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Abstract— In this study, we present a novel road recognition
method using a single image for mobile robot navigation. Vision-
based road recognition in outdoor environments remains a
significant challenge. Our approach exploits digital street maps,
the robot position, and prior knowledge of the environment. We
segment an input image into superpixels, which are grouped
into various object classes such as roadway, sidewalk, curb, and
wall. We formulate the classification problem as an energy
minimization problem and employ graph cuts to estimate the
optimal object classes in the image. Although prior information
assists recognition, erroneous information can lead to false
recognition. Therefore, we incorporate localization into our
recognition method to correct errors in robot position. The
effectiveness of our method was verified through experiments
using real-world urban datasets.

I. INTRODUCTION

Road recognition is an important function of autonomous
navigation and has been studied extensively. To realize
effective road recognition, numerous methods have been
proposed using cameras [1], laser scanners [2], and sensor
fusion [3]. We approach the problem of road recognition
using a single camera image. In comparison to laser scanners
and sensor fusion, cameras offer high frame rates, increased
compactness, and low costs.

Many existing road recognition methods are designed for
vehicle applications, such as automated cars and advanced
driver-assistance systems. We aim to assist the navigation
of relatively small robots, mainly on sidewalks. Such robots
must distinguish between sidewalks and roadways. However,
recognizing sidewalks using an image is difficult because
sidewalks are similar to roadways and their appearance
can vary with place (Fig. 1). In addition, apparent road
boundaries, such as curbs and lane markings, are not always
used.

We propose to improve recognition using prior informa-
tion. During navigation tasks, a robot has a map, which can
be used to track its position. Map information is also helpful
for recognition. In particular, we use existing digital street
maps, which contain semantic information (such as road-
ways and buildings). Previously, we proposed a probabilistic
localization framework using digital street maps [4]. Here
we extend the framework to estimate the road region from
the map and the robot position.

The input for the proposed method is a single image. Prior
information is obtained from digital street maps, knowledge
of the environment (essentially object existence probabil-
ities), and robot position. The image is segmented into
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Fig. 1. Various sidewalks in urban environments

superpixels, which are classified into several object classes
to distinguish road and boundary regions. The object classes
include roadway, sidewalk, curb, and wall. In contrast to
conventional road recognition algorithms (road vs. non road
binary classification), our method provides richer information
that should be useful for navigation.

The proposed method consists of three steps. First, super-
pixels are individually classified by MAP estimation using
observation likelihood, which is calculated by a support
vector machine (SVM), and prior probability, which is calcu-
lated using prior information. Second, energy minimization
method is applied so that interactions between neighboring
superpixels are considered. Third, errors in lateral displace-
ment and orientation are corrected by iterating classification
and localization under the energy minimization scheme.

By testing the method on datasets collected in cluttered
urban environments, we verified that prior information im-
proves the recognition rates of ambiguous objects. Although
inaccurate position information can degrade recognition
quality, our localization method successfully corrected small
position errors and recognized essential features.

The main contributions of the paper are twofold. First,
we compute prior probabilities from digital street maps;
second, we develop an energy minimization framework that
simultaneously recognizes roads and localizes the robot.
Although we use SVM as the baseline for our comparison,
our method can be combined with other road classification
methods.

II. RELATED WORK

Thus far, most road detection studies have focused on
detecting roadways. Those road detection methods are not
proven to be effective in sidewalk environments. Some
methods learn road colors on-the-fly [3] [5], while others
probabilistically track road boundaries [6] [7]. These meth-
ods use sequences of sensory data. Road detection using
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single images (i.e., in the absence of temporal information)
has also been studied [8] [9]. These methods assume that
both sides of the road boundaries are shown in the input
image.

Many of these methods use road-shape models, which
limit recognition to the given shapes. Alvares et al. addressed
this issue by employing digital street maps as arbitrary road
shapes, which could be expressed in a map [10]. Although
our method also uses digital street maps, significant differ-
ences exist between our method and the earlier study. Alvares
et al.’s method uses only road shapes, while we generalize
digital street maps as the source of prior probabilities and
recognize not only road shapes but also objects at road
boundaries.

