-Gaussian no-detection likelihood
necessitates the grid-based method as a RBE technique. As
the grid-based method represents the belief space in terms
of regularly aligned grid cells, let the cell of concern be
positioned at [th and mth partitions in z and y directions.
At the grid cell [I,m], the prediction and the correction
are processed independently. The prediction requires the
numerical evaluation of the Chapman-Kolmogorov equa-
tion in Equation (3) at each grid cell. Given the belief
pi;cn . (°2%.,_,) at time step k as well as the motion model

pl,m
bt
X x5y

kernel, the target belief at the grid cell [/, m] can be predicted
as

toI
CAC TR S) I
prc Lik—1) Dy k\x

a=0 =0

constructed in the matrix form as the convolution

l
pXtozm B

k—1

( 2 1) )
where ® indicates the convolution of the last belief with the
motion model.

The correction requires the computation of Equations (4)
at each grid cell. Given the predicted belief pl’ln (2t 1)

and the observation likelihood ll 7 (°z), the target belief at
the grid cell [/, m] can be corrected as

o (P2h) w0 ®)
pr z : - o )
A NN > s qxiﬂ )
where
q" (*2ia) = Li" (°20) pt" (P2ha) ©)

and [Az,,Ay,] is the size of the grid.

Whilst the unified observation likelihood allows belief
update and maintenance regardless of an detection event, the
RBE with the unified observation likelihood does not update
and maintain the belief effectively. Figure 2 illustratively
depicts this problem where the FOV and the NFOV is given
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by the light blue and the white colors respectively. When
the configuration of the target space is constrained compli-
catedly, the FOV becomes significantly limited compared to
the target space. This makes the belief dominantly updated
by the observation likelihood with no detection and thus
maintains the belief in an unreliable manner. The next section
will describe the proposed target estimation incorporating an
acoustic sensor to solve this problem.

NFOV

FOV

Sefisor
platform

Fig. 2. Optical observation likelihood

[II. TARGET ESTIMATION INCORPORATING ACOUSTIC
SENSORS

A. Acoustic Sensor Model and Observation Likelihood

While the optical sensor positively and thus accurately
estimates the target position when the target is within its
FOV and the detectable region, the target position cannot be
estimated positively when the target is outside the detectable
region. Unlike optical sensors, the acoustic sensor consisting
of two or more microphones can observe a target outside the
detectable region, even when the target is outside the observ-
able region, the NFOV, or further not on the LOS, the non-
line-of-sight (NLOS). The proposed approach thus utilizes an
acoustic sensor in addition to the optical sensor. Because of
its broad range, the observable region of the acoustic sensor
could be considered unlimited when compared to that of the
optical sensor. The acoustic sensor model s, can be therefore
constructed without defining an observable region unlike the
optical sensor model:

Sezf = %h' (x}, X3, vi) (10)

which is probabilistically equivalent to the likelihood given
by
an

Figure 3 illustrates the observation likelihood of the acous-
tic sensor in comparison to that of the optical sensor in Figure
1. Although the accuracy is not high, the acoustic sensor can
positively estimate the target state even if the target is in the
NFOV. At the same time, the observation likelihood could
become heavily non-Gaussian with multiple peaks due to the
influence of reflected sounds. It is possible that one of the
peaks is found near the location of the sensor platform as
shown in the figure. The likelihood with a target on the LOS
is sharper due to the less influence of reflected sounds but
could be still multi-modal. The likelihood with a target on

1" (x4 25, %3) = p (2 [, %3) -



the LOS and in close proximity will be a sharp Gaussian or
near-Gaussian distribution since the direct sound dominates
the observation.

Detectablefield °X;

Nearly unlimited
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Target likelihood: Heavily non-Gaussian

1(x1°8.%) = p( 51 x.5))

NLOS

LOS but far away

0 : X
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:sz\ °

o g LOS and close A CE
Fig. 3. Acoustic observation likelihood

B. RBE Using Joint Observation Likelihood

Given the observation likelihood of the optical sen-
sor 1°(xi]"zt,%x5) and that of the acoustic sensor
1* (xt]°z%,x5), the proposed approach derives a joint like-
lihood by multiplying the two likelihoods:

(L2, %x5) = 16 (x),]°25, x5) 1@ (x}°2,%5)  (12)

in accordance to the canonical data fusion formula. The joint
optical/acoustic likelihood may not be a probability density
similarly to the optical and acoustic observation likelihoods.

Figure 4 illustratively shows the resulting joint acous-
tic/optical observation likelihood when the target is on the
NLOS. Since the joint likelihood within the detectable region
is cleared by the optical likelihood, possible locations of the
target are significantly narrowed down. Some peak(s) could
be dropped as shown in the figure. Both the optical ob-
servation likelihood and the acoustic observation likelihood
could be represented by a heavily non-Gaussian distribution.
As a result, the joint optical/acoustic observation likelihood
could also become a heavily non-Gaussian distribution. The
substitution of Equation (12) into Equation (5) allows the
standard RBE and updates and maintains the target belief
without any modification.

