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RANSAC for Motion-Distorted 3D Visual Sensors
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Abstract— Visual odometry (VO) is a highly efficient and
powerful 6D motion estimation technique; state-of-the-art bun-
dle adjustment algorithms now optimize over several frames of
temporally tracked, appearance-based features in real time. It is
well known that the temporal feature correspondence process
is highly prone to mismatches. The standard technique used
for outlier rejection in this process is random sample consensus
(RANSAC), which is an iterative and non-deterministic process
used to find the parameters of a mathematical model that
best describe a likely set of inliers. The traditional model
used for RANSAC in the visual odometry pipeline is a rigid
transformation between two camera poses; this model has long
assumed the use of an imaging sensor with a global shutter.
In order to use imaging sensors that do not operate with a
global shutter, it is proposed that the RANSAC algorithm be
modified to use a constant-camera-velocity model. Specifically,
this paper investigates the use of a two-axis scanning lidar in
the visual-odometry pipeline. Images are formed using lidar
intensity data, and due to the scanning-while-moving nature of
the lidar, the behaviour of the sensor resembles that of a slow
rolling-shutter camera. We formulate a Motion-Compensated
RANSAC algorithm that uses a constant-velocity model and the
individual timestamp of each extracted feature. The algorithm
is validated using 6880 lidar frames with a resolution of 480 x
360, captured at 2Hz, over a 1.1km traversal. Our results show
that the new algorithm results in far more inlying feature tracks
for rolling-shutter-type images and ultimately higher-accuracy
VO results.

I. INTRODUCTION

Visual odometry (VO) is a powerful 6D motion estimation
technique that is made efficient by temporally tracking points
of interest, or appearance-based features, over a sequence
of images. The technique is widely used due to the low
cost and availability of passive camera technology. Although
cameras using Complementary Metal-Oxide-Semiconductor
(CMOS) technology are known to be cheaper than ones using
a Charge-Coupled Device (CCD), they do not often employ
a global shutter and are often avoided in robotics due to the
added complexity of rolling-shutter-type distortions.

Our motivation in exploring the use of rolling-shutter-type
imagery comes from the desire to use range/intensity data
from a two-axis scanning lidar that is scanning while moving.
In particular, we are interested in using the Autonosys
LVCO0702 [1], seen in Figure 1, which can generate 480 x 360
intensity imagery at a rate of 2Hz. Due to the slow vertical
scan of the sensor, scanning while moving causes nonaffine
image distortion (see Figure 2). The benefit in using intensity
imagery, over passive camera imagery, is that it is an active
measurement scheme and does not rely on external lighting
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Fig. 1.

This figure shows the ROC6 rover, equipped with an Autonosys
LVCO0702 lidar and a Thales DG-16 Differential GPS unit.

Fig. 2.

This figure shows an example intensity image captured using the
Autonosys LVCO0702 two-axis scanning lidar. The nonaffine image distortion
is caused by changing the viewpoint of the lidar during image acquisition.

conditions. Initial work with the sensor by McManus et al.
[2] shows that Speeded-Up Robust Features (SURF) [3] can
be both extracted from the intensity imagery and robustly
matched over a full diurnal cycle.

Before considering a motion estimation problem that prop-
erly accounts for this type of data, we must first confront
the issue of feature correspondence and outlier rejection.
An initial guess of the temporal tracks between two sets of
features is often generated using appearance-based feature
descriptors; this alone does not take into account the geom-
etry of the problem and is prone to generating mismatches.
The standard outlier-rejection scheme for filtering the initial
guess is random sample consensus (RANSAC) [4], which is
a nondeterministic algorithm for robustly finding the param-
eters of a mathematical model that best describe a likely set
of inliers. The model used in the RANSAC algorithm for the
global-shutter, visual pipeline is a single rigid transformation
(i.e., translation and rotation). In order to account for the
temporal nature of rolling-shutter-type images, a RANSAC
algorithm using a 6D constant-velocity model is proposed.
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The rest of this paper is as follows: in Section II we
will provide a review of related work, in Section III we
will formulate the problem and derive both a nonlinear
and Euclidean RANSAC algorithm using a constant-velocity
model, in Section IV the outlier-rejection scheme is validated
experimentally using a 6880 frame sequence of lidar intensity
imagery, and in Section V we provide final comments on the
algorithm.