Many image labeling problems can be represented as
energy minimization problems, which are widely used in
the computer vision community [11] [12]. Several authors
have already applied energy minimization to robotic mapping
[13] [14]. In our method, energy minimization is based on
Boykov’s image segmentation [15].

We also incorporated localization to our recognition
method. Other researchers have used digital street maps for
localization. Hetschel et al. used laser scanners to match the
walls of detected buildings with those in the OpenStreetMap
[16]. Morales et al. detected the center of the road using a
laser scanner and matched the obtained road information to
the map [17]. However, these methods assume that boundary
lines can be detected from height information, which is
not always the case. Previously, we addressed this issue by
introducing a probabilistic framework that simultaneously
recognizes road boundaries and localizes the robot [4]. The
main differences between the proposed method and our
previous method are that a single image is input and that
SVM and energy minimization are adopted for recognition.

III. SYSTEM OVERVIEW

Fig. 2 presents an overview of our proposed method. We
recognize road regions and road boundary objects in an
image under the assumption that a map and the approximate
robot position is given. An input image is segmented into
superpixels [18], denoted as S = {s1, ..., sn}. Image features
extracted in superpixels, such as colors and textures, are
denoted by C = {c1, ..., cn}. For road recognition, the
superpixels are assigned to estimated object class labels
L = {l1, ..., ln}. Objects in the input image are classified
into eight classes (defined in Table I). The image features
are shown in Table II. In this paper, rather than seeking the
best possible feature set, we focus on improving recogni-
tion quality by exploiting prior information obtained from
digital street maps, robot position, and knowledge of the
environment. We construct grid maps containing semantic
labels such as roadways and buildings, which are available
in many existing digital street maps. So far, we manually
convert existing maps into grid maps; however, it may be
automated.

Our proposed method is divided into three steps. First,
we classify each superpixel individually using MAP estima-

Fig. 2. Flow of proposed method

TABLE I
LIST OF OBJECT CLASSES L

Class (Abbrev.) Examples
Wall (WA) Buildings, walls, fences
Curb (CU) CurbsCsmall steps
Line (LI) Lane markings

Vegetation (VE) Bushes, trees
Guard Rail (GR) Guard rails, poles
Roadway (RO) Roadways
Sidewalk (SI) Sidewalks

Open spaces (OP) Parking lots, open spaces

tion based on prior information and observation likelihood
calculated by an SVM. Objects of similar appearance, such
as roads and gray walls, are not easily distinguished by
SVM. Recognition of such objects is greatly improved by
exploiting prior information. Second, we introduce an energy
minimization method that globally estimates optimal labels
from interactions between neighboring superpixels. Energy
minimization improves recognition quality by smoothing the
labels, thereby reducing noise. We employ graph cuts to
minimize the energy [19]. Third, we extend energy mini-
mization to estimate the errors in robot position. We iterate
labeling and localization to simultaneously estimate optimal
labels and robot position through energy minimization. When
the robot is navigating a street, the longitudinal position is
not readily estimated from a single image. Therefore, we
estimate only the lateral displacement and orientation with
respect to the road. Correcting errors in robot position is im-
portant because incorrect prior information can significantly
degrade the recognition quality.

IV. INDIVIDUAL MAP ESTIMATION

The first step of our method estimates the labels of
individual superpixels on the basis of MAP estimation. Each
superpixel si is assigned an estimated label li given robot
position x and map M by

l̂i = argmax
li

P (li|ci, x,M). (1)
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TABLE II
FEATURES USED IN CLASSIFICATION

Category Features
Color (HSI) HS 2D-histogram

I histogram
Textures and edges Edge density

Edge direction histogram
Edge strength histogram

Step edge density

Applying Bayes’ theorem, eq. (1) is calculated as follows:

P (li|ci, x,M) =
P (ci|li)Psi(li|x,M)

P (ci|x,M)
(2)

≈ P (ci|li)Psi(li|x,M)∑
l∈L P (ci|l)P (l|x,M)

. (3)

Assuming that the object classes of feature observations are
independent of the robot position and map, we approximate
P (ci|li, x,M) ≈ P (ci|li). Here P (ci|li) is the observation
likelihood of superpixel si and Psi(li|x,M) is the prior
probability that object li appears at the location of si given
prior information.

