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Abstract— Robot grasping and manipulation relies mainly
on two types of sensory data: vision and tactile sensing.
Localisation and recognition of the object is typically done
through vision alone, while tactile sensors are commonly used
for grasp control. Vision performs reliably in uncluttered
environments, but its performance may deteriorate when the
object is occluded, which is often the case during a manipulation
task, when the object is in-hand and the robot fingers stand
between the camera and the object.

This paper presents a method to use the robot’s sense of
touch to refine the knowledge of a manipulated object’s pose
from an initial estimate provided by vision. The objective is to
find a transformation on the object’s location that is coherent
with the current proprioceptive and tactile sensory data. The
method was tested with different object geometries and pro-
poses applications where this method can be used to improve the
overall performance of a robotic system. Experimental results
show an improvement of around 70% on the estimate of the
object’s location when compared to using only vision.

I. INTRODUCTION
Robot grasping and particularly the fine manipulation of

an object by a robot requires very accurate sensing of the
object’s pose and of the acting forces. In fact, even for a
human, tactile sensing is fundamental for performing tasks
that require a great deal of accuracy. This was illustrated
in a study by Rothwell [1] in which a man with impaired
tactile sensing who, despite not having any motor problem
and being able to perform most tasks using only vision
to control his movements, failed to perform more accurate
manipulation tasks such as the fastening of a button or
using a pen to write. Similarly, a robot equipped with a
camera can perform simple grasps but, to carry out fine
manipulation tasks, must have very accurate tactile sensors,
that not only sense the contact location but also the direction
of the interaction forces. When using only vision to track an
object’s position and orientation, the obtained information
might be inaccurate due to limitations of the hardware or
bad calibration and might fail to track the object when it
is occluded. An example of this situation is shown in Fig.
1, where the camera’s point of view is shown along with
a visualiser displaying the robot’s posture and the object’s
pose as acquired from the vision system. Comparing the two
images, it can be seen that the object is not represented in
its correct pose with respect to the robot (it is intersecting
the robot’s middle and ring finger and the thumb does not
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seem to be touching the object surface). These inaccuracies
can hinder the success of a grasp or manipulation task.

Fig. 1. Camera’s point of view, and visualisation of the robot’s current
posture with a vision-acquired object pose

The fusion of sensor information from different sources
has caught the attention of roboticists as the need for a robot
to work in unstructured environments became an essential
part of research in the field. The uncertainty associated with
this context requires the usage of different sensor information
which, ideally, can be complementary, providing redundancy
and increasing a system’s robustness [2]. In the field of robot
grasping, the combination of vision and tactile sensing can
increase the accuracy of the information on the object’s pose,
and also provide an estimate in cases where vision alone
fails. Among the most relevant publications that use this
approach are the works by Allen et al [3], who combined
vision, force and tactile sensing to portray how these different
sensing modalities could complement each other. Kragic [4]
integrates vision with a grasp planner, using only vision
to track the object. Petrovskaya [5] explored a method
to localise an object using Scaling Series. Prats et al [6]
combined tactile, force and vision information to locate and
open a door handle and compared the performance under
different sensing settings (only force, force and vision and
tactile, force and vision), where the combination of the three
modalities proved to outperform the other two, which is
analogue to the previously mentioned results of Rothwell et
al [1]. Estimation of an object’s pose combining stereo vision
and a force-torque sensor mounted on the wrist of a robot was
reported by Hebert et al [7], who also used the joint position
to estimate the location of the fingers with respect to the
object’s faces. Honda et al [8] used a combination of tactile
and vision sensing to estimate an object’s pose, assuming
that the object is composed of plain and quadratic surfaces.
This paper extends the authors’ previous work in [9], where
only the distance between fingers and object was considered
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and no ground truth information was available and presents a
method to track an object using the object geometry acquired
from vision and tactile sensors on the hand which are used
to complement the shortcomings of a vision system by either
refining the pose given by the camera or estimate it when the
camera is unable to do so. Given a grasped object’s geometry
and an initial estimate of its position and orientation, the
proposed method finds a new estimate of a pose that satisfies
the current contact information. The object’s geometry and
an initial estimate of the location was acquired using the
3-D vision-based reconstruction and tracking described in
[10], [11] and the tactile information, contact location and
normal and tangential force components was acquired using
the sensors presented by Liu et al [12]. The objective is
then to find a transformation (rotation and translation) that
minimises the distance from the current contact location on
the fingertips to a point on the surface of the object and also
minimises the angle between the measured normal force and
the vector perpendicular to the surface on that same point
(contact normal). This improved information on the object’s
location can be directly fed into a manipulation planner or
controller or, if similar corrections are obtained consistently,
be used to improve the system calibration.

