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Abstract— We present a principled solution to the problem
of transferring grasps across objects. Our approach identifies,
through autonomous exploration, the size and shape of object
parts that consistently predict the applicability of a grasp across
multiple objects. The robot can then use these parts to plan
grasps onto novel objects. By contrast to most recent methods,
we aim to solve the part-learning problem without the help of a
human teacher. The robot collects training data autonomously
by exploring different grasps on its own. The core principle of
our approach is an intensive encoding of low-level sensorimotor
uncertainty with probabilistic models, which allows the robot
to generalize the noisy autonomously-generated grasps. Object
shape, which is our main cue for predicting grasps, is encoded
with surface densities, that model the spatial distribution of
points that belong to an object’s surface. Grasp parameters
are modeled with grasp densities, that correspond to the spatial
distribution of object-relative gripper poses that lead to a grasp.
The size and shape of grasp-predicting parts are identified by
sampling the cross-object correlation of local shape and grasp
parameters. We approximate sampling and integrals via Monte
Carlo methods to make our computer implementation tractable.
We demonstrate the applicability of our method in simulation.
A proof of concept on a real robot is also provided.

I. INTRODUCTION

This paper addresses the problem of transferring grasps
across objects, to the end of decreasing the cost of building
grasp models for the novel objects that a robot encounters.
Transferring grasps across objects is crucial for service
robots, because object grasp models are expensive to con-
struct. Constructing a grasp model with force analysis [4] is
computationally expensive, and it requires the robot to spend
time and energy in sensing, in order to make an accurate esti-
mation of the object’s shape and mass distribution. Learning
grasp models from experience [10], [16], [27] is also time-
consuming, as it requires the robot to try different grasps and
to evaluate their workability.

Transferring grasps across objects has the potential to
dramatically decrease the time required to construct grasp
models for novel objects, as it provides the robot with a
valuable prior on graspablity. In this paper, we suggest to
exploit cross-object part redundancy to transfer grasps across
objects that share similar parts.

While it is possible to implement part-based grasping by
hard-coding a set of shape primitives (spheres, cones, boxes)
and their associated grasps [26], it is becoming increasingly
clear that, to work in an open-ended environment, robots
need to adapt. In the context of part-based grasping, we want
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the robot to learn how to grasp parts that are frequently
observed among the objects that it commonly works with.
The idea of part-based grasp learning has already been tested
by different research groups [1], [9], [18], [24], [33], [37].
A common factor of these methods is their reliance on
human supervision to train the robot. The human teacher
communicates to the robot his lifelong experience in grasping
objects by constituent parts, by specifying which parts are
often good for grasping, and in which way. As the teacher
selects highly informative grasps, one or two examples per
object are usually sufficient. As a result, supervised part-
learning algorithms typically train on a large set of objects,
with a couple of examples per object.

While human supervision does allow robots to learn at
a remarkably fast pace, it is not always available. In cases
where a robot needs to progress on its own, grasp learning is
done via autonomous exploration [10], where the robot dedi-
cates a slot of its time to testing different grasps suggested by
visual cues [29]. Autonomous exploration produces a large
number of grasps, that are on average of a lower stability and
generality than grasps that are demonstrated by a teacher.

In this paper, we present a robotic agent that learns
grasp-predicting parts from grasps collected via autonomous
exploration. The robot thus learns on its own, without the
help of a teacher. By contrast to supervised part-learning,
where the teacher provides a few well-placed grasps on each
object, this paper focuses on learning from training data
composed of hundreds of grasping examples, where one
cannot assume that all grasps are applied onto interesting
parts. Because of the cost of autonomous exploration, the
number of objects in our training database is smaller than the
number of objects available to supervised-learning studies.
In other words, we propose a part-learning algorithm that
focuses on extracting a maximum amount of information
from dense grasp model, to let promising object parts emerge
from few but densely-annotated objects.

