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Abstract— This paper presents a multi-class image segmen-
tation approach to automate fruit segmentation. A feature
learning algorithm combined with a conditional random field
is applied to multi-spectral image data. Current classification
methods used in agriculture scenarios tend to use hand crafted
application-based features. In contrast, our approach uses unsu-
pervised feature learning to automatically capture most relevant
features from the data. This property makes our approach
robust against variance in canopy trees and therefore has the
potential to be applied to different domains. The proposed
algorithm is applied to a fruit segmentation problem for a
robotic agricultural surveillance mission, aiming to provide
yield estimation with high accuracy and robustness against fruit
variance. Experimental results with data collected in an almond
farm are shown. The segmentation is performed with features
extracted from multi-spectral (colour and infrared) data. We
achieve a global classification accuracy of 88%.

I. INTRODUCTION

The world’s growing population demands an increase in
food production. According to a number of studies, produc-
tion must double by 2050 to meet these demands [1], [2].
There are several problems to achieve this target with current
farming practices. First of all, there is a shortage in labour
in rural areas, mainly due to migration and urbanization.
Secondly, an increase in production combined with climate
change evokes a need for innovation in current farming
methods, in order to make agriculture a sustainable prac-
tice. Specialty crops (fruits and vegetables, tree nuts, dried
fruits, horticulture, and nursery crops) are particularly labour
demanding. Automation is a technology that is expected to
have huge impact in farming, by increasing efficiency in
production and reducing labour cost.

This paper presents an approach for automatic fruit seg-
mentation. Reliable and accurate multi-class segmentation is
a crucial component underlying higher-level robotic percep-
tion tasks. In the context of agricultural robotics, the multi-
class image segmentation algorithm allows the robot to, for
example, understand the environment, estimate yield health
and calculate production [3].

Traditionally, in the context of vegetation classification
in remote sensing, indices such as Normalised Difference
Vegetation Index (NDVI) and Enhanced Vegetation Index
(EVI) are commonly used. These indices highlight the target
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Fig. 1. The RGB+IR Dataset: Example of multi-spectral image and multi-
class image segmentation: In multi-class image segmentation each pixel in
the image is assigned to a class label. The right column shows the RGB
images, the middle column is the corresponding observation in the IR band,
the left column is the hand labelled multi-class ground truth. The multi-
class segmentation results can be used for change detection, planning, fruit
detection and ultimately yield estimation.

object and allow simple classifier such as thresholding to
extract and segment vegetations. Following a similar idea, the
work presented in [3] presents a pipeline for yield estimation
for apple orchards based on a set of carefully designed
rules. Although these approaches present promising results,
they require the redesign of the rule sets for every new
application, since they cannot handle either, within or across
class variabilities.

This paper takes a different approach by using feature
learning to automatically obtain the rule sets from the data
itself, instead of using fixed pre-defined features descriptors.
This makes our approach suitable to a variety of crops since
it can inherently handle variance. The algorithm presented
applies feature learning within a conditional random field
(CRF) framework. This approach simplifies the training pro-
cess by removing the need for learning separately the feature
models and the weights required to represent the feature
importance. Feature learning has been applied successfully
in vision and robotic applications and achieves state-of-the-
art performance in object detection, image classification and
object recognition tasks [5]. Existing approaches typically
utilize spatial pooling of image statistics and are therefore
only suitable for per-image classification rather than per-pixel
multi-class image segmentation. To perform per-pixel classi-
fication, this work collects high-level spatial information via
multi-scale features that are learnt from generic unlabeled
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image datasets at different resolutions.
The specific contributions of our work include:
• A general semi-supervised approach for segmentation.

The approach couples feature learning with Markov
fields.

• Multi-scale feature learning for RGB-IR data. The
learning approach is flexible, allowing the proposed
algorithm to incorporate different data modality.

• A comprehensive evaluation using real data. The algo-
rithm was evaluated with data collected in an almond
farm.

The rest of the paper is organised as follows. Section II
presents a summary of related work. Section III describes
our approach including an overview of image segmentation
using undirected graphical models (such as the CRF) and un-
supervised feature learning. Section IV provides an overview
of the experimental setup to validate the approach. Results
are presented in Section V and in Section VI a discussion
on the results and comparison to the related work in fruit
segmentation is provided. We finally present our conclusions
in Section VII.