Both simulated and experimental data have been used to
assess the algorithm, with different optimisation algorithms
being tested and compared. The next section outlines of
the proposed method, where the problem is presented, the
algorithm is described and the simulation results compared.
Section III details the experimental setup and the obtained
results, while conclusions and possible future enhancements
are described in section IV.

II. METHOD AND SIMULATION RESULTS
A. Problem Presentation

The problem of finding an object’s pose according to the
object’s geometry and the contact location can be presented
as finding a set of parameters that define a transformation (a
rotation and a translation) from our current estimate of where
the object is to one that is coherent to the current sensor
measurements. This method is somewhat similar to Iterative
Closest Point (ICP), a well known method used in computer
vision to compute a transform between two sets of point
cloud data [13] that minimises the distance between pairs of
points. In this paper, instead, a matching is proposed that also
takes into account the contact normal information provided
by the tactile sensors and the object surface normal estimated
through its geometry. To increase the performance of the
algorithm, the desired transformation that is to be calculated
is not on the object but on the contact locations, therefore
avoiding having to transform all the points in the object in
every iteration. Instead, the contact locations are transformed
to coincide with the object, and this transform is then inverted
and applied to the object. The quaternion representation was
chosen to describe the rotations for its advantages in terms
of computational efficiency and suitability for optimisation
methods. Using quaternions to describe rotations not only
requires less calculations when compared to rotating using,

for example, rotation matrices, but also the calculations
involved are much easier for a computer to deal with, as
there are no trigonometrical operations such as sine or cosine,
improving the overall computation speed, besides allowing
for smoother interpolation when compared to other rotation
conventions [14], [15], [16]. The parameters which define a
transformation (a rotation q and a translation ~t) that are to
be found are shown in (1):

x =
[
q,~t
]T

x = [qw, qx, qy, qz, tx, ty, tz]
T

(1)

B. Description of the Algorithm

In order to decrease the computational time of the algo-
rithm, the first step is to find regions on the object, inside
a defined neighbourhood, where the finger is expected to
be in contact, avoiding iterating through all the points of
the object’s surface. This neighbourhood is set dynamically
so that a minimum number of points in the object are
selected. Equation (2) defines the sets S(m) for each finger
that contains the points s(m)

1 , s
(m)
2 . . . s

(m)
n belonging to the

object O, whose distances to each finger f (m) lie inside a
neighbourhood ε. The result of this computation is shown
in Fig. 2, with simulated and real data. The initial contact
locations on the fingers are represented by the cross symbols
and the coloured regions are each finger’s respective region
where the cost function will be evaluated.

S(m) = {s(m)
i ∈ O : ‖s(m)

i − f (m)‖ ≤ ε} (2)

(a) Simulated (b) Experimental data

Fig. 2. Regions created in the object point cloud to improve the speed of the
algorithm. Each colour represents points in the object in the neighbourhood
of a finger in contact.

The algorithm then tries to find the parameters x, de-
scribed in (1) that yield a local minimum for a cost function
G(x), which takes into account not only the contact locations
but also the direction of the normal component of the contact
force. As the contacts are assumed to be rigid, this normal
component of the force should coincide with the object
surface normal direction. The desired cost function should
then allows us to find a transform that, not only minimises the
distance from the contact locations to the object surface, but
also minimises the angle between the measured normal on
the finger tip sensor and the surface normal calculated from
its geometry. By taking into account the contact normals, one
can also know which face of the object the robot is touching.
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As an example, simply minimising the distance can give a
wrong result if the contact is close to an edge or a vertex of
the object. This error can put the success of a manipulation
task at risk if the finger is assumed to be touching the wrong
surface.

