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Abstract— Large position errors plague GNSS-based sensors
(e.g., GPS) due to poor satellite configuration and multipath
effects, resulting in frequent outliers. Due to quadratic cost
functions when optimizing SLAM via nonlinear least square
methods, a single such outlier can cause severe map distortions.
Following in the footsteps of recent improvements in the
robustness of SLAM optimization process, this work presents
a framework for improving sensor noise characterizations by
combining a machine learning approach with max-mixture
error models. By using max-mixtures, the sensor’s noise distri-
bution can be modeled to a desired accuracy, with robustness
to outliers. We apply the framework to the task of accurately
modeling the uncertainties of consumer-grade GPS sensors.
Our method estimates the observation covariances using only
weighted feature vectors and a single max operator, learning
parameters off-line for efficient on-line calculation.

I. INTRODUCTION

Most state-of-the-art Simultaneous Localization and Map-

ping (SLAM) algorithms require sensor uncertainties to be

characterized probabilistically. Such characterization is a

straightforward task for many common robot sensors, e.g.,

LIDARs. However, the noise distribution of other sensors

provide a much more challenging characterization task. The

cause of these erroneous observations stems from the in-

ability of the sensor to observe the complete state of the

environment. For example, ground robots’ wheels lose trac-

tion resulting in a slip-or-grip problem and vertical structures

block Global Positioning System (GPS) signals, leading to

multipath effects. Generally, the sensor return is assumed to

reflect the most likely state of the quantity being measured,

e.g., latitude and longitude for a GPS sensor1. The task of

defining the uncertainty of these individual observations is

termed sensor characterization.

The typical approach to sensor characterization uses Max-

imum Likelihood (ML) optimization to find the parameters

that best describe the training data. This off-line process

returns parameters that maximize the average performance

over ground-truthed training data. These parameters can then

be used on-line to calculate observation noise estimates for

use within SLAM.

A single outlier can cause a severe, even irrecoverable,

map distortion due to the quadratic cost surface used by

the nonlinear least squares optimization within many SLAM

algorithms. In this work, we take the view that outliers

arise from overly-simple and optimistic noise models; a

better noise model would assign a higher probability to
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1In this work GPS means any Global Navigation Satellite System (GNSS)
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Fig. 1: Robot Trajectories for 12 Exploration Robots. Col-

ored to reflect elapsing time (red-green-blue as t increases).

an “outlier”, thus limiting its effect. Simple Gaussian error

models often suffer from this problem, since the tails drop

off exponentially fast. We use max-mixtures of Gaussians to

improve the richness of the sensor characterization models.

To highlight our framework, we show noise models for

GPS sensors, which are particularly prone to large errors;

it is common to receive observations from consumer grade

sensors that are tens to hundreds of meters from the true

location. Specifically, the contributions of this paper include:

• A machine-learning approach for sensor uncertainty

estimation.

• An extension of sensor uncertainty estimation using

max-mixtures.

• A new metric for evaluating the impact of outliers on a

SLAM system.

• Evaluation of a variety of models for consumer-grade

GPS sensor characterization.

In the next section, we give a short overview of related

advancements in SLAM, robust estimation, and GPS error

characterization. We describe the mathematical formulation

of sensor characterization in Section III and show the robust-

ness improvements of the max-mixture models in Section IV.

Then in Section V, we describe features from GPS sensor

data and how to combine them to robustly estimate GPS

uncertainty. In Section VI, we show empirical results for the

noise models on a real-world dataset comprised of 45 hours

of GPS data from a 14-robot team.

II. BACKGROUND

Many modern approaches formulate SLAM in terms of

two components: a front-end that builds a factor graph and

a back-end that optimizes it [1]. For example, the front-end

might add an odometry constraint (edge) representing a rigid-

body-transformation between two sequential robot positions
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(nodes); the constraint’s mean represents the raw encoder

observation while the edge weight is a function of the a

priori uncertainty of the encoder. The back-end periodically

optimizes the graph, producing a ML estimate for all nodes

in the graph, i.e., the best position of the nodes given all the

constraints. When errors are Gaussian this optimization can

be viewed as a least squares method with each constraint

incurring a quadratic cost.

