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Abstract— Given a hover-capable flying vehicle attached to
a fixed point by a taut tether, we present a novel method to
recover the vehicle’s relative position and absolute orientation.
The proposed method requires only on-board inertial sensors,
and indirectly measures the string force, enabling the additional
use of the tether as a physical user interaction medium. We
present the vertical-plane dynamics of such a system and the
localization approach, discuss sensitivity issues, and implement
an estimator and controller based on the presented model.
We demonstrate the method experimentally on a tethered
quadrocopter in the Flying Machine Arena, using both a
vertical-plane-constrained vehicle and in 3D.

I. INTRODUCTION

Small hover-capable unmanned aerial vehicles (UAVs) are

being used extensively in research and are beginning to be

used in civil applications such as aerial photography and

inspection. Currently such vehicles rely either on external

localization systems like GPS or require external control.

More recently, proof-of-concept autonomous vision-guided

flight has been demonstrated [1], [2], with sophisticated

machine vision and estimation algorithms providing the

required localization.

As a result, while small UAVs are capable of providing

unique sensing perspectives in numerous situations, in re-

alistic settings they are virtually unusable by non-experts.

A high level of situational awareness is required to prevent

loss of control and expert training is necessary to recover the

vehicle from non-ideal situations. The lack of resilient, low-

cost, effective localization and interaction methods remains

a composite barrier for the wider adoption of such devices.

The localization/interaction barrier is further amplified by

the variety and challenging nature of immediate applications

such as search and rescue or disaster recovery.

In this work we propose a new stabilization approach

based on the analysis of the dynamics of a hover-capable

UAV attached to the ground via a taut tether. While adding

some restrictions to the operational scenarios of the UAV,

we show that a taut tether provides both a unique new

modality for stabilizing the vehicle and creates a novel user-

vehicle interaction method. In addition, as recent commercial

developments such as [3] have shown, a tether provides

further potential advantages beyond the scope of this work, as

a power transmission system or as a reliable, high-bandwidth

electro-optical communication channel.

Taut tethers in robotics have been used for aerial instal-

lations for energy generation [4], [5]. The dynamics of a

robot swinging under a support point on the end of a tether
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were described and a controller was proposed in [6]. The

use of tethered flight has also been proposed for operating

in proximity of ships, such as for landing or taking off from

a vessel in rough seas [7], [8]. In addition, tethers have

been used in ground robotics, such as on the proposed Axel

tethered rover for planetary exploration [9]. Tethers have also

been used extensively in the context of kites and balloons

used for aerial photography[10].

In this work we consider a hover-capable UAV such as a

quadrocopter, capable of following body rate commands and

producing a collective thrust, attached by a taut tether to a

fixed or slowly moving ground point (see Fig. 1). The goal

is to find the state of the vehicle using only on-board inertial

sensors and to use that information in feedback to be able

to control the vehicle to a desired position.

We begin by describing the first-principles planar dy-

namics of the system in Section II. We then discuss how

these dynamics and minimal sensing in the form of on-

board inertial sensors can be exploited to localize the vehicle

in Section III. We improve on that localization approach by

describing a full estimator in Section IV. Given the estimated

state of the vehicle and the system model, we describe a

Fig. 1. A tethered self-propelled flying vehicle operated by a person.
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Fig. 2. Close-up of the tethered flying vehicle highlighting the relevant
variables and forces (Fp, Fs and mg). The inputs to the system are shown

in green: the collective thrust force Fp and the desired angular rate θ̇v .

control scheme in Section V and examine local stability in

Section VI. Finally, we show preliminary results and discuss

performance in Section VII before giving a brief conclusion

and outlook in Section VIII.

II. SYSTEM MODELING

We examine a vertical-plane simplification of the system:

Consider a flying vehicle attached by a tether to a fixed point

on the ground. The vehicle has mass m and the tether is taut

and of fixed length l. The mass of the tether is negligible and

it is straight. It is attached to the center of mass of the vehicle

on one end and to the global coordinate frame origin on the

other. We assume that aerodynamic effects are negligible.

Our goal is to recover how the local coordinate system

(xb, zb) relates to the global reference frame (xg, zg), which,

given a known tether length l, corresponds to recovering the

two angles θv and θs. A depiction of the forces and variables

involved is shown in Fig. 2.

