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Abstract— We propose a robust and fast solution for the
inverse kinematic problem of general serial manipulators – i.e.
any number and any combination of revolute and prismatic
joints. The algorithm only requires the Denavit-Hartenberg (D-
H) representation of the robot as input and no training or robot-
dependent optimization function is needed. In order to handle
singularities and to overcome the possibility of multiple paths
in redundant robots, our approach relies on the computation of
multiple (parallel) numerical estimations of the inverse Jacobian
while it selects the current best path to the desire configuration
of the end-effector. But unlike other iterative methods, our
method achieves sub-millimeter accuracy in 20.48ms in average.
The algorithm was implemented in C/C++ using 16 POSIX
threads, and it can be easily expanded to use more threads
and/or many-core GPUs. We demonstrate the high accuracy
and the real-time performance of our method by testing it
with five different robots, at both non-singular and singular
configurations, including a 7-DoF redundant robot.

Keywords: Inverse Kinematics, Inverse Jacobian, Serial Ma-
nipulators, Denavit-Hartenberg.

I. INTRODUCTION

A general robotic manipulator is a combination of links

and joints, where the joints are either prismatic (P) or rev-

olute (R). In order to move the robotic end-effector along a

certain path, the joint variables ~Q(t) must be controlled until

the end-effector reaches the desired position and orientation

(i.e. pose) ~X(t), where ~X(t) = f( ~Q(t)). Hence, given

a desired pose ~X(t), it is necessary to solve the inverse

kinematics equation ~Q(t) = f−1( ~X(t)). Usually, the solu-

tions of the inverse kinematics problem fall in one of three

classes of methods [1]: geometric, algebraic, and iterative.

These classes of methods range closed-form to numerical

solutions, depending on the type of the robot. Typically,

robotic manipulators with certain constraints – e.g. being

formed by 6 revolute joints (6R); or presenting a geometric

solution for the first three joints; or having three consecutive

axes that intersect in a common point – can have their inverse

kinematics derived in closed-form. However, because of the

complexity of the function f(.), there are many more cases

where a closed-form solution simply cannot be found. Be-

sides, robotic manipulators are being increasingly employed

in industrial and medical applications where higher accuracy,

repeatability, and stability of the operations are required.

This required ability to move quickly and dexterously in

the workspace is often achieved by increasing the number

nQ of kinematic joints of the manipulator. A robot that

has more degrees of freedom nQ than the dimension of

its workspace nX is called kinematically redundant, and the

control of such manipulators is even more daunting due to

the underdetermined inverse problem [2]. In either cases,

whether nQ > nX or nQ 6 nX , when a closed form

solution is not possible, numerical methods are commonly

used to derive the desired joint variables. Unfortunately,

numerical methods are iterative in nature and therefore, they

are generally much slower than a closed-form solution.

In this paper, we present a fast and accurate method

using an iterative numerical approximation of the inverse

Jacobian. The main advantages and contributions of our

method are in the facts that: 1) unlike other iterative methods,

the proposed method is indeed accurate and fast; 2) it works

for any generic robotic manipulator – redundant or not –

even at singular configurations of the joint variables; 3) it is

naturally implemented in parallel, running as multi threads

in a simple CPU, but it can also take advantage of modern

GPUs; 4) it does not require any training, as it is the case

of recent evolutionary methods (e.g. neural networks [1],

genetic algorithms [3], and swarm optimization [4]); and 5)

it is guaranteed to statistically converge to a solution.

II. BACKGROUND AND RELATED WORK

When it comes to controlling the velocity of the end-

effector, most methods rely on the calculation of
~̇
X(t) =

J( ~Q(t))~̇Q(t) using the Jacobian, J( ~Q(t)) = ∂f

∂ ~Q
, to estimate

the joint velocities from the Cartesian velocities of the end-

effector, i.e.
~̇
Q(t) = J(t)−1 ~̇X(t).

Some of the earliest solutions to this problem were given

by Liao et al. [5], Lee and Liang [6]. Later, Raghavan and

Roth [7] showed that the inverse kinematics problem for

a general 6R manipulator can present at most 16 different

solutions, for any given pose of the end-effector. This allowed

for the derivation of a characteristic polynomial of order 16

and the derivation of a closed-form solution in real time for

the inverse kinematics for any 6R robot manipulator [8], [9].