We assume the existence of dense grasp models that
encode (1) the shape of an object, via a point cloud or
similar representation, and (2) a set of object-relative wrist
poses that lead to a grasp when the fingers are closed
simultaneously until contact. The core principle of our ap-
proach is an intensive encoding of low-level visuomotor
uncertainty via probabilistic models. The shape of objects
(and of object parts) is encoded with surface densities [11],
that model the spatial distribution of points that belong
to an object’s surface. Grasping parameters are modeled
with grasp densities [10], that correspond to the spatial
distribution of object-relative gripper poses that lead to a
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grasp. This design choice allows us to smooth out the
substantial amount of sensorimotor uncertainty that stems,
first, from the noise associated to the real world, but also
from local part/grasp variations from one object to the next.
The idea behind our approach is to search through those
models for object parts that afford similar grasps across
different objects. The size and shape of grasp-predicting
parts are identified by sampling the cross-object correlation
of local shape and grasp parameters, over parts of different
spatial extents. In essence, our approach hypothesizes parts
of different sizes and shapes from the training models, by
randomly segmenting pieces of the surface densities and
grasp densities of the training objects. It then evaluates
whether similar combinations of shape and grasps exist in
the training set. Computing similarities between densities
involves integrals that we cannot solve analytically. Instead,
our method relies on Monte Carlo integral approximations
to make our implementation tractable.

We demonstrate the applicability of our method in simu-
lation and on a physical robot.

II. RELATED WORK

In robotics, mainstream grasp planning has traditionally
relied on force analysis [4]. Given a model of the shape,
weight distribution, and surface texture of an object, and a
model of the shape, kinematics, and applicable forces/torques
of a gripper, force analysis allows us to compute the mag-
nitude of the strongest external disturbance that a grasp
can withhold. Force analysis is applicable to multi-fingered
hands, and its ability to generate complex grasps has been
shown in the literature [17], [32], [36]. The application of
force analysis to grasping novel objects has been studied,
for instance through the construction of object shape models
from noisy and incomplete sensor data, and the use of
heuristics to define mass distribution and friction parameters
[31]. Unfortunately, the strengths of force analysis become
mitigated in scenarios where the object models that the
robot can recover (either from memory or sensor data) are
incomplete or lack in accuracy.

A number of authors have explored means of directly
linking perceptions to action parameters. Authors have used
symmetry principles to reconstruct the occluded side of
unknown objects [35], and therefore allow the definition of
grasp contact points on occluded surfaces [5], [20]. Other
groups have developed means of parameterizing grasps by
looking for shapes that are likely to fit into the robot’s
gripper [14], [22], [29]. Popovic et al. [29] computed grasps
applied to object edges detected in 2D images. Another class
of methods searched 3D range data for shapes that closely
match the geometry of the gripper [14], [22].

Instead of hard-coding the function that computes grasp
parameters from vision, a growing number of researchers
have focused on methods that learn the perception-action
mapping from experimental data [8], [21], [28].

Goldfeder et al. [16] have presented a data-driven ap-
proach, where a large number of grasps are conducted in
simulation, and grasp parameters for a novel object A are

Fig. 1: Surface density computed
from the 3D scan of a mallet. Sur-
face points and their normals are
rendered with cylinders. The axis of
a cylinder represents the orientation
of the local surface normal. Ker-
nels are illustrated with translucent
shapes: spheres and cones show one
standard deviation in position and
orientation respectively.

Fig. 2: Projection of
a 6D grasp density
onto a 2D image. For
more details we re-
fer the reader to the
work of Detry et al.
[10].

recovered by selecting from a training database the object
that best matches A’s shape. As the size of the database
increases, the likelihood of finding an object similar to A
grows. Unfortunately, the time required to find a match
also increases with the number of training objects. To al-
leviate this problem, authors have searched for means of
transferring grasps between object parts. Ben Amor et al.
[2] and Hillenbrand et al. [19] aimed at transferring grasps
across objects whose complete 3D shape is known. Closer
to our work, several authors focused on learning a mapping
from incomplete object views to grasp parameters [1], [9],
[18], [24], [23], [33], [37]. Five of these approaches focus
on the same problem as ours, i.e., learning the 3D shape
of graspable parts [1], [9], [18], [24], [37]. All of these
approaches rely on human supervision, and thus assume that
all the grasps present in the training data are applied onto a
part that has a high likelihood of being shared across multiple
objects. As explained above, our work focuses instead on
denser training data, where one cannot assume that all grasps
are applied onto interesting parts.

III. PROBABILISTIC MODELS

Our method relies on probabilistic models of low-level
sensory data, where probability density functions (PDFs)
play an important role. To avoid clutter, instead of using
the standard p() notation to denote PDFs, we denote PDFs
with any lowercase bold letter, such as p(), v(), or g(). The
notation x̂ ∼ p(x) is used to denote an element x̂ sampled
from p(x). The probabilistic models that our work relies on
are briefly introduced below.