From first principles, the translational dynamics are

mẍb = mg sin θv − Fs sin (θs − θv)

mz̈b = Fp −mg cos θv − Fs cos (θs − θv)
(1)

where g is acceleration due to gravity, and Fp, Fs are the

propeller and tether tension forces, respectively.

From here on, we omit the mass of the vehicle in further

analysis and assume that Fp and Fs are normalized by m.

Since the tether is kept taut, Fs must equal the sum of all

the other forces in the direction of the tether:

Fs = Fp cos (θs − θv)− g cos θs + lθ̇2s (2)

The dynamics of θs are governed by the relevant compo-

nents of the forces in Eqn. 1:

θ̈s =
g sin θs − Fp sin (θs − θv)

l
(3)

III. MINIMAL LOCALIZATION

Given the above system dynamics, we show that only on-

board inertial sensors can be used to recover θ′s and θ′v ,

the approximate values of θs and θv , respectively. While

more sophisticated estimation algorithms may be used to

recover the state (e.g. see Section IV), this approach provides

a light-weight, understandable, minimal way to observe the

two angles. In addition, examining the localization procedure

closely reveals how this measurement scheme performs un-

der non-ideal conditions and provides guidelines for optimal

operating points of the system.

An accelerometer measures the acceleration effected by

the composition of all the non-gravitational forces acting

on the accelerometer [11]. In other words, an on-board

accelerometer measures the effects of all the forces in

Eqn. 1, minus the acceleration corresponding to gravity: the

accelerometer measurements ax, az , taken with respect to the

body axes xb, zb are

ax = −Fs sin (θs − θv)

az = Fp − Fs cos (θs − θv)
(4)

We assume the collective thrust Fp is nominally set to

some commanded value F ∗

p , high enough to keep the tether

taut. From Eqn. 4 we solve for the measured tether force F ′

s:

F ′

s =
√

a2x + (az − F ∗

p )
2 (5)

Note that, under ideal conditions, if the tether is not taut

ax = 0 and az = F ∗

p , leading to F ′

s = 0 from the above

calculation. In the presence of sensor noise and disturbances,

a threshold, F ′

s < ǫ, may be used to detect if the tether is

taut at a given time.

Assuming that the centripetal force is negligible, we solve

Eqn. 2 and Eqn. 4 for angle measurements θ′s and θ′v:

cos θ′s =
F ∗

p (F
∗

p − az)/F
′

s − F ′

s

g
(6)

θ′v =θ′s − sin−1(−ax/F
′

s) (7)

Note that the sign of θ′s, and hence the value of θ′v , are

ambiguous. This is resolved by using on-board gyros to

predict a prior for θ′v and picking the closer corresponding

θ′s as the update value.

As a result of the sin−1 and cos−1, there are two condi-

tions that must be satisfied to make the observation:

|F ∗

p cos(θs − θv)− F ′

s| ≤ g

|ax/F
′

s| ≤ 1
(8)

given the previous assumptions, both conditions are ideally

always satisfied from Eqn. 2 and Eqn. 4. In presence of

sensor noise, unmodeled effects and disturbances, special

care must be taken to filter out unusable measurements.

A. Sensitivity Analysis

The equations for recovering the state of the vehicle are

nonlinear and are not always well-behaved. For example,

θs is practically unrecoverable around 0, since only cos θs
is observed directly. We performed a series of Monte-Carlo

simulations to understand how the proposed state observation

approach performs under different conditions. As the calcula-

tion for the tether force Fs is straightforward, we performed

a sensitivity analysis only for θ′v and θ′s.

For each of these tests, we examined how the localization

approach functioned for static operating points (θ̈s = 0) at
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various set points θ̌s. For a given θ̌s, the attitude of the

vehicle θv = θ̌v required for the vehicle to remain static

is derived by setting θ̈s = 0 in Eqn. 3:

θ̌v = θ̌s − sin−1

(

g sin θ̌s
Fp

)

(9)

1) Sensitivity to Unbiased Gaussian Noise: Noise sam-

pled from zero-bias Gaussian distributions N (0, σ2) were

applied to the ideal accelerometer measurements (see Fig. 3).

The standard deviation σ of the distributions was set to

0.2m s−2, representative of accelerometer noise on a well-

maintained, vibration-isolated hovering quadrocopter [12].