However, when a closed-form solution is difficult to be

obtained or multiple solutions exist due to redundancy in the
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joint configurations (i.e. nQ > nX ), the Jacobian can be indi-

rectly estimated using pseudo-inverse [10], optimization [11],

and evolutionary methods [3], [1], [12]. Another problem that

arises during the motion of a robot is when it passes through

singular configurations [13]. Unfortunately, a thorough litera-

ture survey of this topic reveals that while many methods can

indeed handle specific cases – e.g. 6R robots [14], [15], [9],

[7], [8] – when it comes to redundant robots [11], [2], [10]

and other robots at singular configurations [13], none of these

methods achieved both accuracy and high performance at the

same time. Besides, most indirect methods require training,

the optimization of robot-dependent objective functions, or

they can only achieve reasonable accuracy at the cost of

time consuming iterations [1]. Even methods that rely on

massively parallel architectures to reduce time complexity

require hundreds of iterations to achieve the specified error

(e.g. in [3], where a NVidia GPU running 512 CUDA threads

in over 42ms).

From the control point of view, Escande et al. [16]

presented a control method based on hierarchized inverse

kinematics and simultaneously solved a stack of tasks using

quadratic programming. They proposed an efficient imple-

mentation for humanoid robots enforcing priorities both at

the tasks and constraints levels. Kanoun [17] used a standard

QR factorization and an active-set method to solve a similar

problem while enforcing linear inequality constraints at every

priority stage for controlling redundant manipulators.

In this paper, we present a parallel approach to the

calculation of inverse kinematics of any general manipulator,

redundant or not. In order to handle singularities and to

overcome the possibility of redundant paths, our method

computes multiple solutions by estimating multiple Jacobians

at the same time, but it requires as few as 16 threads to do

so and it achieves sub-millimeter accuracy in 32 iterations

or 20.48ms in average using a 2.26 GHz Intel Xeon E5520

CPU over 150 trials. In other works and for similar robots

and configurations, the authors reported an average of 5

millimeters error and 250 iterations in 42ms [3], [18].

The proposed method does not require any previous train-

ing and it can produce the solution for the inverse kinematic

problem for any robot, provided only its D-H table.

III. PROPOSED ALGORITHM

In this section, we first introduce a method for inverse

kinematics based on the numerical estimation of the inverse

Jacobian at the current pose of the end-effector. This algo-

rithm will be expanded later on to form the final parallel

approach.

A. Inverse and Pseudo-Inverse Jacobian

Let the pose of the end-effector ~X(t) be described by

its three linear and three angular dimensions – i.e. (x, y, z)
for its position in space, and (φr, φp, φy) for the roll, pitch

and yaw angles for its orientation. In addition, the joint

configuration of the robot is described using the joint variable
~Q(t), with qi = di for the prismatic-joint lengths and qi = θi

for revolute-joint angles. The Jacobian matrix is then defined

based on the forward kinematics equation ~X(t) = f( ~Q(t)) :

~X(t) =


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where fi( ~Q(t)) = fi(q1(t), q2(t), ..., qn(t))

∂ ~X(t)

∂t
= J( ~Q(t))

∂ ~Q(t)

∂t
or

~̇
X(t) = J( ~Q(t))~̇Q(t) (3)

and
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Also, for simplicity of notation, hereafter we will omit the

time dependency from all the terms in the equations above.

Similarly, we will omit the dependency on ~Q(t) in the Jaco-

bian J(.), but it should be made clear here that a Jacobian

can only be fully defined at the current configuration ~Q(t) of

the robot. It is important to mention also that in our current

implementation, the forward kinematics functions were given

explicitly through the D-H representation, but they could

have also been estimated through incremental motions of the

robot. Finally, it is assumed that the initial position ( ~Xt0 ) and

the initial joints configuration ( ~Qt0 ) are provided.