II. RELATED WORK

Existing fruit segmentation work focuses on grapes [6]
[7], mangoes [8], oranges [9] and apples [3], [10]. These
applications have the characteristic that the fruit can in
general be well distinguished using a basic colour model or
shape constrains. The work on this paper presents a study on
segmenting almond fruits. Almonds are particularly difficult
because they have similar colour to the branches, similar size
and shape to the leaves, and the fruit size varies widely in
the image frame depending on the fruit position within the
tree.

The majority of the fruit segmentation studies focus on a
binary approach, i.e. fruit vs. others segmentation problem.
While the fruit class is the most important information for
yield estimation, other classes such as leaves and branches
can offer additional information about the general health
of the plantation. The work presented in [6] tackles the
multi-class (fruit, leaves and branches) problem using vision
and depth data. In contrast, our work aims to evaluate
classification accuracy using vision-only systems. We present
comparative studies using colour (RGB) and infrared (IR)
data.

A common trend in orchard tree classification is to use
colour and shape features [11]. The classifiers used vary
widely according to the application. For example, the work
presented in [10] uses a simple intensity threshold while
[8] uses colour threshold. Rule set approaches using fuzzy
logic are presented in [9] and hybrid approaches using colour
threshold followed by shape check are used in [3]. Colour-
based apple segmentation followed by smoothing using ero-
sion and dilation is presented in [12]. Finally, the authors in
[7] propose the use of shape based detection followed by a
colour and texture classifier for grape detection.

To summarise, most of the existing work is domain spe-
cific, exploiting particular properties (colour, texture, shape)
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Fig. 2. Algorithm Overview: The multi-scale features are learned using
unsupervised feature learning from a public RGB-IR dataset. The logistic
regression classifier and the CRF are trained on our labelled dataset. The
learnt models are used to perform image segmentation.

of the target fruit to be classified. The framework proposed
here has been designed with the aim of automatically adapt-
ing the feature sets for different fruits; the feature extrac-
tion and classification rules are all obtained via learning.
Therefore our approach does not require domain specific
assumptions and can be applied to different types of trees.

III. ALGORITHM

It has been shown that in classification problems, the
algorithms perform better on meaningful feature descriptors
instead of classifying the raw (noisy) data. For example, in
RGB image segmentation problems it is standard to perform
classification using colour, texture and shape features. There
exists a large set of RGB feature descriptors from the
computer vision community, however for the RGB-IR dataset
there is currently no known feature set. Therefore, in order
to learn informative RGB-IR features we apply unsupervised
feature learning on a publicly available dataset [13].

An option for object classification is to perform image
segmentation using pixel classification. The disadvantage
is that the per-pixel classification approach does not take
into account the correlation between neighbouring pixels in
the image. This paper takes a similar approach to [6] by
modelling correlations in the image using a CRF framework.

An overview of our approach is shown in Fig. 2. The
different processing blocks are explained in the following
section.

A. Image Modelling using Conditional Random Fields

Our approach models the image data using graphical
models, in particular we use a CRF framework [14]. The
graphical model for an image consists of a two dimensional
lattice G =< V, E > where V is a set of pixels representing
the vertices of the graph and E is a set of edges modeling
the relationships between the neighbouring pixels.

Image segmentation is performed by assigning to every
pixel xi ∈ V in the image a meaningful label li ∈ L. For
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multi-class image segmentation, the label set L may contain
multiple labels up to k classes L ∈ {1, ..., k}. The optimal
labeling l? is obtained via energy minimisation on the graph
structure G with the energy function defined as in Eq. 1

E(l) =
∑
i∈V

ψi(li, xi) +
∑

(i,j)∈E

ψij(li, lj , xi, xj)− log(Z(x))

(1)
where ψi(li, xi) is the unary potential which models the
likelihood of a pixel taking a certain label, ψij(li, lj) is
the pairwise potential which models the assumption that
the neighbouring pixels should take the same label, and
log(Z(x)) is the partition function.

Conventionally the unary potential is computed using the
features in the image, for example grey level intensity [15],
colour [16], or texture [17]. The unary potential Ed(l) can
be written as

Ed(l) =
∑
i∈V

ψi(li, xi) =
∑
i∈V

∑
feat

wfeatψfeat(xi|θfeat) (2)

where the subscript feat corresponds to features and wfeat
models the relative importance of the individual feature
functions. Our approach uses semi-supervised learning to
learn the feature descriptors, as described in Section III-C.2.