A. Surface Densities

We use surface densities [11] to model the 3D shape of
object parts and of whole objects. Let V = {ai}i∈[1,n] denote
the point-cloud representation of an object (or an object part),
with all ai’s belonging to R3, and let V ′ = {a′i}i∈[1,n] be
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the set of surface normals computed at each ai. The surface
density of V , denoted by v(y), is constructed via kernel
density estimation (KDE) [34] on the set {(ai, a′i)}i∈[1,n],
by centering a kernel function onto each datapoint, and
summing the kernels. As a result, v(y) is defined on the
product space of 3D positions and surface normals R3×S2.
The kernel function supporting KDE is defined as the product
of a trivariate Gaussian and a two-sphere von Mises–Fisher
distribution [15]. Intuitively, the value of v(y) at a given
point y ∈ R3 × S2 is inversely proportional to the distance
between y and its closest neighbors in V . Fig. 1 illustrates
surface densities. For further details on this model, we refer
the reader to the work of Detry et al. [11].

B. Pose Estimation

Let tx(·) denote a rigid transformation by x ∈ SE(3), and
let t−1x (·) denote the inverse of tx(·), such that

(tx ◦ t−1x )(y) = y (1)

for all y in SE(3) or R3 × S2. For clarity, in the equations
below, tx(y), which gives the transformation of y by x, will
be denoted by y + x. Similarly, t−1x (y) will be denoted by
y−x. Let us consider an object whose point cloud is denoted
by V , and whose surface density is denoted by v(y), and let
us consider W , a partial view of a scene where the same
object appears, whose surface density is denoted by w(y).

Our probabilistic setting allows us to formulate an elegant
solution to the pose estimation problem, by providing us with
means of computing the pose density p(x) of the object.
The pose density is a PDF that models the probability of the
object standing at any given SE(3) pose x. The pose density
of the object V above can be expressed by marginalizing the
joint distribution of object poses and visual observations, as

p(x) =

∫
p(x|y)w(y)dy. (2)

In the equation above, the conditional pose probability
p(x|y) is simply given by

p(x|y) = v(y − x). (3)

Intuitively, for a given x, p(x|y) is equal to the PDF v(y)
translated and rotated by x. The probability of V being at
pose x is then given by Eq. 2, which will give a value
proportional to the overlap between p(x|y) and w(y). In
other words, Eq. 2 is the SE(3) cross-correlation of v and
w.

Eq. 2 above is not tractable analytically. Instead, we
approximate it with Monte Carlo integration [6], [11], as

p(x) ' 1

M

M∑
`=1

p(x|y`) where y` ∼ w(y), (4)

where M is a large numerical constant.

C. Grasp Densities

In this work, grasps are parametrized by the 6D pose (3D
position and 3D orientation) of the gripper. We use grasp
densities (GDs) [10] to model the grasps afforded by an
object, or by an object part. GDs model the different ways
to place a hand or a gripper near the object so that closing
the gripper produces a stable grip. Specifically, GDs encode
object-relative gripper configurations and the probability of
their grasping success. GDs are mathematically close to
the surface densities discussed above. Denoting by G =
{bi}i∈[1,m] a set of object-relative grasp examples, with all
bi’s belonging to R3 × SO(3), The grasp density g(x) is
constructed via kernel density estimation, by centering a
kernel function onto each input datapoint, and summing the
kernels. The kernel function is defined as the product of
a trivariate Gaussian and a three-sphere von Mises–Fisher
distribution [15], [10].

D. Object Model

In the rest of the paper, we call object model the associ-
ation of a surface density modeling the shape of an object,
and a grasp density modeling object-relative wrist poses that
lead to a grasp. We denote the surface density of an object
o by vo, and its grasp density by go. The training database,
composed of N objects, is denoted by

L =
{
o(i)
}
i∈[1,N ]

with o(i) = (vo(i) ,go(i)). (5)

IV. RECURRING VISUOMOTOR PARTS

Let us define a visuomotor part p as the association of a
surface density vp modeling an object part, and a grasp den-
sity gp explaining how to grasp that part. In order to allow the
agent to generalize its grasping knowledge to new objects,
we suggest to let the agent search for recurring visuomotor
parts across the set of previously-acquired models, counting
on the fact that parts that are observed multiple times across
multiple objects are likely to be applicable to novel objects.