C. Modeling of Acoustic Observation Likelihood

The proposed approach models an acoustic observation
likelihood from the observations of the sound target emitted
at the two microphones based on the preliminary investi-
gations of the authors [10], [11], [14]. Figure 5 shows a
schematic diagram of the procedure to model an acoustic
observation likelihood. We assume that the target emits sound
with white noise and indeed use it to create the acoustic
observation likelihood. A white noise sound emitted at a
specific position by the target for a certain time period is first
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recorded by two microphones. After applying fast Fourier
transform (FFT), the difference between the frequency-
domain amplitude responses, known as the ILD, is then
derived and further sampled to form an ILD vector within
the frequency range of interest. The ILD vector is created
from various positions in the target space and saved as
a reference response. The acoustic observation likelihood
modeling essentially corresponds to creating the set of ILD
vectors.

When a target emitted a white noise sound, the [LD vector
of the sound observation is compared to all the reference
responses. The degree of similarity is then used to develop a
similarity map. The similarity map is the acoustic likelihood
of the particular sound observation.
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Fig. 5. Acoustic sensor

Mathematically, let the frequency-domain sound of the
target at the sth position (x}),, which is observed by the

left and right microphones at xj, be s; (w|(x}),) and

sy (w] (%},);) where w is a frequency of sound. The ILD



for the ith position (X}),, AS; (w), is then given by

AS; (w )—QOIOg‘sl w\(xk ‘—QOIOg‘ST Wl (Xk) )‘

has two microphones as an acoustic sensor in addition to
a camera as an optical sensor. White noise was emitted from
the speaker, and the parameters used to construct the acoustic

(13) observation likelihood are listed in Table I.

If the ILD is associated with the target location at the set
of frequencies 2 = [wl,...,wN]T, the ILD vector can be
described as

S; () = [a1AS; (w1) ooy an AS; (wy)] T, (14)

where

\}—6>

In the equation, {-) is Macaulay brackets, and mm{, }
returns the smaller value of the two entities. The acoustic
observation likelihood modeling results in the ILD vectors
for n positions within the target space, i.e., S7(Q2),Vi €
{1,...,n}.

Given the ILD vector S (£2/x%) created from *z{ with
the unknown target position x:, the proposed approach
quantifies its degree of correlation to the 7th ILD vector as

o ST 81 ()
L) = S s @)

The acoustic observation likelihood with the particular
S (Q]x%) can be finally calculated as

Zu

where u(x%) is a shape function developed by adjacent
measurements. It is to be noted that we will not specify the
best shape function to use in this paper since every shape
function has advantages and disadvantages.

WN\ Xk

= (min {1 (on] (%0),)].

(16)

X (8 ().

1% (x4 |°2;,,%3) S (Qx},),S; (), (D

IV. NUMERICAL AND EXPERIMENTAL
ANALYSIS

The efficacy of the proposed approach was investigated
numerically and experimentally in two steps. The first step
experimentally examined the effectiveness of the acous-
tic observation likelihood in NFOV target detection. After
verification, the effectiveness of the RBE with the joint
optical/acoustic observation likelihood in NFOV target es-
timation was demonstrated.

Figure 6 shows the indoor test environment used for both
the studies with dimensions. A sensor platform is located
in a corridor and faced with the open space the target can
move around. The FOV is significantly limited compared to
the target space. Shown in the figure as yellow crosses are
the target locations at which sound was emitted to model the
acoustic observation likelihood function. After the modeling
of the acoustic observation likelihood, the target was then
moved along the lines indicated in the figure and emitted
sound. The observation and estimation was examined at the
four positions marked by red circles.

Figure 7 shows the target and the sensor platform. The
target is a wireless speaker whereas the sensor platform
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TABLE 1
WHITE NOISE DATA

Parameter | Value
w1 0 [Hz]

WN 86 [Hz]

N 100

€ 0.01

n 65

A. Effectiveness of Acoustic Observation Likelihood

Figure 8§ shows the six ILDs each observed with a target
at one of the 65 positions. Two positions are in the FOV, and
four are in the NFOV. It is first seen that the configuration
of the ILD varies depending on the target position. This
indicates that the ILD contains information on the target



position. The ILD configuration is different even when the
target is out of the LOS and thus in the NFOV. The capability
of the proposed approach in detecting the target in the NFOV
can be expected from this result.

o
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Frequency [Hz) Frequency [Hz)

(a) [2.8,9] (NFOV) (b) [2.8, 5] (NFOV)
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Frequency Hz) Frequency [Hz)

© [2:8,1] (FOV) ) [5,1] (FOV)

(e) [6,5] (NFOV) () [5,4.3] (NFOV)

Fig. 8. ILDs at six positions of the 65 positions

Figure 9 shows the acoustic observation likelihoods when
the target moved and emitted sound at the four target
positions marked by red circles, which are at the 1st, 7th,
35th and 51th steps. The target is in the FOV only at the Ist
step. The acoustic observation likelihood is seen to be multi-
modal due to the excitation of reflected sounds even when the
target is within the FOV and thus on the LOS. The proposed
approach has, however, been able to correctly capture the true
target position at one of the peaks and successfully detect it
except for the 7th step.

