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Abstract— This paper describes a collaborative human-robot
system that provides context information to enable more effec-
tive robotic manipulation. We take advantage of the semantic
knowledge of a human co-worker who provides additional
context information and interacts with the robot through a
user interface. A Bayesian Network encodes the dependencies
between this information provided by the user. The output of
this model generates a ranked list of grasp poses best suitable
for a given task which is then passed to the motion planner. Our
system was implemented in ROS and tested on a PR2 robot.
We compared the system to state-of-the-art implementations
using quantitative (e.g. success rate, execution times) as well
as qualitative (e.g. user convenience, cognitive load) metrics.
We conducted a user study in which eight subjects were asked
to perform a generic manipulation task, for instance to pour a
bottle or move a cereal box, with a set of state-of-the-art shared
autonomy interfaces. Our results indicate that an interface
which is aware of the context provides benefits not currently
provided by other state-of-the-art implementations.

Keywords Robotic Manipulation, Context Awareness,

Shared Autonomy, Bayesian Network

I. INTRODUCTION

In order to create solutions for tasks in highly unstructured

environments, robotics has typically focused on either fully

autonomous or fully teleoperated systems. State-of-the-art in

fully autonomous approaches often provide good solutions

that do not require human input but are limited in their

application due to underlying assumptions about the environ-

ment. Fully teleoperated systems can robustly operate in such

environments but do not save the end user time. While this is

appealing for tasks in environments dangerous for humans,

full teleoperation does not bring robotics closer to complete

solutions appropriate for household tasks. The field of shared

autonomy [1, 2] bridges this gap by studying approaches to

bring humans into the loop while still leveraging the power

of autonomous algorithms. We define shared autonomy as

the full or partial replacement of a function that is required

by the robot by a human. The goal is to create more reliable

robust systems with limited human interventions.

In this paper, we focus on a context aware shared auton-

omy system for robot manipulation tasks. Figure 1 provides

an overview of our general approach. As seen in Figure 1,

there are a large number of potential grasps, visualized as

red arrows in the picture, that can be selected for a given

object. However, the best way to grasp an object depends

upon the goal of the task. For example, when moving a cup

to the sink for cleaning picking the cup up from the top or

the side are equivalent; however, when picking a cup to pour

the liquid to another container a top grasp would be a poor

choice.

top side

Fig. 1. Our system in a nutshell - PR2 robot computes grasping poses
for an object bottle and is able to infer the right set of grasping poses for
the task at hand, e.g. moving or pouring in this case, using probabilistic
graphical models.

We present an approach that enables users to specify

contextual information related to the task to help constrain

the set of eligible grasp poses. In our approach, the robot

autonomously generates a set of viable grasps and then

uses the user provided constraints to aid in autonomously

selecting a grasp. This contextual information is encoded into

a probabilistic model based on multiple examples provided

by the human teacher. We evaluate this approach by com-

paring it to state-of-the-art shared autonomy and autonomous

systems through a user study.

The main contribution of this work is a novel dialog-based

system, the Bosch Assistive Manipulation (BAM) library,

which incorporates user provided semantic contextual in-

formation into a manipulation pipeline. The implementation

of our system is based partly on and extends the work

of Leeper et al. [3] and is available for download1. Our

system uses a probabilistic model not to directly reproduce

suitable grasp poses but instead to sort a set of given grasp

hypotheses. The advantage of this approach is that it can be

combined directly with advanced filtering techniques, e.g.

1http://www.ros.org/wiki/bosch_shared_autonomy_
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reachability, collision-checking and complex grasp quality

metrics, of state-of-the-art grasp and motion planners. Such

filtering techniques are essential for real-world applications

and in general too complex to be integrated into the proba-

bility distribution. This approach also provides benefits with

respect to data efficiency. Learning a probability distribution

that generalizes well to different tasks and objects generally

requires extensive amounts of (labelled) training data. The

problem is solved by using a shared autonomy approach

to refine the probability distribution on demand. During the

execution, fully automatic grasp planning is used to generate

a suitable set of grasp hypotheses which is sorted according

to the learned probability distribution and filtered according

to reachability and collisions. If the autonomous system fails,

the human teacher selects suitable grasp hypotheses using a

novel, graphical and dialog-based interface which are used

to refine the learned probability distribution and encode the

current context.