A known problem in SLAM and other nonlinear least

squares optimization problems stems from these quadratic

costs, namely that a single outlier can have significant and

detrimental impact on the solution [2], [3], [4]. The quadratic

costs come directly from assuming constraints have Gaussian

error, which brings computational efficiency.

Improving the robustness of SLAM to these outliers is

currently an active area of research. Some approaches use

switching variables, which can ‘turn off’ constraints and,

thus, handle outliers by modifying the graph structure in

the back-end [2], [5]. Another related approach detects and

rejects outliers via loop consistency checks on small clusters

of nodes [6]. Both of these approaches show promise at

dealing with outliers in the back-end of SLAM. In this paper,

we take the view that outliers arise from modeling errors and

that richer error models can result in systems that are robust

to ouliers and do not require specialized “outlier rejection”

methods.

While mixture models have long been used to approx-

imate complex distributions, they typically result in high

computational costs. Our system uses max-mixtures, which

allows both flexible error models and fast inference [4]. Some

sensors could be characterized with robust cost functions, [7],

[8], but these have been previously shown to be subsumed

by max-mixtures [4].

This paper focuses on models for GPS data, which can be

used both to improve the accuracy of the map and to register

the relative frame to Earth. Even with many loop closures,

SLAM maps can have significant distortion compared to

ground truth, e.g., long hallways may erroneously bend and

GPS sensors can offer the needed constraints even when

global registration is not necessarily needed [9]. Unmanned

Aerial Vehicles (UAVs) and agricultural robots, which gener-

ally have unobstructed satellite line-of-sight, can rely heavily

upon GPS sensors for positioning. In environments with

an unobstructed view of the sky, GPS sensors offer cost-

effective and computationally efficient position estimates

that are, when supplemented with other sensors, sufficient

for many systems [10]. Additional sensors, such as inertial

measurement units or visual odometry have been shown to

reduce errors caused by short blackouts in GPS data, i.e.,

obstruction of satellite view [11], [12], [13].

Early error models for GPS assumed a constant variance

for all GPS returns [11], [14]. Many GPS sensors provide

their own uncertainty estimates, but they can be misleading.

For example, they may report erroneous readings for a period

of time before detecting the loss of satellite locks. This

problem stems from the discrete nature of individual satellite

locks that can cause position estimate discontinuities [15], a

problem that is blamed for a crash during the DARPA Grand

Challenge [16].

Rather than accurately modeling the noise of GPS sen-

sors, a common approach has been binary classification of

(in)valid sensor returns [13], [17], [16]. These systems stop

adding GPS data to SLAM upon detection of a GPS dropout

and/or multipath effects. Some approaches use additional

sensors to improve multipath detection via satellite line-

of-sight calculations by building 3D-models of the local

structure [18], [19].

Some approaches circumvent the GPS sensor’s position

estimate and calculate positions directly from the trilateration

of pseudo-ranges to individual satellites [20]. The most

closely related work uses robust cost function and switch

variables to modify the graph, but their method also requires

a GPS sensor with pseudo-range capabilities [21]. Although

these approaches using sensors equipped with pseudo-ranges

and/or sensor utilizing the local structure have shown signs of

success, we desire a robust approach that uses observations

directly from standard consumer-grade GPS sensors.

III. SENSOR CHARACTERIZATION

Sensor characterization consists of estimating the distri-

bution of observations, zi, returned from the sensor around

the true location, xi. The goal of sensor characterization is a

distribution best defining the zero-mean P (zi|xi). Designers

generally choose the form of the distribution, e.g., Gaussian,

and estimate the parameters of the model using training data,

or by hand-tuning, to maximize log-likelihood. The output

of the characterization is a covariance matrix Σi, which may

be constant or a function of the observation.