As the equation (4) implies, the Jacobian matrix J can be

numerically estimated by causing small ∂ ~X while applying

arbitrarily small and individual perturbations in ∂qj’s . For

example,

Jc =
∂ ~X

∂qc
= ~Xt − f( ~Qt +


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) (5)

where the subscript c indicates the column of the Jacobian

and t is the iteration step. Also, in order to move the end-

effector towards its final position, the next joint configuration

can be calculated by using the inverse of the Jacobian matrix:

△ ~Qt = J−1
t ∗ αt( ~Xfinal − ~Xt) (6)

where αt ∈ (0, 1) is an attenuation factor that will be

explained later. When the number of joints, nQ, is either
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smaller or greater than the number of degrees of freedom

of the workspace, nX , the algorithm computes, respectively,

the left ((JT
t Jt)

−1JT
t ) or the right (JT

t (JtJ
T
t )−1) pseudo-

inverses of the Jacobian. Otherwise, the algorithm computes

the normal inverse, J−1
t .

In the next step, the actual position, ~̂X , of the end-effector

for the current joint configuration is computed using the

forward kinematics applied to the sum of △ ~Qt and the

current ~Qt. Finally, the difference between the actual ~̂X and

the final ~X positions is measured and if it is above a certain

predefined error εr, the process iterates, otherwise, it stops.

Here, we must point out that different αt’s can affect the

path of the end-effector, and also the time for the process to

converge. For example, a fixed αt ≃ 1 can cause the end-

effector to jump back and forth over the desired ~Xfinal. On

the other hand, a small αt may slow the convergence process

and it can also cause ~Xt to only asymptotically reach the
~Xfinal. As it will be presented in Section IV, using αt = 1 at

the beginning and slowly decreasing it towards the end of the

process guaranteed the fastest convergence at the same time

that it avoided over stepping ~Xfinal. Nevertheless, further

experimentation to determine the best choice of αt must be

carried out.

The algorithm above is presented in more detail in Algo-

rithm 1.

Algorithm 1 : Inverse Jacobian Algorithm

procedure IK(joint configuration : ~Q )

n ← number of joints
~Qt0 ← joints configuration
~Xt0 = f( ~Qt0)
while ‖ ~Xt − ~Xfinal‖ > εr do

for each joint c ∈ [1 ... nQ] do

Jc =
∂ ~X
∂qc

= ~Xt − f( ~Qt + ∂qc)
end-for

Jt = ~Xt − f( ~Qt + ∂qt)
if n = 6 then

△ ~Qt = J−1
t ∗ αt( ~Xfinal − ~Xt)

else

△ ~Qt = J−P
t ∗ αt( ~Xfinal − ~Xt)

end-if
~Qt+1 = ~Qt +△ ~Qt
~Xt+1 = f( ~Qt)

end-while

end-procedure

B. Parallel Method

Since there is no guarantee that any single estimate of

the Jacobian can lead to the final solution, the parallel

method proposed here originated from the assumption that

by creating multiple estimates of the Jacobian matrix, the

process can be sped up and an optimal path to this same

final pose can be found with fewer iterations. With that in

mind, we devised an evolutionary-like algorithm to produce

a generation of Jacobian matrices which will evolve over

time through the selection of the current best individuals in

the path. In order to handle the several Jacobian matrices at

each iteration, we resort to parallel computation through the

use of multiple threads.

In order to create multiple estimates of the Jacobian matrix

at the current position Jt( ~Q), m matrices from a white-noise

distribution ℵ(0,ΣJ ) are added to that Jacobian. That is, m

estimates of the Jacobian, Jk
t , are created by:

Jk
t = Jt + ℵk(0,ΣJ ) for k = 1 ...m (7)

Next, by using the inverse (or pseudo-inverse) of the m

estimates of the Jacobian matrix, m joint configurations can

be calculated in parallel so that all Jk
t ’s are pointing towards

~Xfinal. That is, all Jacobians should cause the end-effector

to move towards the final pose, but each one with a different

“slope”.