II. RELATED WORK

Grasp planning is a fundamental problem in the field of

robotics which has been tackled by many researchers [4, 5].

The work proposed in these articles deals with generating

successful and stable grasps for execution. However if we

consider planning a grasp for a specific manipulation task,

the stability of the grasp is no longer sufficient to describe

all of the constraints on the grasp. Deriving quantified

constraints from the task goals presents a formidable chal-

lenge since objects may have physical attributes that may

constrain planning of a grasp and robots often have limited

sensorimotor capabilities due to their various embodiments.

Traditional approaches define these constraints using a task-

oriented grasp quality metric which is based on wrench

spaces [6, 7, 8, 9].

We extend the work of Song et al. [10] by implementing it

on a real robot system and using a human teacher to provide

the semantic constraints. A concept of providing expertise

about task semantics through human tutoring has been im-

plemented in [11] but never modeled and used in practice.

Dang et al. [12] developed a definition of the semantic grasp

which relates semantic label, sensory information and hand

kinematics. To associate these grasps to the object knowledge

they introduced a semantic affordance map. An even richer

and more formal representation has been introduced in [13]

and termed object action complexes (OAC). OACs allow

for the representation of actions, objects, and the learning

process that constructs such representations at all levels, from

the high-level planning and reasoning processes that make

use of them to the low-level sensors and effectors.

The problem with above approaches, however, is that they

do not provide means for the human teacher to actively

interact with the system in both training and execution

stages. We alleviate this by leveraging approaches from the

shared autonomy [1, 2] field where the original and still

most common approach to shared autonomy in robotics

applications is to assign human operators to supervisory

or high level functions and machine intelligence to lower

level functions. Sheridans widely cited description of ’levels

of autonomy’ [2] implicitly encodes this approach. This

division has been successfully applied in many applications,

especially in exploration and navigation tasks. Goodfellow et

al. [14] for instance integrated user feedback into a robot to

help with action selection. Leeper et al. [3] implemented four

different strategies to grasp objects with shared autonomy

systems. While they concentrated on interfaces to improve

efficiency and collision avoidance, our work puts emphasize

on capturing context information for the task at hand.

III. CONTEXT AWARE GRASP PLANNING

We define the context based on a set of features, which

are either generated automatically or provided by the user

through a novel dialog-based user interface. The context in-

formation is encoded into a probability density function using

a Bayesian Network (BN) [15] with discrete and continuous

variables. In a scene with different objects and obstacles,

state-of-the art grasp planners are used to generate a set of

grasp hypotheses. The user provides only high-level context

information, which is combined with automatically generated

context information derived from online perception. Using

the combined context information as input, the probability

density function is calculated and used to sort the set of grasp

hypotheses. Following a maximum a-posteriori approach,

we apply the (costly) planning filters, i.e. reachability and

collision-checking [16], successively to each hypothesis and

select the first hypotheses passing all filters. Since the user

has to provide context information, training data is usually

limited and automatic generalization might fail. In this case,

we exploit the high usability of the developed dialog-based

user interface to generate a shared autonomy process, in

which the users provides additional training examples online

to automatically adapt the probability density function and

enable the robot to resume autonomous operation.

A. Context feature set

The context information is defined based on six features

divided into three subsets motivated by [10]: task features

(T), object features (O) and grasp features (G). We describe

each feature and list the set of values used in the experiments.

A single task feature T ∈ {t1, ..., tn} is used to model the

task type as a discrete value:

1) Task type T ∈ {move, pourin}

This decision is grounded in our domain choice which is

tabletop object manipulation. These two are most commonly

used and can be extended easily.