A. Prior Probability from Digital Street Map

Prior information consists of a map M , environmental
knowledge, and the robot position x. From this information,
we calculate the prior probabilities Ps(l|x,M).

Existing digital street maps are input as two-dimensional
grid maps. We assume that the maps contain semantic
annotations. Each cell in the grid map is assigned one of
the following labels: roadway, sidewalk, building and others,
and boundaries between them.

Objects in the environment are nonuniformly distributed;
for example, at boundaries between sidewalks and roadways,
curbs are more common than walls. This type of knowledge
is built into probability. The probabilities used in the current
experiments are listed in Table. III. This table is based on
the frequencies of objects in each map symbol in the training
data set (described in section IV-B).

The probabilities of object presence in map M are pro-
jected onto an image plane using the robot position x. We
assume that the robot navigates on a flat surface and that the
pose of the camera relative to the robot is given. The map
cell corresponding to an image pixel p is denoted by Mp,x.
The probability that object l appears at the location of pixel
p is given by

Pp(l|x,M) = P (l|Mp,x), (4)

and is retrieved from the abovementioned probability table.
We can now calculate the probability that object l exists

at the location of superpixel s by averaging the pixel-wise
probabilities

Ps(l|x,M) =
1

|s|
∑
p∈s

Pp(l|x,M). (5)

Here |s| is the number of pixels in the superpixel s. An
example of a prior probability is shown in Fig. 3. As seen

(a) (b) (c)

(d) (e) (f)
Fig. 3. Example of prior probabilities. (a) Map showing robot position
(red triangle). (b) Map projected onto the image plane. (c) Actual images
captured at the position. Calculated prior probabilities of curb (d), wall (e)
and sidewalk (f). Darker colors indicate higher probability.

in the figure, the probability of curb is high at the roadway-
sidewalk boundary, while that of wall is high at the sidewalk-
building boundary.

B. Observation likelihood using SVM

The observation likelihood P (c|l) is calculated using an
SVM that is pretrained using training data sets. To train the
SVM, superpixels are extracted from images and manually
labeled.

For each superpixel in the test images, multiclass classifi-
cation is performed and the classification probabilities P (l|c)
are estimated [20]. By Bayes’ theorem, we obtain

P (c|l) ∝ P (l|c)
P (l)

, (6)

which is used to evaluate eq. (1). The prior probability P (l)
is based on the frequency of the object class in the training
data sets.

V. ENERGY MINIMIZATION BY GRAPH CUTS

Image segmentation can be formulated as energy mini-
mization [19]. In the previous section, labels of superpixels
were assumed to be independent and were individually
estimated. Energy minimization accounts for the interactions
between neighboring superpixels and identifies globally op-
timal labels. Two benefits are expected: noise reduction by
a smoothing factor and boundary detection. The energy is
defined as follows:

E(L;x) =
n∑
i

Gi(li) + λ
∑

(i,j)∈N

Hij(li, lj). (7)

Here N is a set of neighboring superpixel pairs. The data
term Gi is calculated from observation likelihood and the
prior probabilities calculated using prior information. The
interaction term Hij is calculated by feature differences
between neighboring superpixels and edge strengths at the
boundary of the superpixels.
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TABLE III
EXAMPLE OF PRIOR PROBABILITY

Object classes
Map symbols SI RO OP LI CU WA GR VE

Sidewalk 0.87931 0.017241 0.017241 0.017241 0.017241 0.017241 0.017241 0.017241
Roadway 0.017241 0.87931 0.017241 0.017241 0.017241 0.017241 0.017241 0.017241
Buildings 0.019231 0.019231 0.115385 0.019231 0.019231 0.480769 0.019231 0.307692

Sidewalk-roadway boundary 0.016667 0.016667 0.016667 0.183333 0.433333 0.033333 0.216667 0.083333
Building-sidewalk boundary 0.023256 0.023256 0.023256 0.046512 0.046512 0.511628 0.023256 0.302326
Roadway-building boundary 0.028571 0.028571 0.028571 0.114286 0.085714 0.514286 0.057143 0.142857

A. Data Term

The data term is defined as follows:

Gi = − logP (li|ci, x,M). (8)

This term penalizes the energy based on the consistency
between observation and prior information. The calculation
is described in section IV.