The smoothness energy Es(li, lj) measures the coherence
of the neighbouring pixel labels, where N is the set of
unordered pairs i, j of neighbouring pixels in P . The smooth-
ness term Es(li, lj) penalises the neighbouring pixels with
similar features from taking different labels as shown in Eq.
3.

Es(li, lj , xi, xj) =
∑

(i,j)∈E

ψij(li, lj , xi, xj)

=
∑

(i,j)∈E

wi,j(xi, xj) · (li − lj) (3)

The weight wi,j(xi, xj) measures the similarity between
neighbouring pixels. In this paper, wi,j(xi, xj) is calculated
using the Euclidean distance of the pixels xi and xj in colour
space [16]. Weights wi,j are higher when the two pixels
are similar and are used to penalise the neighbouring pixels
from taking different labels. The (li − lj) term ensures that
the smoothness energy is zero when the neighbouring pixels
have the same label.

B. Feature Learning

The state-of-the-art approach to obtain good representa-
tions of the data is via feature learning. Feature learning
methods originate from deep learning [4], [18] in which a
set of trainable modules implementing complex non-linear
functions are stacked together to first capture the underlying
structure in unlabelled data, then a classifier layer is added to
learn the label association for classification. Semi-supervised
feature learning has been successfully applied to various

computer vision problems and currently achieves state-of-
the-art performance in digit classification [19], object detec-
tion and RGBD object recognition [5].

This section describes our feature learning approach. We
first apply a sparse autoencoder [4] at different scales to
obtain the multi-scale RGBIR dictionaries. A logistic regres-
sion classifier is then used to learn the label association to
the multiscale responses. The classifier output is then passed
into the CRF as the unary term described in Eq. 1 for multi-
class image segmentation.

1) Unsupervised Feature Learning: Unsupervised feature
learning captures the features from an unlabelled dataset.
In this paper a sparse autoencoder is used to learn the
dictionaries from randomly sampled RGBIR image patches.
A sparse autoencoder minimises squared reconstruction error
with an extra sparsity constraint [4] as shown in Eq. 4,

J(W, b)sparse = [
1

2m

m∑
i=1

(‖hkW,b(x(i))− x(i)‖2)] + . . .

λ

2

nl−1∑
l=1

sl∑
i=1

sl+1∑
j=1

(W
(l)
ji )

2 + β
s2∑
j=1

KL(ρ‖ρ̂j) (4)

where the first term is the reconstruction error, which is
the difference between the input x(i) and output hkW,b.
By minimising the reconstruction error a mapping function
which reconstructs the input at the output is learnt. The
second term is the regulariser and the third term KL(ρ‖ρ̂j)
is the Kullback-Leibler (KL) divergence between ρ and ρ̂j
to enforce sparsity ρ. Sparsity is the proportion of activated
nodes to the total number of nodes within a layer. The
sparsity constraint limits the amount of activations in the
hidden nodes. With the sparsity constraint, the number of
hidden nodes can be higher than the number of input and
output nodes and only a small number of hidden nodes are
activated at a given time. For further discussion of sparse
autoencoders, the reader is referred to [20].

2) Semi-supervised Feature Learning: With the low di-
mensional dictionary code obtained using unsupervised fea-
ture learning, an additional supervised label assignment step
can be used to train a classifier. In this paper a softmax
regression classifier is used. Softmax regression was chosen
because it can be formulated as a single layer perceptron and
trained using back-propagation.

Instead of using the raw image data x, the hypothesis from
the hidden layer h(2) is used as the input of the softmax
regression classifier. The hypothesis from the hidden layer
contains sparse features extracted during learning. The output
hypothesis of the softmax regression is shown in Eq. 5

hθ(xi) = p(li = k|xi; θ) =
exp(xiθk)

1 +
∑J
j=1 exp(xiθj)

(5)

where xi are the input features. In this case the multi-scale
augmented features li ∈ {1, 2, 3...J} are the labels. The
classification is done by selecting the class with the most
probable hypothesis.
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The cost and its gradient are required to obtain the optimal
classifier parameters θ. The cost function is shown in Eq. 6

J(θ) = − 1

m

m∑
i=1

k∑
j=1

1 {li = j} log
exp(θTj xi)∑k
l=1 exp(θ

T
l xi)

+ . . .