A. Simple Gaussian Models

Let ei be the observation error, i.e., ei = (zi − xi).
Assuming a zero-mean uni-modal Gaussian distribution,

parametrized by Σi, the distribution becomes:

P (ei) = N (0,Σi) =
1

(2π)
d
2 |Σi|

1

2

e−
1

2
e
T
i Σ

−1

i
ei (1)

with d equal to the degree-of-freedom (DOF) of the obser-

vation. The log-likelihood, assuming n independent observa-

tions, can be written:

L = log
n−1
∏

i=0

P (ei) =
n−1
∑

i=0

logP (ei)

= −
nd

2
log(2π)−

1

2

n−1
∑

i=0

log(|Σi|) + e
T
i Σ

−1

i ei (2)

The last term in (2) explicitly shows the quadratic costs

associated with deviations from the mean.

The sensor characterization task is the definition of Σi,

a function of individual observations, to maximize L. Each

such function can take many forms, but we use a parametriza-

tion where each element is a linear combination of features

of the observation. For example, assuming a 2 DOF sensor

529



with independent noise in each DOF, the covariance may be

defined as:

Σi =

[

σ2

i,x 0
0 σ2

i,y

]

=

[

(fT
i,xwx)

2 0
0 (fT

i,ywy)
2

]

(3)

With feature vectors fi,x and fi,y as functions of each

observation (presumably informing about the error in x and

y respectively) and global weight vectors wx and wy . In

this context, the characterization task would simply be the

definition of the weight vectors.

IV. ROBUST SENSOR CHARACTERIZATION USING

MAX-MIXTURES OF GAUSSIANS

Gaussian mixture models offer a richer representation by

combining multiple Gaussian components, allowing model-

ing of arbitrarily complex distributions. Max-mixture models

define the distribution as the max of k weighted components:

P (ei) = ηi max(α1P1(ei), . . . , αkPk(ei))

= ηi
k

max
j=1

(

αj

(2π)
d
2 |Σi,j |

1

2

e−
1

2
e
T
i Σ

−1

i,j
ei

)

(4)

Each components, Pj , is of the form in (1). The log-

likelihood of the data becomes:

L = log
∏

i

P (ei) =
∑

i

logP (ei)

=
∑

i

log

(

ηi

(2π)
d
2

)

+
k

max
j=1

(

log

(

αje
−

1

2
e
T
i Σ

−1

i,j
ei

|Σi,j |
1

2

))

(5)

Note that ηi becomes an additive constant that does not

effect the minimization and does not generally need to be

computed. The sensor characterization task for max-mixtures

is to define the covariance estimates Σi,j and mixing terms

αj that maximize L.

The most common mixture models are sum-mixtures, i.e.,

P (ei) =
∑k

j=1
αjPj(ei), but our choice of max-mixtures

is motivated by the use of logarithms in (5). The ability to

push the logarithm inside the max operator brings significant

computational advantages [4].

V. GPS SENSOR CHARACTERIZATION

We consider two families of GPS uncertainty predictors

based on uni-modal Gaussians and max-mixtures of Gaus-

sians using non-linear optimization for parameter fitting.

The primary difference between these families is that, for

each observation, uni-modal models have a single covariance

estimate, Σi, and max-mixture models have k of them; plus

k weight vectors.

For mobile ground robots, we assume radial GPS errors,

with x and y errors independent and identically distributed,

i.e., ei = ||ei|| represents the total translation error. Thus,

fi = fi,x = fi,y, w = wx = wy , and each covariance

function becomes:

Σi =

[

σ2

i 0
0 σ2

i

]

=

[

(fT
i w)2 0
0 (fT

i w)2

]

(6)

The global weights are learned off-line and we next describe

some possible GPS feature vectors fi for each observation

zi.

A. GPS Observation Features

An interesting property of GPS receivers is that they

produce a wealth of data that can be used to generate

features. In this section, we explore a variety of features,

beginning with trivial (but still useful) ones and moving to

more complex features.

1) Constant Noise Model: While few real-world systems

today would attempt to characterize all GPS observations as

having the same uncertainty, such a model can serve as a

baseline method for evaluation. Using our framework, we

simply let

fT
i = [ 1 ]

Using this model, the magnitude of the learned weight would

represent the standard deviation for all observations. Since all

observations have equal feature vectors, fi, all observations

will have the same noise estimate fT
i w.