B. Interaction Term

The interaction term penalizes the energy by the likelihood
that neighboring superpixels belong to different classes,
based on two cues. One is the feature difference f between
the superpixels. Features in the same class should be similar,
while those in different classes should be dissimilar. The
other factor is edge strength at the boundary of neighboring
superpixels. Different classes are often delineated by a strong
edge. In our method, edges are detected on the image
using a Canny detector. The average edge strength of the
pixels constructing the boundary of superpixels i and j is
denoted by eij . The strength is normalized to the range (0, 1)
by a sigmoidal function ς . Using these definitions, Hij is
calculated as follows:

Hij(li, lj) = δi,j · f(ci, cj) · ς(eij) (9)
δi,j = 1 (if li ̸= lj), otherwise 0 (10)

f(a, b) = exp{−||a− b||2

2σ2
} (11)

ς(x) =
1

1 + e−a(−x+x0)
, (12)

where the parameters σ, a, and x0 are determined experi-
mentally.

C. Labeling Using Graph Cuts

In previous studies, energy minimization problems have
been solved by simulated annealing and ICM [21]. In the
past few years, graph cuts have become very popular because
it is computationally efficient and it can return exact solu-
tions to certain energy minimization problems. Although our
multilabeling problem is considered as NP-hard, therefore
cannot be solved easily, several methods based on graph
cuts provide approximate solutions [22]. We employ α − β
swap to find a set of labels that approximately minimize
the energy. The initial labels are estimated as described in
section IV. Next, we extract superpixels from two classes
α, β ∈ L and use graph cuts to decide whether the labels of
these superpixels should be swapped. The swap is repeated
for all combinations of α and β. sD

VI. ITERATIVE PROCEDURE FOR SIMULTANEOUS
CLASSIFICATION AND ROBOT LOCALIZATION

While prior information largely benefits recognition, er-
roneous prior information can lead to false recognition.
Robot position contributes significantly to the information,
but accurate robot position is not always known. Therefore,
we correct the position errors of the robot. We extend the
energy minimization procedure to simultaneously estimate
the robot position and object classes.

Fig. 4 shows an example of energy distribution with
respect to position errors. The energy is calculated by eq.
(7), using the classification results by the method described in
section V. In the graph, the global minimum is found around
the position error of 0 m and 0 ◦, and several local minima
appear. In seeking the global minimum, naive searching over
space is computationally expensive because numerous graph
cuts operations are required. Therefore, for this purpose we
have developed a more efficient search algorithm.

Our method iterates the following two steps:

a. Labeling step

Given the current robot position xk, estimate labels via
graph cuts that minimize the energy.

Lk = argmin
L

E(L;xk) (13)

b. Localization step

For fixed labels Lk, estimate x that minimizes the energy
using nonlinear optimization.

xk+1 = argmin
x

E(Lk;x) (14)

In the labeling step, labels are estimated as described in
section V using the current position xk, to obtain the labeling
result Lk. In the localization step, labels remain fixed and
the position x is updated to minimize the energy. The result
xk+1 is used in the next labeling step. When the robot
is navigating a street, the map is nondiscriminative in the
longitudinal direction (except at intersections). Therefore, we
estimate only the lateral displacement and orientation. In the
localization step, the optimal x is determined by the Nelder-
Mead method. By iterating these two steps, we can obtain
(at least locally) energy-minimized labeling and the robot
position. However, our method is prone to trapping in local
minima, depending on the initial robot position.
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Fig. 4. Example of energy distribution. Top: input image and robot position
on the map. Bottom: energy distribution with respect to position errors.