△ ~Qk
t = (Jk

t )
−1 ∗ αt( ~Xfinal − ~Xt) (8)

As with the single-Jacobian case, the actual position of the

end-effector, ~̂X , can be chosen among all values computed

by using the forward kinematics and adding the various△ ~Qk
t

motions to the current ~Qt. Currently, this choice is based

on the closest distance between the new positions and the

final position. However, other constraints can be imposed

to avoid obstacles, select linear paths, etc. Once again, the

entire process above is performed in parallel, using:

~Xk
t = f( ~Qt +△ ~Qk

t ) for k = 1 ...m (9)

~Xt+1 = ~Xk
t | ‖

~Xfinal − ~Xk
t ‖ is minimal (10)

It is important to mention again that by using different

αt’s one can affect the path of the end-effector and the

convergence time. Also, for a number of threads m large

enough, the convergence should be quicker since in this case

there will be a greater chance that one of the ~Xk
t ’s will lie

right on top of the ~Xfinal.

The pseudo-code of the proposed process is in Algorithm

2.

In order to better understand our method, Figure 1 shows

an analogy of the proposed algorithm for one dimension.

The blue line represents the original Jacobian, while the red

line would be one of the Jacobians found after adding white

noise. For m = 2, the Jacobians J1
t and J2

t are created,

leading to two possible solutions Q1
t and Q2

t . Through

forward kinematics, each Qi
t determines a new pose Xi

t . In

this simple example, X2
t is selected since it is closer to the

desired/final point Xfinal. In the next iteration t + 1, the

process will continue from this position, Q2
t .
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Algorithm 2 : Proposed Parallel Algorithm

procedure IK(joints configuration : ~Q)

n ← number of joints
~Qt0 ← joints configuration
~Xt0 = f( ~Qt0)
while ‖ ~Xt − ~Xfinal‖ > εr do

for each joint c ∈ [1 ... nQ] do

Jc =
∂X
∂qi

= ~Xt − f( ~Qt + ∂qc)
end-for

Jt = ~Xt − f( ~Qt + ∂qt)
create m threads

thread-do

k ← thread ID

Jk
t = Jt + ℵ (0,ΣJ )

if n = 6
△ ~Qk

t = (Jk
t )

−1 ∗ αt( ~Xfinal − ~Xt)
else

△ ~Qk
t = (Jk

t )
−P ∗ αt( ~Xfinal − ~Xt)

end-if
~Qk
t = ~Qt +△ ~Qk

t
~Xk
t = f( ~Qk

t )
end-thread
~Xt+1 = { ~Xk

t | ‖
~Xfinal − ~Xk

t ‖ is minimal}
end-while

end-procedure

Fig. 1. Visual representation of the proposed method

IV. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we present three experiments that were

performed. For the first experiment, we ran our algorithm

using four different non-redundant robots. In the second

experiment, we selected several singular poses of the end-

effector of a non-redundant robot as we moved the robot

to/from those same poses. Finally, in the last experiment, we

applied our method to a redundant 7 DoF robot presented

in [2]. In average, the algorithm performed extremely well,

returning a solution with sub-millimeter accuracy in under

20ms.

For all cases below, in the third column of the tables,

we report the number of iterations required by the parallel

algorithm presented in section III-B versus the single inverse

Jacobian from section III-A. Our tests were performed on

an Intel Xeon E5520 CPU running at 2.26 GHz. The typical

speed-up obtained by the parallel approach was about two

times of the single Jacobian, but in some cases, it reached

21 times, while keeping approximately the same error.

A. Test for General Robot Manipulators

TABLE I

D-H PARAMETERS OF THE TESTED ROBOTS

# θ d a α

1 θ1 0 0 -90

2 θ2 125.4 203.2 0

3 θ3 0 -7.9 90

4 θ4 203.2 0 -90

5 θ5 0 0 90

6 θ6 63.5 0 0

# θ d a α

1 θ1 700 750 -90

2 θ2 0 1250 0

3 θ3 0 -55 -90

4 θ4 1500 0 90

5 θ5 0 0 90

6 θ6 -230 0 180

(a) Puma 260 (b) Kuka robot

# θ d a α

1 θ1 0 0 -90

2 θ2 149.09 431.8 0

3 θ3 0 -20.32 90

4 θ4 433.07 0 -90

5 θ5 0 0 90

6 θ6 56.25 0 0

# θ d a α

1 θ1 0 250 0

2 θ2 0 350 180

3 0 d3 0 0

4 θ4 114.5 0 0

(c) Puma 560 (d) Scara robot

In this section, the cases for the inverse kinematics prob-

lem applied to four different robots are presented. Over

150 random final positions of the end-effector were used

for test of a non-redundant Puma 260, Puma 560, Kuka

and Scara robotic manipulators. The D-H parameters of the

above mentioned robots can be found in Table I(a)-(d). All

angles are in degree and all lengths in millimeters. It is

important to point out that the initial position of the end-

effector can affect the results as well as the path to the

final position. Due to limitation of space, here we only

report some of the most typical results and the total average.