To this end, we define a measure of part generality. The
generality of a part is measured by its ability to predict
grasps across the library L of known object models. This
measure relies on a function f(p, o) that yields a high value
if the visual component of a part p successfully identifies
regions of an object o associated to grasping strategies that
are similar to its own, and discards those that are not. The
generality measure of p is defined from the statistics of
{f(p, o) : o ∈ L}. As described below, the agent will system-
atically evaluate the generality of parts randomly segmented
from existing models, yielding a set of parts ordered by their
ability to generalize. Those that yield a high measure will be
selected to grasp new objects. We note that the process of
discovering recurring parts (i.e., generalization) is run offline
– it is entirely based on previously-acquired object models
(the training models) and it does not require the robot to
execute grasps.

The object model defined above offers efficient and elegant
means of implementing f . Its probabilistic representation of
visual structure and grasp strategies with density functions
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defines a convenient abstraction which allows us to think of
solutions in terms of generic statistics and machine-learning
tools. In particular, we detail below how the grasping corre-
lation between a visuomotor part and an object model can
be approximated with the Bhattacharyya distance [3].

As described above, our goal is to identify a set of
visuomotor parts for which the visual component is a robust
predictor of the grasping component. These generic parts are
discovered as follows:

1) Randomly segment a set of P object parts
{
p(i)
}
i∈[1,P ]

from the library of known objects L =
{
o(i)
}
i∈[1,N ]

(described below in Section IV-A).
2) For each part p, compute a generality measure m(p, L)

with respect to the set of known objects L (described
below in Section IV-B).

The parts that yield a high measure will be selected for
creating the initial grasp models of new objects (described
below in Section IV-C).

A. Generating Candidates

Segmenting one object part p from the object library L
(Eq. 5) works as follows:

1) Select one object model o = (vo,go) from L.
2) Select r uniformly in [0, d], where d is the diameter of

o’s bounding sphere.
3) Let a be the position of a grasp randomly sampled from

go, and A correspond to the subset of the grasps that
were used to build go that lie within a sphere of radius
r centered at a.

4) The grasp density of p, denoted by gp, is defined as the
KDE of A. The visual model of p, denoted by vp, is
defined as the KDE of points of vo which lie within the
sphere of radius r centered at a.

B. Generality Measure

This section defines a measure m(p, L) of the generality
of part p with respect to the set of known objects L. We
start by defining f(p, o), i.e., the ability of p to predict the
grasp model of a single object o. Let us denote p’s model
by p = (vp,gp), and the object by o = (vo,go).

As described above (2), we can easily compute the pose
probability of p in o, as

q(x) =

∫
q(x|y)vo(y)dy, q(x|y) = vp(y − x). (6)

The models vp, gp, and vo allow us to definite of a grasp
density ho for the object modeled by o, as

ho(x) =
1

C

∫
gp(x− z) [q(z)]c dz, (7)

where C is a normalizing factor, and c controls the trade-off
between robust prediction and generalization. The expression
gp(x− z) corresponds to gp(x) translated and rotated by z.
Intuitively, the integral (7) considers all the different ways to
align the part p with the object. The density ho is computed
as the weighted sum of all possible alignments of gp,
where weights – given by q(z) – are computed from visual

correlation. The constant c controls the trade-off between
robust prediction and generalization. If c = 0, ho represents
random grasps. If c = 1, Eq. 7 is a standard marginalization.
As c grows, ho converges towards the transformation of
gp by argmaxz q(z), i.e., the transformation of gp by the
maximum-likelihood pose of vp in vo. In the experiments
below, c is set to 5.

The ability of p to predict the grasping properties of the
object modeled by o can be measured by the similarity
of go (the grasp density of o constructed empirically) and
ho (the grasp density of o constructed from p). Using the
Bhattacharyya coefficient [3], this similarity is written as

f(p, o) =

∫ √
ho(x)go(x)dx, (8)

where f(p, o) = 1 if ho(x) = go(x) for all x. In our
computer implementation, f(p, o) is approximated via Monte
Carlo integration. Noting that the expression of f(p, o) can
be rewritten as

f(p, o) =

∫ √
ho(x)go(x)

[go(x)]2
go(x)dx, (9)

the approximation is given by

f(p, o) ' 1

M

M∑
`=1

√
ho(x`)

go(x`)
where x` ∼ go(x). (10)