The objective function to minimise (3) was defined as the
distance from the contact location to the closest point s(m)

i in
its respective region Sm plus a weighting coefficient times a
value that increases with the angle between measured normal
direction of the contact force û(m) and the surface normal
n̂i at point s(m)

i . The symbol |a| denotes the absolute value,
and 〈û, n̂〉 is the inner product. wn is a weight attributed to
the information of the normals, which is tuned according the
requirements of the real system and how accurate we know
the object model to be. By giving a large value to wn, the
algorithm will try to adjust the orientation of the object to fit
the normals more than it will try to minimise the distance.

G(x) =


min(‖(qf (1)q∗ + ~t)− s(1)i ‖+ wn|(1− 〈qû(1)q∗, n̂i〉)|
min(‖(qf (2)q∗ + ~t)− s(2)i ‖+ wn|(1− 〈qû(2)q∗, n̂i〉)|

...

min(‖(qf (m)q∗ + ~t)− s(m)
i ‖+ wn|(1− 〈qû(m)q∗, n̂i〉)|

(3)

A summary of the algorithm in pseudo code is detailed
below, in Algorithm 1.

Algorithm 1 Pose correction
Require: Object point cloud and number of fingers touching

the object ≥ 2.
for all fingers in hand do

if finger is in contact then
Transform contact point (f (m)) and contact normal
û(m) to palm coordinate frame

end if
end for
for all f (m) do

for all points pi in object do
if ‖pi − f (m)‖ ≤ ε then
s
(m)
j = pi
j ← j + 1

end if
end for

end for
Minimise: G(x) =

min(‖(qf (m)q∗ + ~t)− s(m)
i ‖+ wn|(1− 〈qû(m)q∗, n̂i〉)|

if minimisation is successful then
Invert transformation defined by xi
Apply transformation to object

end if

C. Optimisation Method

Fitting a small number of points to its surface often yields
more than one solution, specially in cases where the object
presents some kind of symmetry. As such, gradient-based
iterative methods such as Gradient Descent or Levenberg-
Marquardt present the advantage of finding a local minimum

close to the initial estimate. This local minimum is intuitively
more likely to be a better solution than a global minimum
that, despite obtaining a smaller residual, yield a pose that
displaces the object further from the initial estimate, less
likely to be the real pose of the object (e.g. upside down).
Nonetheless, using these methods also presents some diffi-
culties, as the objective function in (3) is not differentiable
because we are testing a possible contact location against
multiple points in the surface of the object. At each iteration,
the point where we estimate the finger to be touching may
be different, making the objective function discontinuous.
To deal with this issue, the Finite Difference Jacobian is
calculated at each iteration [17], using the forward difference
approximation in (4).

J̃G = (∇hG)(x)j =
G(x+ h‖x‖ej)−G(x)

h‖x‖
(4)

The first iterative method that was used to find a satisfiable
transformation was gradient descent. This method uses the
update rule given in (5). The step size λ was tuned empiri-
cally, as it will make the convergence either faster or more
accurate. The chosen value for λ was 2×10−3. This method
takes steps in the direction of the negative of the gradient to
find a local minimum.

xi+1 = xi − λ(J̃G(xi)
TG(xi)) (5)

The other tested iterative method was the Levenberg-
Marquardt algorithm [18], which is a combination of Gauss-
Newton and the Gradient Descent methods. The update
rule is shown in (6). Given that the approximate of the
Hessian matrix J̃T J̃ may contain rows with only zeros,
(J̃T J̃+ λdiag[J̃T J̃]) can become singular and thus it is not
always invertible. The workaround was to use the Moore-
Penrose pseudo inverse [19].

xi+1 = xi − (J̃T J̃+ λdiag[J̃T J̃])†J̃TG(xi) (6)

D. Simulation Results

Tests were carried out first in a MATLAB simulation,
to assess and compare the performance of each particular
approach. Four points belonging to different faces of the
object’s surface were selected. These points were then ar-
bitrarily transformed (with both rotation and translation) and
the algorithm was run. Table I summarises the obtained
results for each iterative method for similar accuracies. It
was also investigated whether the addition of the normal
information can improve the overall accuracy of the method.