λ

2

k∑
i=1

n∑
j=0

θ2ij (6)

where 1{·} is an indicator function such that when the argu-
ment is true the function outputs 1 and when the argument is
false the function outputs zero. λ is a weight decay parameter
used to avoid overfitting by regularising θ.

C. Multi-scale Feature Learning

Our application requires an algorithm that can handle
differences in feature scale. One approach to incorporate
the multiscale property is to use pooling methods. The
pooling approach down-samples the feature response from
the original image dimension, and has proven very useful for
image/object classification problems where a label is given to
an image [21]. Despite its utility in per image classification,
pooling cannot be used for the image segmentation problem
described in this paper where pixel-wise labelling is required.

To incorporate the multi-scale information without using
pooling, the feature learning approach described in Section
III-B.2 is explicitly performed at multiple scales. The output
of the feature learning algorithm is incorporated into the CRF
framework for multi-class image segmentation.

1) Multi-scale Unsupervised Learning: The first step of
multi-scale feature learning is to use unsupervised feature
learning on different scales. The multi-scale patches are
extracted by down-sampling the same image to extract the
training data at different resolutions.

The unsupervised training patches are collected randomly
over the images across the entire training dataset. The sparse
autoencoder is used to learn the multi-scale representation
from the extracted multi-scale patches.

2) Multi-scale Semi-supervised Learning: The second
step of the multi-scale feature learning is to use the ground
truth training label to train the multi-scale softmax regression
classifier. The training patches are collected randomly over
the images across the entire training dataset, but this time
the multi-scale patches are aligned by the centroids and the
labels at the patch centroids are used as training labels.

D. Feature Learning and CRF

The energy function of the CRF (see Eq. 1) is the equiva-
lent of the cost function in feature learning. The function that
is obtained via semi-supervised learning models the likeli-
hood of x given l, and is equivalent to the unary function in
the CRF framework. Consequently, the two frameworks can
be integrated and optimised together. The unary potentials
in Eq. 2 are generated using the learnt feature descriptors.
The overall framework of the CRF with likelihood defined
by the learnt features is shown in Fig. 3.

xi

li

pixels in the 
image xi

inferred 
labels li

CRF 
Framework

Likelihood from 
Feature Learning

Fig. 3. Incorporating Feature Learning within a CRF Framework: x are
the pixels from the image, hW,b(x) are the extracted multi-scale features
and the classifier outputs the likelihood p(x|l) to the CRF framework.

IV. EXPERIMENTAL SETUP

The RGB-NIR Scene Dataset [13] was used for unsuper-
vised feature learning. This dataset consists of 477 images
captured in RGB and NIR. Random patches were sampled
at 4 different scales (1, 1/2, 1/4, 1/8) to learn the multi-scale
features.

Fig. 4 shows the platforms utilised to collect the exper-
imental data in the almond orchard. The RGBIR images
collected were used for supervised training and evaluation.
This dataset consists of 1600 images at 320 × 240 resolution,
of which 80 are labelled to pixel accuracy with five class
labels, almond, trunk, leaves, ground and sky.

For the proposed algorithm two sets of results were
computed, the first is the segmentation results based solely
on feature learning and the second is the results with CRF.
The CRF was trained with the Graphical Models/ Conditional
Random Fields toolbox [22]. The unary potentials are gener-
ated using the fine-tuned multi-scale filters, and the pairwise
potentials have the form of a contrast sensitive Potts model
[15].

The existing fruit segmentation algorithms are application
specific, since this paper presents the first study on almond
fruit segmentation, there are no existing methods to compare.
To present a quantitative comparison we implemented the
feature set described in [23]. Our implementation uses the
first 52 feature descriptors. The reason behind selecting
this feature set was that it contains the most commonly
used features including colour, texture, shape and super-pixel
properties and is designed to be general and flexible to dif-
ferent segmentation problems. In comparison most existing
work on fruit segmentation uses features ranging from RGB
colour only to 34 dimensional colour and texture filters [7].
We expect the 52 dimensional benchmark implementation to
be comparable to the state-of-the-art implementation used in
fruit segmentation.

The second experiments use the entire RGB-IR dataset
and the aim was to test if the extra IR channel improves the

5317



Fig. 4. Robotic platforms used in the agricultural surveillance trial.

image segmentation accuracy.
Apart from the individual classification accuracy, three

evaluation metrics were applied, the global, average accuracy
and the F measure. The global accuracy measures the number
of correctly classified pixels of the entire dataset whereas the
average accuracy measures the average performance over all
classes. The F measure was computed by averaging the F
measure of the individual classes.