2) Number of Satellites Noise Model: One strategy for

determining the reliability of GPS data is to observe the

number of visible satellites, nsat,i. A simple feature vector

expressing this assumption is given by:

fT
i = [ nsat,i ]

We expect to learn a negative weight for this feature since

more satellites should reduce the observation error. However,

this feature cannot be used alone, because negative σs are

prohibited. Later we’ll see how these simple feature can be

combined with others.

A more effective use of the number of satellites is to

construct the feature vector fi such that the nth
sat,i element

of fi is set to 1, i.e., a “one-hot” encoding. For example,

with 12 possible simultaneous satellite observations and a

reported observation of 5 satellites, the feature vector would

be given by:

fT
i = [ 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0 ]

This representation allows a different covariance model to

be fit to each number of satellites, but requires more training

data through the whole range of possible nsat,i. We expect

to learn large weights for lower indices and small weights at

the larger indices as the number of satellites should decrease

the error.

3) Dilution of Precision Noise Model: A few standard

outputs from GPS sensors are intended to represent the

positional uncertainty in terms of geometric dilution of pre-

cision. Three such values are typically reported: horizontal

dilution of precision (hdop), positional dilution of precision

(pdop), and time dilution of precision (tdop). Each represents

a multiplicative scaling of the uncertainty as a function of the

geometric configuration of satellites, relative to the sensor,

and should be informative of the true uncertainty. We can

incorporate these values into our feature vector by letting (for

example) fT
i = [ hdopi ]. We expect a positive correlation

between these values and true uncertainty.
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4) Vendor-Provided Noise Model: Many GPS units pro-

vide an uncertainty estimate computed by the sensor. To

evaluate the quality of this estimate, we set our feature vector

to contain just this estimate:

fT
i = [ σvendor,i ]

If the vendor supplied estimates are correct, we would expect

to learn a weight of 1 for this feature.

5) Combination Noise Model: The uncertainty estimate σi

is a linear combination of features and, thus, the aforemen-

tioned features can be combined, with the individual feature

and weight components retaining their original meaning.

For example, combining the constant model, the simplified

number of satellites model, and the vendor-provided estimate

would produce the feature vector:

fT
i = [ 1, nsat,i, σvendor,i ]

We expect this feature to outperform the individual features,

which are subsumed by the combination model, so long as

over-fitting is avoided.

B. Additional Consideration for Max-Mixture Models

The aforementioned models can be used directly as uni-

modal models of GPS uncertainty. However, simple Gaussian

error models for GPS tend to perform poorly, as both earlier

work and our experiments show. Yet, a k = 2 max mixture

model provides significant improvements. With k = 2,

characterization of GPS sensors using max-mixtures requires

maximizing L over a single α value and two w vectors.

Let wj be the dataset-wide weight vector associated with

the jth feature. For observation i, let fi,j be feature j and

standard deviation now given by σi,j = fT
i,jwj . For example,

the features of a 2 component mixture of the constant model

and the combination model (from previous section) are given

by:

fi =

[

fT
i,1

fT
i,2

]

=

[

[ 1 ]
[ 1, nsat,i, σvendor,i ]

]

(7)

With w now defining the k dataset-wide weight vectors wj :

w =

[

wT
1

wT
2

]

=

[

[ w1,0 ]
[ w2,0, w2,1, w2,2 ]

]

(8)

The feature vectors and weights combine, as expected to

produce k standard deviations:
[

σi,1

σi,2

]

=

[

fT
i,1w1

fT
i,2w2

]

(9)

Combining with (5), this leads to a value for σi defined as:

σi = argmax
σi,j

(

log(αj)− 2 log(σi,j)−
e2i

2σ2

i,j

)

(10)

To illustrate the max-mixture approach, suppose that some

GPS measurements are nominal (with errors of a few meters),

while other measurements are “outliers” (with errors of tens

of meters). With a uni-modal approach using f = [ 1 ], we

might learn w = 9. However, by setting f = [ [ 1 ], [ 1 ] ]
(a mixture of two constant variances) we might expect to

learn w = [ [ 2 ], [ 30 ] ] and a value of α in relation to the

frequency of those outliers. While simplistic we will show

that this method works well.