A spreadsheet with the remaining results can be found

at http://vigir.missouri.edu/iros. Also, for the experiments

reported here, the initial positions of the robots were set to

the manufacturer-defined home position.

The first three robots have six revolute joints, while the

Scara robot has three revolute and one prismatic joints. The

algorithm was implemented in C/C++ using POSIX threads.

For the current implementation, the number m of threads

used for each iteration was 16.

As it can be seen in Tables II(a)-(d), in 12 of the 16 tests

reported here, the algorithm was able to find the inverse

kinematics solution in less than 20ms, which is considered

“real time” for many applications. Again, the times shown

below are typical for the tests not reported here. Also, the last

rows of the tables list the average performance for all trials.

The error column is the same for both the proposed method

2510



TABLE II

RESULTS FOR TESTED ROBOTS

End-effector position Calculated joint configuration # of iterations Error Execution

and orientation (θ1, θ2, θ3, θ4, θ5, θ6) (Proposed method / Position / Orientation time

(x, y, z, φr , φp, φy) Inverse Jacobian) (mm) / (deg) (ms)

(-70, -160, 360, 30, 85, 0) (158.74, -69.84, 41.48, -123.18, -112.69, 23.54) 28 / 764 0.97 / 0.36 18.627

(-350, 220, -130, 30, 45, -60) (135.43, 40.96, 56.52, 52.10, -46.65, -97.70) 29 / 46 1.08 / 0.10 20.192

(-170, 100, 55, -25, 35, 10) (5.89, -117.66, -30.60, 70.26, -171.14, -135.09) 25 / 40 0.82 / 0.44 19.790

(220, 300, 160, 45, -30, 30) (39.41, -6.27, 72.10, 31.87, -92.32, 6.41) 19 / 33 1.00 / 0.58 14.387

Average of 34 tests 28.50 / 169.5 0.85 / 0.46 22.811

(a) Four arbitrarily chosen test cases and the average of all 34 trials for the Puma 260

End-effector position Calculated joint configuration # of iterations Error Execution

and orientation (θ1, θ2, θ3, θ4, θ5, θ6) (Proposed method / Position / Orientation time

(x, y, z, φr , φp, φy) Inverse Jacobian) (mm) / (deg) (ms)

(-30, 500, 600, -89, -10, -75) (-63.26, -110.13, 143.95, -59.48, -91.88, 129.90) 97 / 1976 0.84 / 0.49 66.276

(-300, 490, 420, -45, -30, 60) (101.30, -9.75, 74.46, -120.66, -86.31, 116.04) 29 / 63 0.85 / 0.09 23.327

(400, 300, -1000, 88, 60, 80) (26.52, 32.09, 13.26, -146.12, -44.21, -125.02) 28 / 102 0.77 / 1.64 22.056

(800, -720, 600, 30, -45, 60) (-48.42, 112.80, 105.97, -54.26, -139.97, 171.98) 23 / 36 0.94 / 0.33 17.352

Average of 22 tests 38.68 / 283.13 0.87 / 0.40 32.975

(b) Four arbitrarily chosen test cases and the average of all 22 trials for the Kuka robot

End-effector position Calculated joint configuration # of iterations Error Execution

and orientation (θ1, θ2, θ3, θ4, θ5, θ6) (Proposed method / Position / Orientation time

(x, y, z, φr , φp, φy) Inverse Jacobian) (mm) / (deg) (ms)

(-200, -45, 870, -75, 25, -60) (78.19, -105.66, 116.78, -45.96, -70.55, 52.69) 51 / 205 0.92 / 0.04 31.214