The effectiveness of the proposed approach is further
understood comparatively by seeing Figure 10 with optical
observation likelihoods. The optical sensor can identify the
target accurately when it is within the FOV. The observation
likelihood with the target outside the FOV can however pro-
vide no positive information on the target. Finally, Figure 11
shows the joint optical/acoustic observation likelihoods. It
is seen that the joint observation likelihoods most narrow
down the possible target locations by detecting the target
dominantly with the optical observation likelihood when the
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Fig. 9. Acoustic observation likelihoods

target is within the FOV and with the acoustic observation
likelihood when the target is outside the FOV. The wrong
computation at the 7th step, however, remains and necessi-
tates RBE for target estimation.
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Fig. 10. Optical observation likelihoods

B. Effectiveness of the Proposed RBE in Target Estimation

Having understood the limitation of the target detection
with observations only in the last section, the effectiveness of
the proposed RBE approach was investigated by performing
RBE with the same joint optical/acoustic observation like-
lihoods. Without knowing the target motion well, the target
motion model was given by a random walk model assuming
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that the target is a human who could move to any direction
with equal probability.

Figure 12 shows the target belief estimated via RRE with
the joint optical/acoustic observation likelihoods. The result
shows that the target position is well estimated with all the
time steps including the 7th step where the joint observation
likelihood did not detect the target with the highest peak.
Since the prediction supports the continuous movement of
the target, the proposed approach was able to eliminate
wrong detections and estimate the target position near the
true position.
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Fig. 12. Proposed optical/acoustic target estimation

Figure 13 shows the target belief estimated conventionally
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with the optical observation likelihoods only to compara-
tively verify the effectiveness of the proposed approach. The
result with the optical observation likelihoods is seen to
estimate the target position wrongly when the target is in the
NFOV. Because an inaccurate random-walk motion model
is used, the target is estimated continuously at the location
where it was lost. Finally, Figure 14 shows the results
quantitatively evaluating the performance of the proposed
approach. Figure 14(a) shows the transition of the error of
the estimated target position from the true position whereas
the transition of the Kullback-Leibler (KL) divergence is
exhibited in Figure 14(b). The error transition indicates that
the proposed approach maintains low error even when the
target has not been lost from the FOV for some time whilst
the conventional RBE with optical observation likelihoods
increases the error with high gradient. The KL divergence
transition also shows this behavior, indicating that the pro-
posed approach maintains maintains target information with
the use of the acoustic sensor.

Q0 Sensor Positon PN
© True Position o
© Estimaton 5 o

10l Sensor Poson

e Position
stimation

o0 s s 4 2 4
xim) xim]

(@ k =1 (FOV)

10!/ 9 Sensor Positon
© True Position
O Estimaton

x[m] x[m] ¢
(c) k = 35 (NFOV) (d) k = 51 (NFOV)

Fig. 13. Conventional optical target estimation
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V. CONCLUSIONS

This paper has presented target estimation incorporating
an acoustic sensor. The proposed approach derives and stores
the ILDs for different target positions a priori. Given a new
acoustic observation, an acoustic observation likelihood is
calculated and, further fused with the optical observation
likelihood, creates a joint optical/acoustic observation likeli-
hood. The RBE updates and maintains the target belief using
the joint observation likelihood. The proposed approach not
only guarantees the estimation performance of the optical
RBE but also enables positive target estimation regardless of
the observability of the target. The first set of experimental
investigations has shown the effectiveness of the acoustic
observation likelihood and the joint optical/acoustic observa-
tion likelihood in NFOV target detection. After verification,
the superiority of the RBE with the joint optical/acoustic
observation likelihood to the conventional optical RBE has
been demonstrated in NFOV target estimation.

The paper has demonstrated the new concept of incor-
porating an acoustic sensor for NFOV target estimation, and
many challenges are still open for future study. The approach
was so far proposed for the stationary sensor platform. The
ongoing research is aimed at generalizing the approach to
handle dynamic sensor platforms. Other issues of immediate
interest include the enhancement of acoustic sensing using
the interaural time difference (ITD) and the interaural phase
difference (IPD) as well as the use of non-white noise sound
so that the approach could be used for various applications.
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