II. RELATED WORK

The RANSAC algorithm [4] has been highly successful
as an outlier-rejection scheme in the visual pipeline and has
become popularized due to its speed and efficiency. Using
global shutter cameras, both the monocular 5-point algorithm
[5] and stereo-pair, 3-point algorithm [6] are widely used,
most notably on the Mars Exploration Rovers [7]. Although
the use of CMOS technology is desirable due to low cost
and widespread availability, the addition of a temporal pa-
rameter to the standard camera model causes nontrivial and
unhandled complexities in the mature visual pipeline. For
this reason, the available literature concerning the use of
rolling-shutter-type imagery is sparse in comparison to that
of global-shutter imagery.

Although much of the existing rolling-shutter literature
makes use of special cases, there are still a few pieces
of work that properly account for the 6D sensor motion.
However, many of these methods stray from using RANSAC
as an outlier-rejection scheme. Early work by Ait-Aider et
al. [8] derives a nonlinear, least-squares estimator for the
velocity of a monocular rolling-shutter camera over a single
frame of data; in order to find this velocity over only a
single image, a known geometric target is used, and the
feature correspondence is supervised. In a separate work, Ait-
Aider et al. [9] also derive the batch nonlinear optimization
technique for a stereo rig that includes only one rolling-
shutter camera, and one global-shutter camera. Again, this
experiment uses a target with known geometry and easy-
to-find feature correspondences. The possibility of using
RANSAC is mentioned, but left as a future extension.

Jia and Evans [10] apply the extended Kalman filter (EKF)
to a monocular rolling-shutter camera and use predictive
measurements from a gyroscope and accelerometer. In a
similar fashion to RANSAC, this algorithm handles outlier
rejection by applying the EKF correction step for multi-
ple feature correspondence hypotheses and checking to see
which update generated the most likely set of inliers. Akin to
the classic RANSAC algorithm, our proposed method does
not require additional sensors, such as a gyroscope, to find
feature correspondences.

The most prominent visual pipeline using a rolling-shutter
camera is the full bundle adjustment algorithm formulated by
Hedborg et al. [11], which uses a form of pose interpolation
between nominal image times. The primary outlier-rejection
scheme used in this work is a cross-check method, which
makes no use of camera geometry and relies on the use of
a feature tracker, such as Kanade-Lucas-Tomasi (KLT) [12].
After an initial bundle-adjustment step, a second stage of

outlier rejection is applied by checking point triangulations
from multiple viewpoints. In an earlier work, Hedborg et al.
[13] note that the use of a cross check with KLT is ideal for
sensors with a very high framerate. In contrast to the 30Hz
camera used by Hedborg et al. [13], the proposed research
aims to find feature correspondences between rolling-shutter-
type images taken at 2Hz. Furthermore, Hedborg et al. [13]
take advantage of a secondary rejection step that is tightly
coupled with the estimation phase of the visual pipeline.

Using an identical two-axis, scanning lidar to this research,
Dong et al. [14] perform a similar style of pose interpolation
to the one seen by Hedborg et al. [11]. In this pipeline,
the typical 3-point RANSAC algorithm is applied with a
very loose threshold that allows for some outliers. In the
estimation phase, a robust M-estimation scheme is then
used to try to minimize the effect of incorrectly matched
features. By using a constant-velocity model in the RANSAC
algorithm, the proposed method aims to remove all outlier
rejection burden from the estimation phase.

III. METHODOLOGY

In this section, we derive the Motion-Compensated
RANSAC algorithm using a constant-velocity model. We
show how our algorithm differs from the traditional rigid
one and how using a velocity model impacts the algorithm.
Furthermore, we propose two approximations to increase the
computational efficiency of our algorithm.

A. Problem Formulation

To begin our derivation, we start by defining our inertial
reference frame, F;, and the instantaneous sensor frame,

F,(t). The notation, v%®

o, refers to a vector from a to
b, expressed in frame c. For the feature correspondence
problem, we define two sets of corresponding measurements,
Ym,1 and y,, o, where m = 1... M. Each measurement pair,
m, is extracted from sequential images 1 and 2 at times, Z,, 1
and t,,, o, with a temporal difference of At,, := t,0 —tm 1.