The generality of p with respect to the object library L
is computed from the statistics of {f(p, o) : o ∈ L′}, where
L′ corresponds to L minus the object from which p was
segmented. In the experiments below, the generality of p is
computed as the arithmetic mean of {f(p, o) : o ∈ L′}

m(p, L) =
1

N − 1

∑
o∈L′

f(p, o). (11)

C. Transferring Grasps to a Novel Object

The procedure described above is run offline to produce a
large number of parts characterized by a generality measure.
The k parts that generalize best are selected to form a
dictionary that will allow the robot to grasp new objects. We
denote by K =

{
p(i)
}
i∈[1,k] the set of selected parts. Given

the visual model vô of a novel object ô, our dictionary of
parts allows us to compute a grasp density for ô, as

hô(x) =
1

C

∫ ∑
p∈K

gp(x− z) [qp(z)]
c dz, (12)

where C is a normalizing factor, and qp is computed from
vp and vô using Eq. 6. If the number of parts k is equal
to 1, the expression above correspond to Eq. 7. If k > 1,
hô(x) is constructed from a combinations of the parts in K,
and the contribution of each part p is weighted by its shape
resemblance with vô. For instance, let us consider a set K
containing two parts that model a cylinder (p(1)) and a handle
(p(2)), and let vô correspond to a mug. Through the integral
above (12), the region of hô(x) surrounding the cylinder of
the mug will be computed from p(1) only, while the region
surrounding the handle will be computed form p(2) only.
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Fig. 3: Mesh models of the four objects used in this experi-
ment: a goblet, a mug, a teapot, and a wine glass.

Fig. 4: Grasping an object in GraspIt!. According to the ε
measure described in the text, the quality of this grasp is
0.24.

V. EXPERIMENTAL RESULTS

This section presents two evaluations of our part gener-
alization method. In Section V-A we evaluate our method
in simulation, and we compare the success rate of a grasp
planner that uses no prior grasping knowledge to the success
rate of grasps transferred from other objects. The next section
(Section V-B) illustrates the generality measure f(p, o) on
object models constructed with a real robot.

A. Generalization in a Simulated Environment

In this section, a robot learns part models in simulation,
and we quantitatively evaluate their applicability to novel
objects. The objects used in this experiment are presented in
Fig. 3.

To prepare for this experiment, we first need to devise
a means of acquiring grasp models for the training objects.
Once the training models are available, we will learn a set of
part models, and use the resulting parts for grasping a new
object.

1) Surface-normal Grasp Planner: The training models
are generated in simulation, by executing between 100000
and 150000 grasps. Grasps are planned as follows. Simu-
lations are conducted in the GraspIt! simulator [25] using
a Barrett hand model (Fig. 4). The simulated environment
contains only the object and the hand. The hand is free-
floating; the rest of the robot is not modeled. The simulator
does not model dynamics: When closing the hand, fingers
stop as soon as they make contact with the object. Grasp suc-
cess is computed with the “ε” force-closure quality measure
formulated by Ferrari and Canny [13]. The ε force-closure
quality measure studies contact forces to characterize the
effort the robot has to make to maintain force-closure under
a worst-case external disturbance. The value of ε can vary
between 0 and 1, with ε = 1 corresponding to a very good
grasp. In our experiment, a grasp is successful if ε > 0.05.

The grasps from which our training models are generated
are planned as follows. Let us denote by V the point cloud
of the object. One point a ∈ V is selected at random, and
the local surface normal is computed from its 16 nearest

neighbors. The hand is moved towards a, fully open, with its
palm perpendicular to the local surface normal. The rotation
of the hand around the approach vector is selected from a
uniform distribution on [0, 2π[. When the hand comes in
contact with the object, the fingers are closed until they make
contact, and the quality of the grasp is computed. KDE is
applied to the set of grasps whose ε-quality is larger than
0.05 to produce a grasp density. In the rest of the paper, this
way of computing grasps is referred to as the surface-normal
grasp planner.

2) Learning Part Models: The rest of the experiment is
organized as a leave-one-out cross-validation. Three of the
four objects of Fig. 3 are used for learning part models.
A grasp model is created for each of these three objects,
following the procedure described in the previous section.
The fourth object, let us denote it by o, is left out for testing.
From the three training objects we generate a set of one
hundred visuomotor parts (Section IV-A), and we compute
their generality measure (Section IV-B). We then select the
part with the highest generality measure, and we use it to
construct a grasp density gô for the fourth object ô, using
Eq. 12. (The set K of Eq. 12 thus contains a single part.)
Fig. 7 shows a few grasps sampled from the resulting grasp
density. We finally evaluate the applicability of our method
by computing the success rate of grasps randomly sampled
from gô.