MDTS stands for the mean distance between the fingers
and the surface, while RME stands for real mean error,
which is the mean distance from the optimisation result
to the previously selected initial point. This difference is
fundamental for the understanding of this problem as, in
a real system, we do not know which point on the object
the robot is touching, so the algorithm will find a transform
that minimises the cost function (3) in one of the points in
the region defined in equation (2). In the case of simulated

4023



TABLE I
COMPARISON OF OPTIMISATION METHODS

Method Shape Its. MDTS RME MAE Speed (s)
Gradient
Descent

Cube 200 0.197 0.799 9.53° 16.21
Cylinder 154 0.111 0.265 4.45° 15.97

Levenberg-
Marquardt

Cube 37 0.113 1.013 10.63° 4.99
Cylinder 25 0.096 0.420 5.67° 5.50

GD with
normals

Cube 200 0.140 0.524 6.15° 17.46
Cylinder 136 0.065 0.088 0.97° 14.12

LM with
normals

Cube 37 0.033 0.629 4.81° 6.33
Cylinder 25 0.087 0.324 4.03° 5.63

data, the points were selected a priori, so it is known
where the algorithm should converge. MAE stands for mean
angle error, which is the average angle between the ground
truth and the result. The comparison between these different
approaches shows that the Levenberg-Marquardt method is
usually faster to converge, requiring fewer iterations to obtain
a similar accuracy. Also, it is clear that the addition of the
normals not only improves the convergence of the algorithm
itself but also yields results which are closer to the ground-
truth, without any significant increase in computation time.

Given that we want to find a transform in the object that
matches the contact locations given by the kinematics of the
robot and the tactile sensors, the resulting transform needs
to be inverted and applied to the object. The result is plotted
in Fig. 3, where the grey point cloud shows the initial pose
of the object, the green point cloud represents the ground
truth and the yellow point cloud shows the transformed
pose using the inverse of the resulting parameters from the
optimisation. It can be seen that the output object coincides
almost perfectly with the ground truth. These results use
the Levenberg-Marquardt method with information on the
normals.

(a) Box-shaped object (b) Cylinder-shaped object

Fig. 3. Simulation results – green represents the ground truth, gray the
initial misplaced pose and yellow the resulting object pose.

III. EXPERIMENTS AND RESULTS

A. System Overview

The proposed method was implemented in a real system,
consisting of a Shadow Arm and hand robot with a Mi-
crosoft Kinect RGB-D camera mounted on the shoulder and
equipped with custom designed fingertips with 6-axis ATI

Fig. 4. Overview of the experimental setup

nano17 force and torque sensors. This tactile sensing tech-
nique was presented by Liu et al [12] where, by measuring
the values of force and torque and using a parametrisable
convex surface, one can calculate the contact location and the
local torque (torque around the normal direction) which then
allows to calculate the normal and tangential components of
the interaction force.

The method consists of finding the point pc in Fig. 5(a)
that satisfies the equations of forces and moments for each
dimension, assuming the only possible torque m is normal
to the surface [20]. Equation (7) describes the force and
moment balance for a single contact and the equation for
the ellipsoidal surface S. The green coordinate frame is the
sensor frame and the black is the ellipsoid frame. After the
calculation of the contact location pc, the acting force can be
decomposed in its normal and tangential components. This
method was evaluated in [21] and shown to have an accuracy
on the calculation of the contact location of 266 µm and can
run at frequencies of more than 800 Hz.{

pc × ~F + ~m = ~M
S(x, y, z) = 0

(7)

(a) Resulting forces and torques on
an ellipsoid when a force is acting
on point pc

(b) Detail of force and torque sensor
mounted on the fingertip

Fig. 5. Intrinsic contact sensing fingertip design

The proposed algorithm was implemented in C++ using
the ROS platform and can be triggered in two different ways:
the initial estimate of the object pose can be manually given
by the user, and the object model is donwloaded from a
database or it can be acquired directly from the vision system
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using the object recognition and tracking algorithm presented
in [10]. The results on this paper use the latter approach in
order to assess the advantages of this algorithm over a vision-
only tracking system. Also, the object model is known to
be imperfect, which should present further difficulties for
convergence when compared to the simulated results, where
the models were perfect cubes and cylinders.