A. Multi-Spectral Image Registration

The RGB and IR images were taken with the same camera
using an IR filter to change the modality captured. The origi-
nal images were slightly misaligned due to wind affecting the
trees and small disturbances affecting the cameras position
and orientation between images. This misalignment had to
be corrected before the images could be used together.

To correct for this misalignment we applied an affine
transform to the IR image. Finding the optimal parameters
for this affine transform is a challenging problem due to the
difference in modalities between the images. This difference
meant that standard mono-modal alignment techniques such
as SIFT are unreliable, giving few matches and a signifi-
cant number of outliers. Because of these issues we used
normalized mutual information (NMI), a technique we had
previously used to register multi-modal sensors [24]. Fig. 5
shows an example of the results obtained.

V. RESULTS

This section shows the feature dictionaries obtained via
feature learning, followed by the RGB based multi-class fruit
segmentation results and the RGB-IR based segmentation
results.

The feature dictionaries learnt using the sparse autoen-
coder in the unsupervised feature learning stage are shown in
Fig. 6. The algorithm managed to capture the colour, colour
gradient and edge filters from the RGB dataset, in addition
because the training was done on all channels (RGB-IR) the
correlations between the RGB and IR channels were also
captured. These dictionaries were then used to extract feature
descriptors for multi-class segmentation.

A. Using RGB channels

The RGB based multi-class segmentation results are
shown in Fig. 7 and Table IV. The dataset consists of leaves,

Fig. 5. One of the images before (left) and after alignment (right). RGB
is shown at the top, IR shown in the middle and alignment (two image
superimposed) shown at the bottom.

RGB IR

Fig. 6. Learnt Feature Dictionaries: The features on the left are learnt from
the RGB channels, whereas the features from the right are learnt from the
IR channel.

almonds and tree trunks at different lighting conditions
and scales. The algorithm was able to segment various
objects and also the background scenes (sky and ground).
The proposed feature learning algorithm outperformed the
benchmark [23] with and without the CRF. We did not
apply CRF smoothing to the benchmark because it was
already super-pixel based. The proposed algorithm was able
to segment the fruits at different scales while the benchmark
algorithm sometimes was unable to do so due to a few
feature descriptors being super-pixel dependent. The global
and average accuracy and the F measure of the proposed
approach improved from 80.2% to 86.9%, 80.8% to 84.3%
and 78.9% to 84.8% correspondingly by using CRF.

To investigate the sources of error the confusion matrices
are also shown in Table II and Table III. It showed that the
majority of error occurred between the almond and trunk
classes. This was due to the spectral and textural similarity
between the two classes.

5318



R
G

B
Im

ag
e 

Tr
u

th
 

La
b

el
 

R
G

B
U

n
ar

y 
R

G
B

C
R

F 

Void leaves almonds trunk ground sky

IR
Im

ag
e 

R
G

B
IR

U
n

ar
y 

R
G

B
IR

C
R

F 

Fig. 7. Orchard qualitative results using RGB and RGB-IR channels:
This dataset was collected during an orchard surveying mission aiming to
automate the yield estimation and harvesting process. The dataset contains
scenes of the almond trees at different zoom settings and lighting conditions.
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Hoiem [23] 91.9 54.6 55.8 81.0 93.0 79.9 75.3 77.7
This Work (Unary) 81.7 65.9 74.2 86.6 95.5 80.2 80.8 78.9

This Work (CRF) 94.0 69.8 72.8 89.1 95.8 86.9 84.3 84.8

TABLE I
ORCHARD RGB QUANTITATIVE RESULTS: COMPARISON WITH

BENCHMARK ALGORITHM.

leaves almonds trunk ground sky
leaves 81.7 11.1 7.6 0.6 1.1
almonds 8.8 65.9 14.4 3.4 1.5
trunk 7.9 18.3 74.2 9.4 1.9
ground 0.5 3.4 3.1 86.6 0.0
sky 1.1 1.3 0.7 0.0 95.5

TABLE II
RGB UNARY CONFUSION MATRIX

leaves almonds trunk ground sky
leaves 94.0 16.1 12.7 2.4 2.9
almonds 2.7 69.8 10.5 1.8 0.6
trunk 2.5 11.7 72.8 6.6 0.7
ground 0.2 1.8 3.4 89.1 0.0
sky 0.5 0.6 0.6 0.0 95.8

TABLE III
RGB CRF CONFUSION MATRIX
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Unary 78.9 67.9 76.9 92.5 95.1 79.9 82.3 79.4
CRF 93.8 71.3 76.4 93.5 95.5 88.0 86.1 86.1

TABLE IV
ORCHARD RGB-IR QUANTITATIVE RESULTS.