The process presented in the previous paragraph is re-
peated four times, to use each of the four objects for testing
once. The four parts which present the highest generality
measure across each subset of three objects are shown in
Fig. 6.

Success rates are shown in Table I. We emphasize that
these are success rates of grasps randomly sampled from
the grasp density generated from a part model. This way,
our evaluation characterizes the whole model constructed
through part transfer, instead of characterizing a single
grasping point.

As a comparison, Table II shows the success rate of grasps
planned by the surface-normal planner discussed above. As
shown in Table III, the success rates of the transfer-based
planner are on average three times higher than those of the
surface-normal planner.

In several respects, this experiment is rather simple, as
objects share one obvious common part – a round-shaped
“bowl”, and grasp transfer is done through a single part
model. Nonetheless, our results make the strengths of our
approach explicit. The parts selected by the generality mea-
sure of Section IV-B seem intuitively pertinent. Their visual
models include enough structure to encode the curvature of
the underlying surface and correctly align grasps to similar
shapes, while excluding structures that are not common to
all objects.

B. Generalization with Models Learned by a Robot

This section illustrates the generality measure defined
above on two real-world objects (see Fig. 8). In this section,
visual models differ slightly from those discussed earlier.
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Fig. 5: For clarity, we render grasps with a small lollipop-
like object. This image shows how it relates to a two-finger
gripper.

(a) Visuomotor part learned from the mug, the teapot, and the wine glass

(b) Visuomotor part learned from the goblet, the teapot, and the wine glass

(c) Visuomotor part learned from the goblet, the mug, and the wine glass

(d) Visuomotor part learned from the goblet, the mug, and the teapot

Fig. 6: Generic parts. Each triplet of images illustrates a part.
The leftmost images correspond to the visual components.
The middle and right-side images illustrate the grasp compo-
nents. The right-side images show a large number of samples;
the middle images show only ten. The four parts illustrated
in this figure correspond to the parts of highest generality
measure across each of the corresponding groups of three
training objects. Fig. 5 illustrates how the grey “lollipops”
relate to an actual gripper.

Fig. 7: Illustration of the generalization-based grasp density
for the goblet. The figure shows in gray ten grasps sampled
from the density created from the part in the top-row of
Fig. 6.

Object Successful Grasps Tot. N. Grasps Success Rate

Goblet 4948 23645 21%
Mug 5756 15191 37.9%

Teapot 4715 17712 26.6%
Wine Glass 3265 18267 17.9%

TABLE I: Success statistics of grasps transferred to a new
object.

Object Successful Grasps Tot. N. Grasps Success Rate

Goblet 9236 157282 5.9%
Mug 15119 119913 12.6%

Teapot 11453 136415 8.4%
Wine Glass 8096 126254 6.4%

TABLE II: Success statistics of the surface-normal grasp
planner (see text for details).

Goblet Mug Teapot Wine Glass
Surface-normal planner 5.9% 12.6% 8.4% 6.4%

Grasp transfer 21% 37.9% 26.6% 17.9%

TABLE III: Success rates for the surface-normal planner and
grasp transfer.

Fig. 8: Object library: toy
pan an knife

Fig. 9: Visual models of the
pan and knife [12], [30].

Instead of modeling the surface of objects with surface
densities, we model object edges with edge densities [11],
[12]. Those models are acquired from a stereo vision system
that computes the 3D position and orientation of short edge
segments extracted from the objects [30] (See Fig. 9). From
a mathematical viewpoint, they are equivalent to the models
discussed above, as each edge segment is parametrized by
a 3D position and a 2D direction, as it is for surface points
augmented with their surface normals.

The grasp models are learned through exploration on a
real robot. More details on the acquisition of these models
are available in our previous work [10]. The grasp models
are illustrated in Fig. 10.