B. Results

In order to validate the method, two objects were tested:
one standard soda can and a cuboidal metal tea box. These
two objects were chosen due to their different properties
for the problem at hand. The cylindrical soda can presents
rotational symmetry, while the tea box has very distinct faces
and normals.

Due to the difficulty of having a continuous ground truth,
the validation method consisted of glueing the object to a
transparency with four squares with known dimensions, as
shown in Fig. 6(a). The object’s centre was coincident with
the intersection of the squares drawn on the transparency
and the table on which the robot manipulated the object
was covered with millimeter paper, as shown in Figs. 6(a)
and 6(b). By taking note of two corners of the squares, the
location of the object could be determined using (8) for
corner points p1 and p2 and object centre p0.

~v = p1 − p2;

p0 = p2 +

[
0 −1
1 0

]
~v

(8)

(a) Soda can glued to marked trans-
parency

(b) Box-shaped object (Tea box) be-
ing grasped

Fig. 6. Ground truth measurement method

The point clouds depicting the vision-acquired pose and
the pose corrected with the proposed method are shown in
Fig. 7(a) and 7(b), in green and pink respectively, along with
a robot model showing the robot’s current posture. It can be
seen that the estimation of the object’s location is improved,
as it is located coherently within the robot hand. Fig. 8(b) and
8(a) show the x and y position of the centre of the object’s
base according to vision (as rings), corrected (as a line)
and the ground truth at the recorded points (as dots). The
resulting point cloud is expressed in the palm coordinates
and stays fixed with the palm frame between corrections, as
it is assumed that the grasp is stable and as such there is no
relative movement between the hand and the object.

The algorithm’s running time was 0.171 seconds on aver-
age, with an average number of iterations of 91.2. The mean

(a) Large diameter grasp on a soda can

(b) Tripod grasp on a cuboidal tea box

Fig. 7. Visualisation of a grasped object scene. The green point cloud
represents the object in the pose detected by the vision system and the pink
point cloud represents the object after its pose has been corrected using our
approach

error of the vision estimates (taken only when the ground
truth was known) was 8.58 cm for the cylindrical object and
8.02 cm for the cuboid, while after the correction it was
reduced to 2.66 cm and 2.0 cm respectively.

It is important to note at this point that the fact that
the result of the optimisation algorithm might fall below
distances of 1 mm between the fingers and the object, does
not guarantee that the calculated pose is exactly the ground-
truth correspondent. This is due to the reduced number of
points to be fitted and the symmetry present in most hand-
held objects, which typically allows myriad solutions. As an
example, a cylindrical object will have countless solutions
with orientations around its axis of revolution. While this
may not be vital to the success of a manipulation task, further
investigation should be done to narrow down the number of
solutions. Some strategies are proposed in the end of the next
chapter to address this problem.

IV. CONCLUSIONS AND FUTURE WORK

This paper presented a method to improve the estimation
of an object’s pose while it is being manipulated. While vi-
sion systems perform robustly in an uncluttered environment,
during a manipulation task the fingers and the hand might
occlude the object, which can greatly reduce the ability of
such tracking system to be accurate and robust. By taking
advantage of previously developed intrinsic contact sensing
fingertips, an algorithm was developed to rectify an estimate
of an object’s position and orientation by finding a pose that
satisfies the contact between the fingers and the object and
also the contact normal. The algorithm succeeded in reducing
the error by around 70%, while taking less than 0.2 seconds
to compute. This allows the real-time tracking of an object
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(a) Results for the cuboid box.

(b) Results for the cylindrical can

Fig. 8. Experimental results – blue and green represent x and y
components, with the rings plotting the pose obtained by vision and the
lines the pose estimated by the proposed method. Red dots are recorded
ground truth

while it is being manipulated and can be a complement to a
vision system both in terms of accuracy and update rate.

Further improvements on the robustness of the method can
be made, such as ensuring that the resulting pose does not
produce an intersection between the robot and the object.
Also, taking advantage of the local torque information given
by the intrinsic contact sensors to estimate the object’s centre
of mass location and take it into account when finding
the best pose match. Future work will focus on adding
other tactile information such as a tactile array in the robot
hand’s palm and fuse this information with the fingertip
tactile sensing data, integrating a slip detector to trigger the
correction algorithm. The application of this method in the
field of blind grasping should also be looked into.
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