Object features, O, encode information required to gener-

alize across different object types. We model three discrete:

2) Object shape OO ∈ {convex, concave}
3) Fill level OF ∈ {filled, empty}
4) Side graspability OG ∈ {true, false}

and one continuous object feature:

5) Object size OS ∈ R
3

≥0

The object size is defined by the width, height and depth

of the automatically calculated oriented bounding box of
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Fig. 2. Precomputed grasp poses from the database. The seven dimensional grasp poses (3D for position and 4D for
orientation) are used as raw data for this approach and visualized as arrows. Yellow color implies a selected object.

Fig. 3. Generated grasp
poses from point cloud.

the object. Side graspability is false if the width and depth

of the oriented bounding box exceed the maximum gripper

opening. While side graspability is a constraint coming from

our gripper setup, we used object shape and size as a fast

approximation of an object recognition system. In the future,

we plan to integrate additional local features such as the ones

proposed by Montesano et al. [17] as well as softness and

surface friction features presented by Chu et al. [18]. Fill

level on the one hand constrains the robot from reaching

into the object and on the other hand imposes an up-right

constraint needed to e.g. avoid spills.

We use the pose of the Tool Center Point (TCP) relative

to the object coordinate system as a single grasp feature G:

6) Grasp pose G ∈ R
7

The grasp pose is represented as a 3D position vector and

4D orientation quaternion.

B. Grasp hypotheses

We use a discrete set of grasp poses as input, which is cal-

culated using two existing approaches. Once the point cloud

data from the depth sensor is obtained, the object recognition

system segments flat surfaces and possible objects on it. The

object candidates (as point clouds) are then compared to a

database using the Iterative Closest Point algorithm (ICP)

[19]. If the recognition succeeded, precomputed grasps from

the database, see Figure 2, are used to generate grasp poses

for this object [16]. If the recognition fails, possible grasps

are generated automatically using local features of the point

cloud itself [20], see Figure 3. We visualize each grasp as

an arrow centered on the TCP pointing along the z-axis.

C. Bayesian Network Modeling

We define the probability density function using a BN. A

BN is a common probabilistic graphical model to represent

conditional dependencies of a set of random variables in

a directed acyclic graph. The model consists of variables

X = {X1, X2, . . . , XN} which are represented by either

unobservable (latent variables) or observable nodes. The

structure of the graphical model encodes the relations be-

tween the variables X . Each node is represented by a con-

ditional probability distribution (CPD) which is dependent

on the node’s parent variables. For instance, if one node

has m boolean parents then the probability distribution is

represented as a multinomial probability distribution by a

table of 2m entries, which is called conditional probability

table (CPT).

We represent continuous features as Mixture of Gaussians

(MOG). A MOG is a weighted sum of i unimodal Gaussian

distributions, each described with mean µ, covariance Σ and

weight π, and denoted as:

p(x) =
m∑

i=1

πi N (x− µi,Σi) (1)

The number of Gaussian distributions is encoded as a dis-

crete latent variable which is directly connected to the node

of the continuous feature. If we denote the network structure

as S, a set of CPDs of each variable Xi, the parents pi of

each node Xi and its model parameters θS = (θ1, . . . , θn)
then we compute the probability density function based as:

P (X|θS , S) =
n∏

i=1

P (Xi | pi, θi, S) (2)

We chose a BN to model the probability density function

due to several important characteristics. It supports mixtures

of discrete and continuous CPDs in a probabilistic frame-

work, which is highly relevant to encode different types

of context information. Inference mechanisms are used to

deduce the posterior probability of G even with only partial

context information. The latter is important to consider

partial user input and partial observability due to online

perception.

a) Bayesian Network Structure: The defined BN con-

tains the task, object and grasp features as variables, see

Figure 4. The task type and the object features directly

affect the grasp features which are represented by directed

edges to the respective node. Every possible task and object

feature leads to a distinct probability distribution for the
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Fig. 4. BN structure with continuous nodes (ellipses, R), discrete nodes
(rectangles, D), latent variables (white). The exponent Dn, Rm shows the
number of elements n or dimension m.

grasp pose. Furthermore, the task type also constrains the

object selection which means that object size, fill level, object

shape and side graspability depend on the task type. For each

continuous feature a discrete parent latent variable for the

mixture coefficients of the MOG is introduced.