B. Using RGB + IR

The segmentation results using all RGB-IR channels are
shown in Fig. 7 and Table IV. The global, average accuracy
and the F measure with CRF improved from 79.9% to 88.0%,
82.3% to 86.1% and 79.4% to 86.1% correspondingly. There
are no known RGB-IR image segmentation algorithm so the
results are compared to the RGB based segmentation.

To investigate the sources of error the confusion matrices
are also shown in Table VI and Table VI. Compared to the
RGB based confusion matrix, the misclassifcation between
the almond and trunk class has reduced significantly by using
the extra IR channel.

VI. DISCUSSION

The results showed that the proposed segmentation algo-
rithm could be effectively used for fruit segmentation tasks.
With the RGB channels it achieved a global accuracy of
87% and average accuracy of 84% (in comparison a random
guessing algorithm on a 5 classes classification problem
will have an accuracy of 20%). It outperformed the existing

leaves almonds trunk ground sky
leaves 78.9 8.1 6.6 0.6 1.1
almonds 10.4 67.9 12.7 1.6 1.8
trunk 9.0 18.2 76.9 5.2 1.9
ground 0.5 4.4 2.8 92.5 0.0
sky 1.2 1.4 1.0 0.0 95.1

TABLE V
RGBIR UNARY CONFUSION MATRIX

leaves almonds trunk ground sky
leaves 93.8 13.2 12.2 1.9 3.1
almonds 2.6 71.3 7.7 1.6 0.6
trunk 2.8 11.7 76.3 3.0 0.7
ground 0.2 3.2 3.2 93.5 0.0
sky 0.6 0.6 0.6 0.0 95.5

TABLE VI
RGBIR CRF CONFUSION MATRIX
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benchmark segmentation algorithm [23] without the use of
the CRF.

As expected the CRF increases the overall accuracy. By
introducing the extra IR channel the segmentation accuracy
improves further due to the increase in the discrimination
power. The best performance achieved by the propose algo-
rithm was using the RGB-IR data with the CRF, with 88%
global accuracy, 86% average accuracy and the F measure
of 86.1% .

A. Algorithm Strengths

The proposed algorithm is flexible in incorporating new
data modalities. In contrast to the approach of designing
new features for new data, applications or modalities, the
feature learning approach learnt the new representation from
the dataset itself, allowing the incorporation of the extra IR
channel without the need of redesigning new feature sets.

This work also showed that by using multi-scale feature
learning we were able to extend the feature learning based
application from the standard image classification tasks to
pixel-wise image segmentation tasks.

The multi-class segmentation approach extends the stan-
dard fruit/non-fruit binary segmentation to include other
useful classes such as branches and leaves.

B. Limitations and Current Work

While the proposed algorithm provides reliable pixel la-
bels, it does not incorporate the concept of objects and
so does not provide the actual fruit count. The next stage
of the project consists in estimating the fruit counts using
the approach presented. The large amount of occlusion
found may require extra sensing modalities. We are currently
investigating the use of geometric features (e.g. using a stereo
camera) to improve segmentation.

Currently the algorithm does not run in real time (5
seconds per image) because it was not the main requirement
for this application. The aim was to use the autonomous
platform to perform site surveillance and to provide offline
yield estimation. However to extend this segmentation algo-
rithm to other time-critical applications (such as autonomous
fruit picking tasks) further work is required to speed up the
process.

VII. CONCLUSIONS

This paper presented an approach for multi-class image
segmentation applied to an almond fruit segmentation appli-
cation. The proposed algorithm was able to perform multi-
class fruit segmentation, with no artificial lighting, no prior
assumptions on target fruit properties, and therefore is able
to segment fruit with great variation in size. The multi-
class approach was also trained to segment branches and
leaves. The learning approach makes the algorithm more
robust against variations such as changes in illumination. The
proposed algorithm achieves state-of-the-art segmentation
accuracy. While we demonstrated the performance on the
almond dataset, the proposed approach is general and can
be applied to other applications.
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