The analysis shows that higher θs set point values provide

more robust observations, with significant measurement bias

for θs < 20◦. As a result of the sensor noise some mea-

surements violated the constraints described in Eqn. 8, and

were not used for measurements, leading to additional mean

measurement bias near θs = 0.
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Fig. 3. Representative effect of Gaussian zero-bias sensor noise on state
observation. Each point represents either the standard deviation (σ(·)) or

the mean bias (θ′
·
− θ·) calculated from 50,000 simulated measurements.

Sensor noise was sampled from N (0, σ2
x,z), where σx and σz were set to

0.2m s−2. Thrust Fp was set to 12m s−2.

2) Sensitivity to Collective Thrust Mismatch: Note that

in the analysis we assumed Fp is known and equal to the

input F ∗

p to the vehicle. The actual thrust produced by

the propellers typically does not match the ideal value: for

example, actual thrust gradually decreases over time due to

propeller wear. We repeated the above sensitivity analysis

with F ∗

p = 12m s−2 = Fp + 0.5m s−2 ( Fig. 4). The

localization clearly performs best for larger values of θs,

specifically θs > 20◦; in addition to the previous issues of

observation bias, the effect of Fp < F ∗

p results in practically

no usable localization observations near θs = 0.

3) Centripetal Force: We made the assumption that the

centripetal force is negligible in order to derive Eqn. 6. If

the centripetal force is indeed substantial then both θ′s and

θ′v will be offset from their true values. We examine how

well this approximation holds for several realistic scenarios

in Fig. 5. Larger values of θs are once again better behaved,

with errors arising from this approximation scaling much

worse with θ̇s than with l. Practically, this means that the

approximation may be a problem at smaller tether lengths,

as at larger values of l the translational speeds equivalent
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Fig. 4. Observation/measurement sensitivity analysis as in Fig. 3, but with
Fp = 11.5m s−2 = F ∗

p − 0.5m s−2. Note that near θs = 0 the minimal
localization measurement conditions (Eqn. 8) are violated by a majority or
all the measurements, resulting in a significant mean measurement bias.
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l = 3 m, θ̇s = 6 deg/s

l = 3 m, θ̇s = 30 deg/s

l = 10 m, θ̇s = 6 deg/s

l = 10 m, θ̇s = 30 deg/s

Fig. 5. Sensitivity of the minimal localization scheme to the negligible
centripetal force assumption. The system parameters are as in Fig. 3. Note

that the approximation is much more sensitive to θ̇s than to l, since

centripetal angle is quadratically related to θ̇s and linear in l.

to significant θ̇s are quickly not practical (e.g. drag, other

effects become significant).

Since our primary objective is to stabilize at a given θs,

rather than dynamically change the angle, the magnitude

of θ̇s should remain relatively small, preventing significant

localization errors due to this approximation. As a further

improvement, we may use the current estimate of θ̇s, if

available, to approximately cancel out the effect of the

centripetal force on the measurement.

IV. ESTIMATION

Given the measurements ax, az and the dynamics of the

system, we want to produce an estimate of the current state

of the system, x̂, to enable us to control the system.

We implement an Unscented Kalman Filter (UKF) [13],

which avoids requiring differentiating or analytically approx-

imating the system dynamics and measurement equations,

and instead uses a small number of strategically picked

“sigma points” to perform the filtering, similar to a particle

filter. The UKF requires noise models for the process and the

measurements, the dynamics equations of the process, and a

mapping from a given state to the respective measurement.

We define the estimated state at time instant k as:

x̂k =
(

θ̂ks ,
ˆ̇
θks , θ̂

k
v

)

(10)
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Fig. 6. Layout of the closed-loop tethered vehicle system, including the plant (bottom) and the proposed controller (top). The estimator and accelerometers
are omitted for clarity – all state variables used by the controller are estimated, as it has no access to the true state of the system.

The process is modeled using the discrete Wiener process

acceleration model [14] with a nonlinear prediction step,

xk+1 = xk + RK4(f(x
k)) + Γvk (11)

where RK4(·) is the fourth-order Runge-Kutta numeric in-

tegration method, vk is an acceleration increment at the kth

sampling period, assumed to be a zero-mean white sequence,

Γ is the noise gain discussed below, and f(·) is the nonlinear

dynamics from Section II,

f(xk) =







ˆ̇
θks

(g sin θ̂ks − Fp sin(θ̂
k
s − θ̂kv ))/l

ωk






, (12)

where ωk is the on-board rate gyro measurement at time k.