The sensor models for these measurements are

(1a)
(1b)

Ym,l = f(Ts(tnL,l)pm) + nm,la
Y2 = f(Ts(tm,Q)pm) + Ny, 2,

where f(-) is the nonlinear camera model, T,(¢) is the 4 x 4
homogeneous transform matrix that specifies the pose of the
sensor frame, F, (t), with respect to the inertial frame, F;, at

time ¢, and the measurement noises, n,, 1 ~ N'(0,R,, 1) and
n,, 2 ~ N(0,R,, ), are assumed to be normally distributed
with covariances R, ; and R,, 2. Note that each measure-
ment pairing, m, is simply the hypothesis of a common
landmark, [, typically based on the similarity of appearance-
based feature descriptors, and may not actually be projected
from the same 3D location, p,, := [(pil)T I]T. The goal
is to determine the subset of all M measurement pairs, y,, 1
and y,, 2, that make up the most likely set of inliers.

The structure of the RANSAC algorithm consists of only
a few main steps. It begins by selecting N random subsets
of S measurement pairs, where S is the minimum number of
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Fig. 3.
tracks after applying the classic RANSAC algo-
rithm to our lidar intensity/range data. Due to fast
motion and a slow vertical scan, only a small
temporal band of features are matched.

This figure shows the inlying feature Fig. 4.

pairs needed to solve the mathematical model. When using
3D point correspondences, such as in stereo camera or lidar
data, S is typically 3. The number of required iterations, N,
can be chosen using the equation

_ 111(1 - psucc)
In(1-p2) "’

where pg is the probability of choosing S measurement
pairs that are all inliers and pj, is the probability of a single
pair, m, being an inlier.

The first step, for each of the N subsets, is to solve the
mathematical model that can be used to find the unknown
pose change of the sensor frame, T,,, between times i, ;
and ¢, 2,

2

Tm = Ts(tm,Q)Ts(tm,l)_l- (3)

The second step is to then apply the calculated transform,
T, to the measurements y,, 1, using
f)m,2 = Tmpm,la Pm,1 = f_l(ym,l)a (4)
where the calculation of p,, ; is independent of the mathe-
matical model and is performed only once for all M pairs.
Note we take advantage of the invertible camera model
available to 3D sensors. This assumption prevents us from
directly applying our method to a monocular rolling-shutter
camera; however, with some special care we believe it is
possible to extend our technique for the monocular case. The
third step is to then reproject the transformed measurements,
f)m72, back into measurement space:

ym,Q = f(f)m,2) (5)

Finally, each model is evaluated by finding the number of
measurements pairs, y,, 1 and y,, o, that satisfy

|YWL,2 - ym,2| <« (6)

where « is a threshold in measurement space. For simplicity,
we accept the model with the highest number of inliers.

This figure shows the how loosening
the threshold on the tolerable measurement error,
for the rigid RANSAC filter, allows for a larger
number of inliers (green), but also introduces the
possibility of outliers (red).

Fig. 5. This figure shows the inlying matches
after applying the Motion-Compensated RANSAC
algorithm; by using a constant velocity to model
the motion of the sensor, the filter is able to more
properly account for the distortion of the image.

B. Classic Rigid RANSAC

The mathematical model used in the classic RANSAC
algorithm is a single rigid pose change between two static
frames. It does not take into consideration the possibility of
individual measurement times, and in order to use it, we must
approximate our motion-distorted measurements as occurring
at nominal image times, ¢; and #5. The approximation being
made is that

At =15 — 13 @)
The transform, T,,, is therefore the same for all pairs, m,
and can be solved with only 3 noncollinear point pairs, in
closed form, using the algorithms presented in [15] or [16].
This assumption is reasonable for rolling-shutter-type images
that have little to no distortion. However, under significant
motion it quickly becomes clear that the rigid algorithm is
unfit for identifying a good set of inliers.

Taking into consideration the expected measurement noise,
and setting the threshold on reprojection error, «, appropri-
ately, the rigid RANSAC algorithm is limited to finding in-
liers that have a similar temporal difference, At. In practice,
we tuned « to find as many inliers as possible (over the
whole trajectory), without including outliers at standstill. Due
to the slow vertical scan of our sensor, it is only possible to
match a temporal band of features at high vehicle speeds (see
Figure 3). Loosening « to allow for more feature matches at
high vehicle speeds also allows for the inclusion of outliers,
as seen in Figure 4.

C. Motion-Compensated RANSAC

To compensate for motion during image capture, it is
proposed that we can approximate the motion of the sensor
as a constant velocity,

w

w = H , (8)

where v and w are the linear and angular components,
expressed in the sensor frame.