Based on this structure the joint probability distribution

can be decomposed as:

P (T,OS , OF , OO, OG, G) = P (G |T,OO, OF , OS , OG)

P (OS |T )P (OF |T )P (OO |T )P (OG |T )P (T ) (3)

The conditional probability of the grasp pose given context

information is simplified to:

P (G |T,OO, OF , OS , OG) = P (G |T,O) (4)

b) Bayesian Network Inference: The BN stores all

statistical dependencies allowing the efficient calculation of

the posterior distribution of variables given the observed data

(evidence), which is called probabilistic inference. Once the

network is learned, we infer the posterior distribution of

grasp poses out of the evidence. The conditional probability

of the grasp pose is denoted as P (G |T,O). The evidence

consists of task type T and object properties O (size,

fill level, object shape and side graspable). We apply the

junction-tree algorithm[21] to compute the exact inference.

c) Bayesian Network Learning: We use the

expectation-maximization (EM) algorithm [22] to learn

the parameters for the CPD and CPT of the BN on the

basis of labelled training data. The algorithm converges to

a local maxima for the complete likelihood of the BN. We

run the algorithm with three random initial values and use

the solution with maximum posterior probability.

D. Weighting of grasp hypotheses

In order to weight the set of grasp hypotheses for a given

object, we compute P (G |T,O) for each grasp pose using

the BN Inference. Figure 5 shows an example output for the

conditional probabilities. We visualize each grasp pose as an

arrow. The color of the arrow is computed in RGB space.

Given all likelihoods L = {P (G |T,O)1...P (G |T,O)n} for

a set of n grasp poses, the likelihood P (G |T,O)i is encoded

as green gi and red ri color values where green represents

a higher likelihood:

gi =
P (G |T,O)i −min(L)

max(L)−min(L)
ri = 1.0− gi (5)

(a) move: empty box (b) move: empty bottle

(c) pour: filled box (d) pour: filled bottle

Fig. 5. Visualization of conditional probability P (G |T,O) for two
different tasks (move, pour) using a single, trained BN.

IV. SHARED AUTONOMY USER INTERFACE

Previous studies [3] discuss important aspects to suc-

cessfully tele-operate a robot using commodity wireless

network and commodity hardware interfaces such as desktop

computer with a mouse and a keyboard. This is important in

the light of an envisioned untethered deployment of robots

in real households. They show that a dialog-based 3D point-

and-click interface where the robot has a partial autonomy in

choosing its actions is both efficient and less demanding in

terms of cognitive load. Based on these findings, we decided

to extend their point-and-click interface to fit our need to pro-

vide high-level context information and training data. Figure

6 shows the key steps to gather training data and encode

the context information into the BN. First, the perception

result is visualized to the user. Based on the perception

result, the oriented bounding box of the object is calculated

and the features object size OS and side graspability OG

are derived automatically. Additional context information,

i.e. T,OO, OF , is provided by the user with a dialog-based

user interface (Figure 6(a)). With this step, we included a

mouse-based menu and a iconic manipulation feature as is

common in CAD software [3]. The BN automatically scales

to situations, in which only a subset of context information is

supplied. Grasp hypotheses are generated automatically and

visualized to the user. The user selects a single or multiple

grasp hypotheses to be added as training data to the BN

(Figure 6(b)). In this step, the shared autonomy concept is

realized. The user can adjust the training set online using

the provided graphical tools such as the dialog interface and
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(a) The user provides additional context informa-
tion. Here, the user wants to pour a filled bottle.

(b) The human operator selects multiple grasp
poses as positive training samples.

(c) Resulting grasp suggestion. The most likely
grasp poses are encoded in green color.