(-100, 150, 850, -45, 60, 0) (-13.31, -87.73, 64.43, -27.54, 80.32, -12.14) 25 / 30 0.94 / 0.05 16.892

(450, 200, 200, 0, 60, -30) (3.16, 35.74, -24.27, 34.15, 54.47, -23.28) 22 / 29 0.75 / 0.11 15.007

(150, 200, 250, 60, -45, 0) (22.98, 27.91, -43.10, 49.70, -33.76, -16.43) 25 / 30 0.75 / 0.07 14.657

Average of 36 tests 32.97 / 350.19 0.85 / 0.40 20.416

(c) Four arbitrarily chosen test cases and the average of all 36 trials for the Puma 560

End-effector position Calculated joint configuration # of iterations Error Execution

and orientation (θ1, θ2, d3, θ4) (Proposed method / Position / Orientation time

(x, y, z, φr , φp, φy) Inverse Jacobian) (mm) / (deg) (ms)

(500, 300, -150, -85, 0, 0) (47.53, -28.28, 35.11, 103.34) 17 / 34 0.90 / 0.31 8.200

(350, 250, -135, 75, 0, 0) (-19.09, 90.25, 20.49, -3.80) 30 / 36 0.91 / 0.01 12.088

(300, 500, -200, -85, 0, 0) (42.47, 28.35, 85.40, 155.73) 26 / 37 0.89 / 0.03 11.039

(-350, 250, -135, -45, 0, 0) (-161.01, -90.18, 20.49, 153.79) 29 / 34 0.73 / 0.01 12.313

Average of 20 tests 24.45 / 221.65 0.8285 / 0.3285 8.931

(d) Four arbitrarily chosen test cases and the average of all 20 trials for the Scara robot

and the Inverse Jacobian since the termination conditions εr
for both cases were set as shown.

As Figure 2 indicates, in the majority of the trials, the

end-effector moved in a smooth path directly towards the

final position. However, due to the nature of the Inverse

Kinematics functions which is not necessarily monotonic,

some times the end effector moved in a wrong direction,

which led to an increase in the number of iterations required

for convergence. Figure 3 illustrates one such case that

happened for the Puma 260 robot.

B. Test for Robots at Singular Positions

In this section, we report the results obtained for ten tests

using the Puma 560. The results are presented in Table III.

In some case (Table III(a)), the singularity was in the starting

positions, and for others (Table III(b)), the singularity was

in the final positions. A total of six singular poses obtained

from [19] were used in this section.

The attentive reader will notice that the final joint

configurations in Table III(b) do not always match the

provided singular configuration, but yet, the final pose

(x, y, z, roll, pitchandyaw) of the end-effector is the desired

one. That is in fact a consequence of the very nature of

a singular joint configuration, where the derivative of the

motion is very flat (close to zero), leading to a close-to-

infinite rate for its inverse.

C. Test of a Redundant Robot

Finally, we employed our algorithm for the redundant

robot with 7 DoF in [2]. Table IV presents the results for
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(a) X , Y and Z

(b) roll, pitch and yaw

Fig. 2. Change in the end-effector pose versus the iteration number
for an arbitrarily chosen test case

this test. As it can be seen in the Table IV, although the

average number of iterations increased slightly with respect

to the non-redundant cases, the algorithm still presents the

same accuracy and robustness as in the non-redundant cases.

V. CONCLUSION AND FUTURE WORK

This paper presented a novel approach for the inverse

kinematics problem for a general robotic manipulator. The

method was implemented in parallel using C/C++ program-

ming and POSIX threads. Unlike previous works which

achieved an average of 5mm accuracy and 42ms execution

time, our experimental results carried out on different robots

showed that the proposed approach is able to find a solution

with less than 1mm accuracy and in real time (20.48ms in

average). The algorithm was validated using five robots, at

singular and non-singular configurations, including a redun-

dant robot.

Many aspects of the algorithm can be further investigated.

For example, the use of constraints, as to avoid obstacles,

when selecting the best ~̂X towards the final position of the

end-effector. Also, further investigation on the effect of αt

both on the convergence of the algorithm and the accuracy

of the final solution will be carried out.
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