In order to calculate y,,2, we derive the relationship
between the sensor velocity, zo, and the transform T,,. We
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begin with our transformation matrix definition,
C r

where C is a 3x 3 rotation matrix and r is a 3x 1 translational
component.

Using the exponential map, a transformation matrix can
be calculated with the following tools:

5 [1-¢*s s
T=e Ee:{ K ﬂ w;zm, (10)
S = Si;¢1+ (1 - Si?f) aa? _ 176059 7;°S¢aX, (11)

where p is a translation, ¢ uses the axis-angle parameteriza-
tion, ¢ := ¢a, such that ¢ is the angle and a is a unit-length
axis vector, and (-)* is the skew-symmetric operator:

X

(V51 0 —us ug
U = us 0 —U1
us —U2 U1 0

Note that for small pose changes, the exponential map can
be approximated using

e a1l — P (12)

)

where (-)® is the SE(3) operator,

H X
wB_ (U |V —u
M=l
Drawing from previous work with this motion-distorted
sensor scheme [17], the general kinematic relationship is
T=—w(t)®T. (13)

For a constant-velocity assumption, zo, we avoid integrating
(13) and note the special relationship:

T=At-w (14)
Using (14), the desired transform is simply
T,y = e Atm ™ (15)

1) Nonlinear Least-Squares Estimator: For each of the
N subsets, the first major RANSAC step is to solve for the
optimal constant velocity, zo, that minimizes the S paired
measurements’ reprojection error. To do this, we setup a
typical nonlinear least-squares estimation scheme, similar to
that of a bundle adjustment problem. The objective function
we wish to minimize is simply

1 M
J(w) =5 > el R, e, (16)
m=1
where the error term is defined as
€n = Ym,2 — ym,Q =¥Ymz2 — f(Tmpml) (17)

Note that we avoid estimating the landmark positions by
assuming perfect knowledge of p,, 1 (i.e., no noise on the
measurement y,, 1).

In order to linearize the measurement error, e,,, We
begin by noting the composition of two nonlinearities; the
nonlinear camera model, and the transform T,,. Starting with
the transformation nonlinearity, we define

gm (w) = Tmp'm,l- (18)
Consider the perturbation to the velocity,
T, = e*At"’wEE = e*m"”'(ﬁww)a}a (19)

where 2o is the nominal solution and §zo is the perturbation.
Given that dzo is small, we have
S B — B
Tnl, ~ 67Atm-(8m5w) efAtm”w (203)
o m
= ¢ S (Smo=hT,, (20b)

where S,, := S(At,, @), using the SE(3) operator [18],

S(w) := /01 T do = 2(1)"(71_’1_1)' (Tr‘z)n,

where (-)g is the SE(3) operator [19],

and T, is the SE(3) operator given by
C r} o {c

T(r) =T = {OT | ‘rxc} —e

0 C

This can be simplified again using the small-pose approxi-
mation found in (12),

T ~ (1 — Aty - (8im0w0)E)T,,. (21)
Applying this perturbation scheme to (18),
gm (@ + 0w)
~ (1= A6 (806)®) Tpns (220
= TpPm1 — At (8m0w) BT (22b)
Using the homogeneous-coordinate operator,
= €]® nl €~
ek
and the identities,
wiy = —ySw, (Ty)Z=Ty"77",
it follows that,
gn(w+ dw) =g + Gpiwo, (23)
correct to first order, where,
&m = TrPm.1, (24)
G i= At T (P 1) T S 25)
Returning to our measurement error term,
en ~ Ym 2 — £(8n + Gpiw) (26a)
~e,, — H,, 0w, (26b)
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correct to first order, where
€, = Y2 — f(gm)a (27)

_of (28)

H,, :=F,,G,, F,, = Big

gm

Setting. % = Q, we find the optimal state update equation
for a single iteration of Gauss-Newton:

-1
Swot = (Z HﬁRm}QHm> (Z HﬁRm}26m> (29)

Using the normal iterative Gauss-Newton approach, the
solution of dzo* can be used to update zo. The estimator
requires a minimum of 3 well-spaced point correspondences.
Note that 3 is only the minimum number of correspondences
required; this estimator can be used to improve the o
estimate after finding a set of likely inliers.