Fig. 6. Visualization of developed dialog-based user interface to generate the initial probability density function.

the visualization of the grasp hypotheses. Finally, the BN is

learned and the weighting of grasp hypotheses is visualized

to the user (Figure 6(c)), which is the basis for the robot

to select grasps automatically using the context information

provided by the user.

V. EXPERIMENTAL SETUP

We implemented BAM as a set of ROS packages inte-

grated in the ROS manipulation pipeline2 and release them as

open source. The implementation has been tested in the robot

laboratory of the Bosch Research and Technology Center as

well as in the laboratory of TU Munich on two different

PR2 robots. For this paper, we present the results of the latter

experiment. In order to analyse the importance of the context

awareness and the presence of a human co-worker, we carried

a rigorous user evaluation to compare our novel dialog-based

user interface with the three other state-of-the-art approaches.

We asked eight subjects to fulfill the following five simple

manipulation tasks using the tele-operation interfaces:

• Task 1: Pour from box into bowl;

• Task 2: Move box;

• Task 3: Pour from bottle into bowl;

• Task 4: Move bottle;

• Task 5: Move filled cup.

The objects used in the experiments are shown in Figure 8.

Each task consisted of two steps: grasping the object and

a subsequent manipulation action. In addition to the BAM

interface, subjects used the following three interfaces with

the different level of autonomy as proposed by Leeper et

al. [3]:

• Autonomous Grasping (AG);

• Ghosted Gripper (GG);

• Interactive Marker (IM).

The AG interface automatically segments objects on a flat

surface and visualizes them to the user. The user selects

2http://www.ros.org/wiki/pr2_interactive_

manipulation

an object which will automatically be grasped using either

a set of pre-computed grasps or a heuristic grasp quality

measurement. For the GG interface, the human operator

moves a simulated ‘ghosted’ gripper to define the desired

grasp pose and sends the pose to the motion execution

algorithm, if the arm motion planner finds a feasible solution.

The direct control strategy IM enables the operator to remote

control the robot in Cartesian space in real-time by clicking

and dragging a set of rings and arrows. It is worth mentioning

that none of these three interfaces supports saving of data and

learning.

Once the object has been grasped, the user fulfilled the

manipulation action using the IM interface. This separation

helped us to compare the effects of different grasp poses

which were generated using the four interfaces with respect

to the manipulation task. We decided to concentrate on a

single-arm manipulation task since the prime goal was to

create a baseline system which will allow us to evaluate the

suitability and scalability of probabilistic graphical models

as means to encode contextual knowledge in robotic manip-

ulation.

We recruited eight subjects, one female and seven male

ones. Four of the subjects had never worked on a robot and

three never used rviz3, a 3D visualization tool, before. Only

one of the subjects never played 3D games but six subjects

had experiences in robotics in general.

The subjects had an obstructed view to the test scene.

During the evaluation, they familiarized themselves with

the interfaces. To avoid bias towards one interface, we

randomized the order in which we presented the interfaces

to the subjects.

VI. EXPERIMENTAL RESULTS

We performed a quantitative as well as qualitative analysis

of the evaluation results to assess if robot’s context knowl-

edge affected user’s experience in working with the robot.

3http://ros.org/wiki/rviz
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Fig. 7. BN average training times (end-to-end) for 40 trials.

Fig. 8. Testing set of objects for
the interface evaluation. A bottle,
cereal box and a filled cup (sim-
ulated with transparent foil) have
been used to fulfill five simple
manipulation tasks.

Fig. 9. Failed grasp using the AG
interface. The grasp failed because
the object was grasped from above
for Task 3 - pour from a bottle into
bowl.

A. Quantitative Results

We first time profiled the BAM library and measured how

the training and query times of the BN vary with respect

to the number of training samples. Secondly, we measured

success rates presenting the number of successfully executed

attempts summarized over all subjects and all interfaces. In

addition to the success rates, we also measured the number

of minor and major collisions as well as the times when

user interacted with the robot and the times when the robot

operated autonomously.