One hundred parts were randomly segmented from the
model of the pan, and one hundred from the model of the
knife. The ability of each part p of the pan to predict the

Fig. 10: Samples from empirical grasp densities learned with
the objects of Fig. 8.
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(b) Parts segmented from the knife

Fig. 11: Generality measure of the parts of the pan with
respect to the model of the knife (Fig. (a)) and of the parts
of the knife with respect to the model of the pan (Fig. (b)).
The measure of generality is plotted as a function of part
sizes. See text for details.

empirical density of the knife was then computed using the
generality measure m(p, {knife, pan}) = f(p, knife) defined
above (11). Likewise, the generality measure of the pan
model and each of the one hundred parts segmented from
the knife was computed. An interesting way to plot these
results is to show the generality measure as a function of the
spatial size of the corresponding parts. In Fig. 11a, each cross
corresponds to one of the hundred candidate parts segmented
from the pan. The abscissa of a cross gives the diameter of
the bounding sphere of the corresponding part. The ordinate
of a cross gives the generality measure of the corresponding
part. Fig. 11b shows a similar plot for parts segmented from
the knife. Fig. 11 reveals one of the most important results of
this paper: In the two plots of that figure, we can see that our
algorithm makes it explicit that an optimal part size exists.
As parts become smaller or larger than this optimum, the
generality measure decreases. This result is intuitive, as the
two objects we are considering have different shapes. When a
part is too large, it does not resemble any subpart of the other
object. One the other hand, when a part becomes smaller, it
becomes too generic and fails to properly suggest grasps.
Fig. 12 shows the knife part with the highest generality
measure – it corresponds to the highest point of Fig. 11b.
This part corresponds to a segment of about 1cm from the
handle of the knife.

Fig. 13 shows three parts of the pan. The generality
measure of the first two is high. The part of Fig. 13a is at co-
ordinates (71.2, 0.519) in Fig. 11a – its generality measure is
0.519, and the radius of its bounding sphere is 71.2mm. The
part of Fig. 13b is at coordinates (16, 0.508). By contrast,
the part of Fig. 13c, which is rather large (186mm), has a
low generality measure (0.177). These results correspond to
what we would expect from a generality measure: the parts
of Fig. 13a and Fig. 13b seem to contain information relevant
to the knife, while the part of Fig. 13c could not be properly
fitted to it.

VI. DISCUSSION

One problem that is not addressed in this paper is the
adaptation of the hand’s fingers to an object’s shape. Our
work could however easily be extended to model finger
preshapes or configurations along with the wrist position

Fig. 12: Visuomotor model of a part segmented from the
knife. The part corresponds to a small segment of the handle
of the knife. The left image shows the visual component
vp of the part. The right image shows the associated grasp
component gp.

and orientation. While such a model would enable the
generalization of dexterous grasps, it would also increase
the size of the space that the robot needs to sample in order
to learn the model parameters. Reducing the size of the
finger configuration space [7] would greatly help, allowing
for a continuous finger model, while limiting the number of
additional latent dimensions.

Our C++ implementation running on a 2009 8-core Xeon
computer produces the results discussed above in about two
days. The memory footprint of the program is always below
50MB. The computational cost of ranking parts is O(kN)
where k is the number of parts that have to be tested, and N
is the number of objects. From a computational viewpoint,
linearity in the number of objects allows the model to scale
to larger environments, as long as one manages to limit
k. Currently, parts are generated in a random fashion that
does not prevent similar parts from being tested (Section IV-
A). Generating parts, and comparing them to one another,
is computationally cheap by comparison to the evaluation
of Eq. 7 and Eq. 8. Therefore, removing redundant parts
before checking their generality measure could substantially
contribute to scaling the method to larger environments.

VII. CONCLUSIONS

We presented a principled solution to the problem of
transferring grasps across objects. By contrast to methods
that learn graspable parts from human demonstrations, we
focused on an autonomous discovery of graspable parts from
dense grasp models collected via exploratory learning. One
key aspect of this work is that it does not assume that the
grasps of the training database are all applied onto interesting
parts. Instead, interesting parts emerge from a cross-object
search for recurring visuomotor parts.

We presented a methodical approach to searching for
recurring parts, that we based on an intensive encoding of
low-level visuomotor uncertainty through surface densities
and grasp densities. Similarities across objects are computed
via probabilistic measures, which we approximated by Monte
Carlo integration. We demonstrated the applicability of our
approach in simulation and on two real-world objects.
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Fig. 13: Visuomotor models of parts segmented from the pan. Fig. (a) corresponds to a small segment of the handle of the
pan. Fig. (b) corresponds to an even smaller segment of the handle, while Fig. (c) is a model of almost all of the object.
Images on the left show the visual component of each model, while images on the right show the grasp component.
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