VI. EVALUATION

In this section we evaluate our proposed GPS noise

models on a 14-robot dataset collected within a 220 x 160 m

indoor/outdoor region of the Adelaide Showgrounds in South

Australia using Garmin GPS18x-5Hz sensors during the

MAGIC competition [22].

A. Performance Metrics

To analyze the GPS sensor characterization we analyze

three primary metrics for each model: 1) likelihood of

observed data, 2) robustness to high-error observations, and,

more generally, 3) the distribution of error relative to model-

predicted error.

We use the normalized log-likelihood of the data, given

the model and parameters learned off-line, to measure the

overall fit of the model. This metric represents the expected

log-likelihood of each observation and we desire models that

maximize this metric. Note that the normalization constant

η is not computed, since it does not affect the maximization

of this metric.

In the SLAM context, or any similar non-linear optimiza-

tion problem, a single erroneous measurement can wreak

havoc if not properly modeled. For uni-modal models, out-

liers have low probability and min logP (ei) represents the

worst-case likelihood error.

Since SLAM computes an ML solution via non-linear

optimization and a 1st order Taylor expansion, the gra-

dient magnitude, ||∇i||, is another outlier metric. During

the optimization process ||∇i|| represents the “pull” of the

constraint, relative to other constraints’ gradients. For a given

uni-modal Gaussian, the least likely measurement also has

the maximum gradient, i.e., argmini Li = argmaxj ||∇j ||.
However, with max-mixtures an observation may be expected

with near zero probability, but have virtually no gradient and

thus no ‘pull’ within the optimization process. We desire

models that minimize the “pull” associated with outlier mea-

surements, i.e., we desire small max ||∇i|| = max ||Σiei||.
For each observation, ei/σi represents the number of

standard deviations predicted by the model. If the noise

was truly distributed according to a uni-modal Gaussian

distribution, the ei/σi errors would be distributed as a χ
distribution. Although this metric does not exactly relate

to max-mixtures, we still desire ei/σi distributions that are

quantitatively similar to a χ distribution. For example, we

hope to find models where all observations fall within the

statistically significant region, max(ei/σi) < 6.

B. Analysis

Because our evaluation datasets were dominated by inliers,

the normalized log likelihood of all of our models, including

both simple Gaussian models and max-mixture models, falls

within a relatively small range (from -7.3 to -6.3). These
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TABLE I: Training and Testing Error.

Model Uni-Modal Max-Mixture

Train Test Train Test

1

n

∑
Li max

ei

σi
max ||∇i||

1

n

∑
Li max

ei

σi
max ||∇i||

1

n

∑
Li max

ei

σi
max ||∇i||

1

n

∑
Li max

ei

σi
max ||∇i||

constant-hdop -6.855 14.503 2.920 -6.852 17.895 2.750 -6.587 8.810 1.363 -6.623 10.946 1.300
constant-hdop-nsat-vendor -6.299 6.866 2.260 -6.318 11.451 2.127 -6.289 5.142 1.840 -6.306 7.261 1.836
constant-hdop-vendor -6.312 6.342 1.957 -6.325 11.548 1.890 -6.303 4.318 1.631 -6.325 7.932 1.664
constant-nsat-vendor -6.302 6.785 2.208 -6.319 11.595 2.096 -6.271 6.736 2.431 -6.286 10.770 2.275
constant-vendor -6.312 6.331 1.948 -6.326 11.516 1.878 -6.305 4.286 1.737 -6.321 7.292 1.791
constant -7.210 21.106 3.263 -7.321 21.618 3.251 -6.733 12.353 1.118 -6.820 12.653 1.114
vendor -6.329 6.177 2.514 -6.336 9.643 2.331 -6.320 4.204 2.048 -6.330 6.563 2.024

small differences arise from dramatic differences in the log

likelihoods of the relatively-infrequent outlier measurements.

As seen in Table I, for any given feature vector, the

performance of a mixture of two components invariably out-

performed the best single component (simple Gaussian) error

model, according to both training and test error. As measured

by log likelihood, the magnitude of these differences is small,

but again, this is due to the fact that the vast majority of the

measurements were inliers that every model handled well.