The noise gain Γ corresponds to that of a discrete Wiener

process acceleration model, but with a nominal-set-point

linearized change of variables from
ˆ̈
θs to θ̂v:

Γ =

[

T 2/2 T ∂θv/∂θ̈s

∣

∣

∣

∣

θ̌s,θ̌v

]T

, (13)

where T is the sample time and the partial derivative is

computed from Eqn. 3:

∂θv

∂θ̈s

∣

∣

∣

∣

θ̌s,θ̌v

=
l

Fp cos(θ̌s − θ̌v)
(14)

This corresponds to appropriate integral of the the ac-

celeration vk per sample time T , with the increment in θ̈s
approximately transformed into an increment in θv .

The resulting covariance of the process noise is [14]

Q = Γσ2
pΓ

T , (15)

where σp is a tuning parameter and should be on the order

of magnitude of the maximum unmodeled acceleration of θs
in one time increment. For the experiments presented in this

work, σp = 0.4.

The measurement noise covariance, R, was calculated

from experimental measurement data. For the experiments

presented in this work,

R =

[

0.31 0.157
0.157 1.105

]

(16)

UKF update steps are only performed when a valid

measurement is detected, i.e.
√

a2x + (az − F ∗

p )
2 > ǫ as

per Section III. If this condition fails, a “dead-reckoning”

update step is executed. The filter is initialized using the first

valid observation, using the state produced by the minimal

localization method given in Section III.

V. CONTROL

Based on the state estimate (θ̂s,
ˆ̇
θs, θ̂v) produced in Sec-

tion IV, we design a controller to stabilize the system at a

given set point θ̌s. A diagram of the resulting closed-loop

system is shown in Fig. 6.

The vehicle accepts as input a collective thrust command

F ∗

p and a desired body rate θ̇∗v . We set F ∗

p to a constant

value, sufficiently high such that the tether is kept taut.

To find θ̇∗v , we first use a proportional-derivative controller

to find a desired tether angle acceleration θ̈∗s :

θ̈∗s =
1

τ2s
(θ̌s − θ̂s)−

2ζs
τs

ˆ̇
θs (17)

where τs is the desired time constant of the closed-loop

system and ζs is the desired damping ratio.

We then transform θ̈∗s to a desired vehicle angle by feed-

back linearization, using the inverse of the relevant system

dynamics (Eqn. 3):

θ∗v = θ̂s − sin−1

(

g sin θ̂s − lθ̈∗s
F ∗

p

)

(18)

Finally, we use another proportional controller to calculate

the desired vehicle angular rotation:

θ̇∗v =
1

τv
(θ∗v − θ̂v) (19)

where τv is the desired closed-system time constant for the

vehicle angular dynamics.

We set ζs to 0.6 for good performance and minimal

overshoot. The remaining two control parameters, τs and τv ,

were tuned experimentally to 0.6 s and 0.16 s, respectively.

VI. LOCAL STABILITY ANALYSIS

The estimator describe in Section IV is independent of the

controller described in Section V. Therefore, for the purpose

of proving local stability, by the separation principle [15],

we may treat the estimator and the controller separately, first

showing stability for the UKF and then showing stability

for the controller given perfect estimated state information,

x̂ = x.

A. Estimator Stability

For local (linear) analysis, the UKF update equations

reduce to the standard Kalman filter update step, which is

stable if the estimator state variables are observable from

the measurements [14]. The UKF is known to be locally

stable for estimating the state of nonlinear systems given
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that the filter is correctly initialized (initial state close to true

value) and the provided noise models reflect the noise in the

actual process/measurements [16]. Given that we initialize

the estimator with the minimal localization method presented

in Section III, a good initial state estimate is reliably available

for properly chosen operating set points.

To show controller stability, we first identify the dynamics

of the vehicle following angular rate commands.

B. Vehicle Angle Rate Dynamics

We identified the dynamics of the quadrocopter following

angular rate commands as a second-order system by curve-

fitting to experimental step response data. The response of

the physical system to a step in θ̇∗v is shown in Fig. 7. More

details about the test setup and the vehicles used is given

in Section VII. We observe that the dynamics of θ̇v near

θ̇v = 0 are well represented by a second-order system:
...
θv = ω2

vd(θ̇
∗

v − θ̇v)− 2ζvdωvdθ̈v, (20)

with ωvd = 78.5 rad s−1 and damping ζvd = 0.4.
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Fig. 7. Step response of a quadrocopter in the Flying Machine Arena to

θ̇∗v , compared to the step response of an ideal second order system with
ωvd = 78.5 rad s−1, ζ = .4 (dashed line). At time 0 s the vehicle was
commanded θ̇∗v = 60 ◦ s−1. Ten trials are shown.