2) Point Transformation: In order to compare each of the
N constant-velocity models, we must evaluate the number of
inliers. This is done by transforming each of the measure-
ments, Y, 1, into the corresponding frame, F(t,,2). The

required transform, T,,, can be calculated using (15).

In contrast to the rigid RANSAC algorithm, which
calculates only one transform per model, our Motion-
Compensated RANSAC algorithm requires that T,,, be eval-
uated for each pair, m, using each of the IV constant-velocity
models. This process adds a significant amount of overhead
to the computational cost.

D. Fast Motion-Compensated RANSAC

Although the nonlinear Motion-Compensated RANSAC
algorithm is robust, the iterative estimator has to run for each
of the NV randomly seeded measurement subsets. In order
to improve the performance of the algorithm, we propose
an Euclidean least-squares estimator and a heuristic for the
point transformation step.

1) Euclidean Least-Squares Estimator: Revisiting the es-
timation problem, we begin by reformulating the error in
Euclidean space:

€m = P (p'm,Q - f)m,Q) ) f)m,Q = Tmp7n,17 (30)
where
1 0 0 0
P—=10 10 0 G1)
0 01 0

The advantage of this is that it eliminates the need to linearize
the camera model. The disadvantage is that the algorithm
is no longer optimizing with respect to the error that is
evaluated in the inlier criterion (6).

Given that the two images are sequential, and relatively
close in time, we propose the assumption that T,, is ‘small’,
and therefore can be approximated using (12):

e, ~ P (pm2 —a- Atmwm)pml) (32a)
=P (P2~ Pt — Al (pr1)7w)  (32b)
=qm — Aty Qnm, (32¢)
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Fig. 6. This figure shows the distribution of sequential image pairs over

the number of successfully matched feature measurements. The distribution
of ‘initial’ matches indicates the total number of hypothesized matches
before filtering (including outliers). The rigid, Motion-Compensated, and
Fast Motion-Compensated filters are then applied to generate the plotted
distribution of qualified inliers.

where 1 is the identity matrix and

qm = P (pm,2 - pm,l) 5 (33)
Qi :=P(pm1)". (34)
The simplified objective function that we minimize is
1 T
J(w) = 3 Z ele,. (35)

Inserting e,, into J and setting 358% =0,

-1
w = (Z Aty Q?an> (Z Athﬁqm> , (36)

which is solved in one step.

2) Discretization of Required Transforms: The Motion-
Compensated problem formulation requires the calculation
of the transform, T,,, for each measurement pair, m, using
each of the N proposed constant-velocity models. In order
to improve computational performance, it is proposed that
for each of the N models, finding only a discretized subset
of the transforms is admissible; these transforms are uni-
formly sampled between the minimum and maximum values
of At,,. When evaluating each measurement pair, m, the
sampled transform with the closest At,, is used.

IV. EXPERIMENTAL RESULTS

In this section, we test the two Motion-Compensated
algorithms using data acquired from a real two-axis scanning
lidar. Specifically, we make use of a 1.lkm and 6880
frame traversal from The Gravel Pit Lidar-Intensity Imagery
Dataset [20], which was acquired during a visual-teach-
and-repeat experiment in Sudbury, Ontario, Canada. This
experiment used an Autonosys LVCO0702 lidar to capture
azimuth, elevation, range, time, and intensity images, with
a resolution of 480 x 360, at 2Hz, in unstructured, natural
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Fig. 7. Top and side views of the l.1km trajectory. Feature matches
were generated using the rigid, Motion-Compensated and Fast Motion-
Compensated RANSAC algorithms. These matches were then used as inputs
to a continuous-time SLAM algorithm. Each estimate can be compared to
the available GPS tracks (in black).

terrain. During the traversal, the robot travelled between 0.0
and 0.5 m/s. A GPU-accelerated SURF implementation was
used to extract features from the 8-bit intensity imagery;
azimuth, elevation, range, and time measurements are then
interpolated for each feature and initial matches are deter-
mined using SURF feature descriptor similarity. Outside the
scope of this paper, a separate study is being conducted on
the use of alternative feature detector and descriptors for
motion distorted imagery.