VII. EXPERIMENTS

Our method was tested on the data set collected in crowded
areas of Narashino city. A digital still camera (Panasonic
FZ-100) was mounted onto an electric wheel-chair robot, as
shown in Fig. 5. The robot was manually navigated along a
2 km pathway in Narashino city, capturing an image every
20 s. The system was evaluated on 82 images.

Superpixels were extracted from each image and manually
labeled. Objects beyond the scope of our method (Table. I)
such as pedestrians and cars were unlabeled and excluded
from evaluation. The SVM was trained from 91 images that
were captured on a path not overlapping the test set. The
robot position was manually input by referring to the GPS
logs. The grid map was generated using an image captured
from Google Map (Fig. 5). The cell size (23.5cm) matched
the distance per pixel of the Google Map.

A. Classification using Prior Information

The classification results at correct robot positions are
shown in Fig. 6. Panel (a) shows misclassifications of a
manhole cover and vegetation, which were corrected by the
proposed method. Roadways in (b), which are visually sim-
ilar to sidewalks, were correctly recognized by the proposed
method. Vanishing point detection is not likely effective
on (c) because no parallel road boundaries were found in
the image. However, our method successfully estimated the
boundary between the wall and the sidewalk. The parking lot,
which appears on the right of the image in (d), appears very
similar to the sidewalk. The position of the boundary line
between these features was corrected by graph cuts. How-
ever, in some situations (e), graph cuts led to oversmoothing.

Fig. 5. Wheel chair robot and map used in the experiments.

TABLE IV
CLASSIFICATION ACCURACY

Method Accuracy
SVM 45.6 %

Individual MAP 72.5 %
Graph Cuts 78.6 %

In (f), the detection of road boundary failed because of
significant road width error in the map.

The classification accuracies are summarized in Table. IV.
In the absence of prior information, SVM correctly classified
45.6% of superpixels. Using the method described in section
IV, the classification accuracy was improved to 72.5%. The
graph cuts introduced in section V improved the accuracy
further to 78.6%.

Confusion matrices are shown in Fig. 7. Without prior
information, significant confusion appears among sidewalk,
roadway, and wall classes. The proposed method shows a
large improvement in the ability to distinguish these classes.

B. Simultaneous Classification and Localization

We next evaluated the effectiveness and robustness of
our method against position errors. We introduced numerous
artificial errors to the position used as prior information and
compared the classification performance with and without
localization. Tests were conducted using translational errors
of 50, 75, and 100 cm, orientation errors of 5◦, 10◦, and 15◦,
and combinations of these. The results are shown in Fig. 8.
Although erroneous position information degrades the clas-
sification accuracy, localization provides large improvements
in tests with larger errors.

Fig. 9 shows details of the test run under translational and
orientation errors of 75 cm and 10◦. Although position errors
in (g), (h), (i), and (j) are successfully corrected. Typical
failures are shown in (k) and (l). In (k), Braille blocks were
wrongly detected as a road boundary. As evident in the
graph, the position errors were slightly decreased but our
method became trapped in a local minimum. This problem
may be solved by a randomized initialization approach [23].
In (l), the orientation error remained large because small
translations and rotations are not easily distinguished from
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Fig. 6. Results of classification experiments. The rightmost column shows simulated view at the given position.

a single image. In this case, since the road boundaries
were detected properly, the error is not be detrimental for
navigation.

VIII. CONCLUSIONS

In this study, we proposed a road recognition method
utilizing prior information for mobile robot navigation in
urban environments. We aimed to distinguish objects with
similar appearances, such as roadways, sidewalks, and gray
walls from a single image. To equip the robot for recognizing
such poorly distinguishable objects, we used digital street
maps and the robot position. While prior information signif-
icantly helps recognition, errors in prior information cause
recognition failures. Our method estimated position errors in
prior information and effectively corrected small errors, as
verified in a series of experiments. Correction of road width
errors, which also constitute prior information errors, will be
handled in future work.
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