C. Controller Stability

To show local controller stability, we combine the ve-

hicle angle rate dynamics above with the tether dynamics

described in Section II and the controller (Section V) into a

closed-loop nonlinear system, and linearize it at various static

operating points. For completeness, the analytical lineariza-

tion of the system dynamics and the controller is provided

in the Appendix.

The poles of the closed-loop system linearized at various

operating points are shown in Fig. 8. They are stable for

all configurations. Furthermore, the two poles corresponding

to the dynamics of θ̇v , are distant from the other poles,

highlighting time scale separation between vehicle dynamics

and tether/controller dynamics.

θ̌s 10◦ 50◦ 90◦

θ̌v 1.84◦ 11.23◦ 35.17◦

−28.5±70.8i −28.5±70.8i −28.5±70.8i

−3.6 −3.5 −2.8

−1.1±1.8i −1.1±1.8i −1.5±1.9i

Fig. 8. Closed-loop system poles at various set points. The controller
parameters were set to τs = 0.6 s, ζs = 0.6, and τv = 0.18 s. The vehicle
angle rate dynamics are as identified in Section II, ωvd = 78.5 rad s−1,
ζvd = 0.4. Other parameters: l = 3m, F ∗

p = 12m s−2.

VII. RESULTS

A. Experimental Setup

The feasibility of the proposed localization and control

method was tested in the Flying Machine Arena (FMA) aerial

robotics testbed [12]. A small quadrocopter was attached

by a 3m string to a fixed point on the ground or, in later

tests, to a tracked object held by a person. The string used

is highly inelastic and is very lightweight (0.9 g m−1). The

true position and attitude of the vehicle were measured by a

high-precision motion capture system. For all experiments,

F ∗

p = 12m s−2.

The Flying Machine Arena system was used to constrain

the vehicle to the (xg, zg) plane using the standard off-board

FMA controllers described in [12].

On-board accelerometers measured the accelerations at

800Hz, filtered by a first-order digital lowpass filter with

a time constant of 0.06 s. These filtered measurements were

sent to an estimator at 80Hz, A controller running at 50Hz

used the current estimated state to produce and send control

commands (F ∗

s and θ̇∗v) to the vehicle.

B. Tether Torque Compensation

The model presented in Section II assumes that the tether

is attached to the center of mass of the vehicle and that

it creates no torques on the vehicle. In practice this is

impractical; a natural tether attachment point, used in the

experiments presented, is a short distance d below the center

of mass on the vehicle on (that is, at zb = −d). In this case

we assume d ≪ l and use the observation F ′

s and the current

state estimate to calculate an opposing equivalent torque ρ:

ρ = −dγF ′

s sin(θ̂s − θ̂v) (21)

where γ is a force to torque conversion factor calculated

from the inertial properties of the vehicle.

This torque is then sent as a feed-forward command to the

vehicle, resulting in the cancellation of the unwanted torque.

C. Minimal Localization

Results of the minimal localization procedure are shown

in Fig. 9. The observed values are noisy but track the true

value.

D. Estimation and Closed-Loop Angle Control

Fig. 10 shows a quadrocopter in the FMA attached to

a static point on the ground responding to a change in

commanded tether angle, θ∗s . The tether angle controller

(Section V) is using the estimated state produced by the UKF

(Section IV) to stabilize the vehicle and follow the setpoint.

E. Stabilization with Moving Anchor Point

Further experiments were conducted where the anchor

point (the bottom end of the tether) was moved around. An

example of such an experiment is shown in Fig. 11. This

allows for natural interactive position control, as the vehicle

is able to keep station relative to the user.
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Fig. 9. Accelerometer data and resulting θ′s, θ
′

v , F
′

s from the minimal
localization scheme for a tethered quadrocopter. Ground truth values of the
angles, θs (green) and θv (red) are shown as reference.
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Fig. 10. Commanded, UKF-estimated, and true angles for a vehicle
following tether angle commands while tethered to a static anchor point.