1) Training and Query Times for BAM interface: When

training the Bayesian Network the training time approxi-

mately increases with the number of training samples in a

linear fashion as depicted in Figure 7. Given that the training

needs to be performed only once per objects we consider this

as an acceptable solution. Beside the training times, we also

measured the end to end query time (from user click to the

grasp suggestion) given instances of the Bayesian Network

with the different number of samples. The query times were

constant at 5.8 seconds for a various amount of samples. Our

client-server design pattern and the network communication

delay caused approximately 2 seconds of overhead and the

rest was spent on the inference itself. Given that motion

planning and manipulation actions normally take in the order

of 1 minute, we consider these times acceptable for real

household tasks.

2) Success Rates: With the BAM interface the subjects

successfully grasped and manipulated 37 out of 40 objects.

Fig. 10. Number of minor and major collisions for the four user interfaces
which occurred during the grasp and manipulation execution.

Three failed attempts were caused by the human subject

which forgot to select the correct context information. The

other three interfaces all respectively resulted in 31 out of 40

succeeded attempts where failures were caused by different

reasons. The failed task executions for AG were due to

missing flexibility and the lack of situational context. For

instance, if an object has been grasped from above the robot

failed to pour from the bottle into a bowl as shown in Figure

9. In another instance the front part of the gripper reached

into a filled cup. The failed attempts using GG were caused

by three reasons: either the gripper was placed next to the

object, shifted the object on the table or the grasped object

slipped out of the gripper during the manipulation action

caused by an unstable grasp pose. Using the IM for the whole

grasp and manipulation execution, the human operator was

in full control of the robot at any time. Since the user had

an obstructed view to the processing scene, more collisions

occurred for this interface.

3) Collisions: During the evaluation, we measured the

number of minor and major collisions which occurred during

the grasp execution and the manipulation task influenced by

the chosen grasp pose. We considered collisions where an

object toppled as major collisions and everything else as

minor collisions. Figure 10 shows the number of minor and

major collisions using the four interfaces. The best results

were achieved using the BAM interface with only five minor

and two major collisions in total, followed by the AG with

six minor and six major collisions. A considerably increased

number of collisions have been recorded using the GG (18

collisions) and the IM interface (20 collisions).

4) Execution times: For this evaluation, we measured

the complete execution times for five manipulation tasks.

To evaluate the effect, we separated the times in following

categories:

• Autonomous time before grasp;

• Interactive time before object grasp;

• Interactive time after object grasp.

Moreover, only succeeded task executions are considered in

time charts presented in Figure 11. AG and BAM approaches

amounted to an increased computation time but considerably
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Fig. 11. Visualization of user interaction and computation times for five manipulation tasks using the four user interfaces. All times are in seconds.

decreased interaction time to grasp the object compared to

IM and GG interfaces. Though the results show that our

interface is rather intuitive and quick to adapt to the edge

that AG got over BAM interface in the total computation

time, is the compromise for having the human in the loop.

This shows an importance in designing easy, intuitive and

back-end algorithm agnostic interfaces.

5) Cognitive load: Additionally, we measured the cog-

nitive load of the subjects during the grasp executions. We

used the Sternberg memory test for task 3 as described by

Tracy et al. [23]. The results showed a decreased cognitive

load for the BAM and AG interface. However, we consider

a detailed measurement of the cognitive load as future work.

The quantitative results presented in this paper show the

significance of our approach compared to the experiments

conducted by our competitors, but less in terms of all

possible objects that can occur in everyday households all

around the world.

B. Qualitative Results

After testing each interface, the subjects were asked to fill

out a questionnaire to rate their experience. It was noted that

the AG and BAM interface provided less ’fun’ to the user

who rather enjoyed having more control of the robot. On the

other hand, it was easier to grasp and select objects using the

autonomous tools which were but still easy to understand.