A. Quality

The typical output of our Motion-Compensated RANSAC
algorithm can be seen in Figure 5. In this section, we take
two approaches to measuring the quality of the outlier-
rejection schemes. First, we wish to evaluate the quantity
of inliers that the algorithm is able to identify. Although
we cannot know the true number of inliers between each
pair of images, we can contrast algorithms by comparing
the distribution of filtered feature correspondences against
the initial distribution of possible feature matches. Assuming
a relatively constant ratio between inliers and outliers, it is
expected that the distributions should have a similar shape to
the initial set, but a lower mean of feature correspondences.
The results of this distribution comparison can be seen in
Figure 6. Note that both the Motion-Compensated and Fast
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0 200 400 600 800 1000 1200
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Fig. 8. This figure shows the Euclidean error growth between GPS and

the different continuous-time SLAM outputs in Figure 7. Using the Motion-
Compensated feature tracks obviously produces a much more accurate result
that the rigid ones. Note that the drastic reductions in error are likely due
to direction switches in the trajectory that tend to cancel existing pose drift.

200 ‘
180 [~ - | NEEEEE Estimation —
I Transformation

160 N Reprojection
g 140
5 120
=
£ 100
280
)
g 60

40

20

0

Rigid MC MC-Fast

Fig. 9.  This figure shows the required computational effort of each

RANSAC iteration. The iteration time is broken down into the three
most demanding parts of the algorithm: the time taken to estimate the
mathematical model (given 3 points), the time it takes to generate and apply
the transform provided by the model, and the time it takes to reproject the
Euclidean points through the spherical camera model. All computations were
performed in C++ and timed with a 2.4GHz processor.

Motion-Compensated algorithms produce a near identical
result, which, as expected, is distinctly better than the rigid
RANSAC algorithm’s output.

The second method used to evaluate the quality of outlier
rejection is a relative, continuous-time SLAM algorithm [17].
The output of each RANSAC algorithm was used to initialize
a set of open-loop feature correspondences; the window-style
batch estimator was then run over each set of matches to
produce an odometry estimate that can be compared to GPS
ground truth. The output of the SLAM algorithm can be
seen in Figure 7. Due to the ‘slow’ vertical scan of the lidar,
the rigid RANSAC algorithm tends to find horizontal bands
of temporally similar features; without a strong distribution
of features in the vertical direction, it is expected that the
pitch parameter of the estimation will suffer. The outputs of
the algorithm fed by Motion-Compensated filters are clearly
superior, as made obvious by the error plot in Figure 8.
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B. Computational Efficiency

In order to characterize the computational efficiency of
each of these algorithms, the time spent completing each
major RANSAC step was recorded over 1500 iterations, for
each of the 6880 frames and averaged, as seen in Figure 9.
The iteration time is broken down into three major sections:
the time taken to estimate the mathematical model, the time
it takes to generate and apply the transform, T,,, to each
measurement, and the time it takes to reproject the Euclidean
points into spherical coordinates.

The fastest algorithm, as expected, is the classic rigid one;
however, the quality analysis suggests that the rigid algorithm
is completely unfit for use with this sensor. Moving to the
Motion-Compensated RANSAC algorithm, the large increase
in estimation time is due to the addition of the iterative
Gauss-Newton process. The increase in transformation time
is due to the cost of calculating a transformation matrix
for each measurement pair. The Fast Motion-Compensated
RANSAC algorithm shows a drastic reduction in estimation
time, although still not as fast as the rigid algorithm. For the
transformation step, eight discrete transformations were used
to approximate the constant-velocity model, which provided
a significant speed up, with minimal cost to quality.

Note that the reprojection time is constant between all
algorithms and is included purely to provide context to the
total iteration time. Furthermore, note that the reprojection
process can be ignored if the measurements are compared
in Euclidean space. However, setting the threshold value
appropriately is not as straightforward.

V. CONCLUSION AND FUTURE WORK

This paper has derived a novel adaptation of the traditional
RANSAC algorithm for use in the visual pipeline with
rolling-shutter-type sensors. Using both the geometric and
temporal measurement data, a batch estimator was derived
to solve for the 6D constant velocity of the sensor. In order to
find a likely set of true measurement pairs between sequential
images, the estimator is applied iteratively for many random
minimal (i.e., three) point sets. To improve computational
performance, this paper also proposes an Euclidean least-
squares estimator and a heuristic for the point transformation
step. To validate the approach, each algorithm was applied to
a sequence of 6880 lidar intensity/range scans acquired over
a 1.1km trajectory. The next step in developing this technol-
ogy is to test with different types of sensors. In particular,
a stereo pair of synchronized rolling-shutter cameras, or an
even slower lidar-style camera.
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