The mean estimates θ̂s and θ̂v are plotted against the true values, θs and
θv . The light green side-lines around the estimates reflect the ±3σ range
for the estimated mean given the estimator’s covariance matrix.

F. Extension to 3D Stabilization with Moving Anchor Point

The planar approach described above was extended to

stabilize all the degrees of freedom of the vehicle except

for yaw: two separate instances of the estimator and the

controller were run for each of the two vertical planes: one

for (xg, zg) and another one for (yg, zg). We ignore any

coupling effects between the dynamics in the two planes,

but increase τs to 1.2 s and ζs to 0.8 to improve robustness.

The estimators and controllers operator on project vertical-

plane force components, projected at each time step using

the currently estimated attitude.
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Fig. 11. Tethered vehicle stabilizing as the anchor point is shifted. The
top plot shows the movement of the anchor point and the vehicle; the
corresponding velocities are shown in the middle plot. The bottom plot
shows the estimated tether angle and the actual tether angle.
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Fig. 12. Vehicle stabilizing in 3D relative to a moving anchor point.

The experiment of the vehicle stabilizing relative to the

anchor point was repeated with this setup. Results are shown

in Fig. 12. The vehicle was observed to stabilize, though with

a significant tether angle bias. Further work to properly esti-

mate and model coupled 3D dynamics is necessary to remove

the bias and achieve higher-performance stabilization.

VIII. CONCLUSIONS AND FUTURE WORK

The 2D dynamics of a hover-capable UAV attached to

a fixed point by a taut tether were presented along with

a method to recover the force induced by the tether and

the angles of the tether and of the vehicle, using only

minimal on-board inertial sensors. A state estimation and

control scheme were presented. Importantly, the proposed

localization is purely relative to the fixed ground point of the
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tether, allowing for intuitive lateral shifting of the nominal

vehicle position by shifting the anchor point, using the

normal control/localization approach in a quasistatic manner.

The sensitivity of the localization method to sensor noise

and to vehicle non-idealities was analyzed for sample realis-

tic scenarios. Initial experiments demonstrated the proposed

localization, estimation, control and interaction schemes.

As this work was an initial study of this type of system, a

number of improvements can be implemented for the local-

ization scheme. Currently, the vehicle operates in a vertical

plane – preliminary results showed that the same approach

yields stable control in 3D, by assuming that (xg, zg) dy-

namics are decoupled from (yg, zg) dynamics. However the

resulting systems performance is relatively poor, suggesting

that significant coupling needs to be considered.

Further sensors on the vehicle can significantly improve

the estimator. Specifically, a linear or directional force sensor

can be used at the tether-vehicle attachment point to directly

observe Fs, (θs− θv), and yaw. A rate gyro can be installed

directly on the tether to measure θ̇s.

Similar methodologies may be applicable to non-flying

systems such as buoyant or suspended/swinging systems. For

aerial vehicles, in addition to the localization and interaction

benefits described herein, a tether provides additional signifi-

cant benefits in terms of increasing safety and meeting regu-

lations. Taut-tethered hover-capable UAVs offer solutions to

the fundamental problems faced by free-flying UAVs and as

a result may enable new application areas for aerial systems.
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APPENDIX I

LINEARIZED PLANT

We may rewrite the plant dynamics described in Section II

in canonical state-space linearized form as follows, with

input u = θ̇∗v and state x =
(

θs, θ̇s, θv, θ̇v, θ̈v

)

:

ẋ = Ax+Bu (22)

where, given γ = cos(θs − θv),

A =

















0 1 0 0 0
g cos θs−Fpγ

l
0

Fp

l
γ 0 0

0 0 0 1 0

0 0 0 0 1

0 0 0 −ω2
vd −2ζvdωvd

















(23)

and

B =
[

0 0 0 0 ω2
vd

]T

(24)

APPENDIX II

LINEARIZED CONTROLLER

For a given operating point, x̌ = (θ̌s, 0, θ̌v, ·, ·) we may

linearize the control law described in Section V as:

u =
1

τv

















1−(l/τ2s + g cos(θ∗s))/α

−2ζsl/(τsα)

−1

0

0

















T

(x∗−x) (25)

where

α = F ∗

p

√

√

√

√1−

(

2ζslθ̇∗s
τs

+ g sin(θ∗s)

)2

/F ∗

p
2 (26)

Note that the state has five elements – however the last

two are not observed by the localization or the estimator and

reflect underlying dynamics.
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