As expected, we find that test error is generally somewhat

higher than training error, but the magnitude of the increase

is similar between both the simple Gaussian model and the

more complex max-mixture models.

Unlike the normalized log likelihood, in which the per-

formance of the models on outliers is masked by the large

number of inliers, the worst case standard deviation metric

clearly shows the advantages of the mixture models. The

worst-case standard deviation, max ei/σi, dropped for every

model, often dramatically, e.g., from 21.618 to 12.653 in

the constant-covariance model case. These improvements

highlight a significant improvement in modeling the sensor’s

noise. To be clear, measurements with 12 standard deviations

of error may still have too much influence during optimiza-

tion, but the constant model is a very naive baseline and

ignores any uncertainty indications/features the sensor.

Histograms of the empirical χ error compared to the

model’s predicted density are also revealing (see Fig. 2). In

the case of simple Gaussian models (left column), we see

that the model is consistently conservative with respect to

the inlier data (on the left side of the plots). The outliers

have caused an increase in the covariance estimate, with the

consequence that inliers are given too little weight. Despite

the inflated covariance estimate, outliers still have a very

high gradient (see Table I) due to their distance from the

Gaussian distribution’s mean and will strongly influence the

optimization.

Conversely, the right column of Fig. 2, which plots his-

tograms of the max-mixture models, shows a model error that

more tightly tracks the ideal distribution. Simultaneously,

outliers are shifted closer to the left, indicating that higher

probabilities have been predicted for them. These ouliers still

influence the graph, but have correspondingly smaller “pull”,

which would make a SLAM system more resilient to them.

(a) Constant (b) MM-Constant

(c) Vendor (d) MM-Vendor

(e) Const-HDOP-NSAT-Vendor (f) MM-Const-HDOP-NSAT-Vendor

Fig. 2: Histogram of Empirical vs. Ideal χ-error (for select

models). Ideally, if the underlying Gaussian assumptions

hold, the normalized histogram of ei/σi would fit a 2 DOF χ
distribution (with horizontal units representing standard devi-

ations, σi). The relative movement of the worst-case arrows

to lower standard deviations, uni-modal models (left) versus

max-mixture models (right), highlights the improvements in

modeling capabilities, specifically robustness to outliers.

C. Learned Weights

We next present a few learned parameter settings for

discussion purposes correspond to the respective models

shown in Table I.

The constant models learned weights of [9.29] for uni-

modal and [[5.2], [16.2]] with α = [0.98, 0.02] for the

max-mixture model. This reflects the fact that the sensor

performs well most of the time, but a uni-modal model

must compensate for the high-error observations with an

overestimate of σ to fit the Gaussian assumption.

We were pleasantly surprised by the quality of the vendor’s

uncertainties both in terms of likelihood and in terms of

max ei/σi. The vendor model learned weights of [0.8] and

[[0.73], [1.16]] with α = [0.97, 0.03], reflecting only modest

adjustment of their estimates. However, we were still able to

improve upon them with our method.

VII. CONCLUSION

We have described a general approach for computing sen-

sor uncertainty estimates using a machine learning approach.

Feature vectors are constructed from observations and a
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weight vector is learned from a ground-truthed data set, via

maximizing the log-likelihood of the training data set.

We showed how this approach can be extended to more

expressive error models using max-mixtures. We take the

view in this paper that “outliers” arise from mismatches

between the empirical performance of a system and its error

model: better models assign higher probabilities to outliers

and thus mitigate their impact. Versus an explicit outlier

rejection phase, the max-mixture approach both provides an

integrated Bayesian mechanism for robust estimation and

removes the need for a near-perfect outlier detector.

In evaluating the performance of these models we use

standard log-likelihood metrics and introduce a metric that

reflects the impact of an outlier on a SLAM system. Our

work was evaluated on a large multi-robot dataset and

we demonstrated significant performance improvements us-

ing our methods on the task of characterizing error-prone

customer-grade GPS sensors. Related methods attempting to

add robustness to the back-end of SLAM would also benefit

from improved robustness on the front-end provided by the

approach presented here.
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