In general, the subjects felt more comfortable if the system

was equipped with additional knowledge using the AG and

BAM interface. On the other hand, the subjects preferred to

be in control of the robot using the GG and IM interfaces

although this caused more failed attempts and collisions.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we present a user interface where the oper-

ator provides additional information to the system, trains,

executes and improves grasp poses for household objects

in collaboration with a real PR2 robot. A BN encodes

context information and a set or pre-computed grasp poses to

compute a grasp quality measurement. The human operator

provides the context information through a dialog-based user

interface. Beside the context information, the user trains

and adapts the underlying system by incrementally inserting

training samples to the BN. Once the model is trained, we

infer the likelihood of the seven dimensional grasp pose

given an evidence, the provided task and object properties.

This likelihood is used to measure a grasp quality for a

discrete set of precomputed grasps.

Additionally, a richer and more descriptive set of 2D and

3D features combined with a structure learning algorithm

as described by Song et al. [24] will lead to more general-

ized results for context-aware object grasping. Furthermore,

object features which are currently provided by the human

operator can be replaced with automatically computed input

data. The resulting grasp constrains from the BN can be

used as an initial grasp pose for unrecognized objects. Local

features can be used to learn how to grasp those objects after

several iterations (active learning) as proposed by Montesano

and Lopes [17]. In the future work we also plan to investigate

cluttered scenes and bi-manual manipulation tasks.

We present our novel system in a short demo video4.

4http://www.youtube.com/watch?v=BySOqr4FBUY

5692



VIII. ACKNOWLEDGEMENTS

Many thanks to Prof. Gordon Cheng for providing labora-

tory space and a PR2 robot and to Dan Song for providing

many insightful thoughts on the design of the Bayesian

Networks.

REFERENCES

[1] P. Michelman and P. Allen, “Shared autonomy in a

robot hand teleoperation system,” in Intelligent Robots

and Systems ’94, Sep 1994.

[2] T. B. Sheridan, Telerobotics, automation, and human

supervisory control. Cambridge, MA,: Technology and

Society Magazine, IEEE, 1992.

[3] A. Leeper, K. Hsiao, M. Ciocarlie, L. Takayama, and

D. Gossow, “Strategies for human-in-the-loop robotic

grasping,” in Proc. of Human-Robot Interaction (HRI),

2012.

[4] A. Saxena, J. Driemeyer, and A. Y. Ng, “Robotic

grasping of novel objects using vision,” IJRR, 2008.

[5] M. Ciocarlie and P. Allen, “Hand posture subspaces for

dexterous robotic grasping,” The International Journal

of Robotics Research, 07/2009 2009.

[6] M. Prats, P. J. Sanz, and A. P. del Pobil, “Task-oriented

grasping using hand preshapes and task frames,” in

IEEE International Conference on Robotics and Au-

tomation, May 2007.

[7] R. Haschke, J. J. Steil, I. Steuwer, and H. Ritter, “Task-

oriented quality measures for dextrous grasping,” in in

Proc ICRA, 2005.

[8] L. Zexiang and S. Sastry, “Task oriented optimal

grasping by multifingered robot hands,” in Robotics

and Automation. Proceedings. 1987 IEEE International

Conference on, Mar. 1987.

[9] C. Borst, M. Fischer, and G. Hirzinger, “Grasp plan-

ning: how to choose a suitable task wrench space,”

in Robotics and Automation, 2004. Proceedings. ICRA

’04. 2004 IEEE International Conference on, april-1

may 2004.

[10] D. Song, K. Huebner, V. Kyrki, and D. Kragic, “Learn-

ing task constraints for robot grasping using graphical

models,” in International Conference on Intelligent

RObots and Systems - IROS, 2010.

[11] Z. Xue, A. Kasper, M. J. Zoellner, and R. Dill-

mann, “An automatic grasp planning system for service

robots,” in 14th International Conference on Advanced

Robotics, 2009.

[12] H. Dang and P. Allen, “Semantic grasping: planning

robotic grasps functionally suitable for an object manip-

ulation task,” in Intelligent Robots and Systems (IROS),

Oct. 2012.
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